日本古生物学会第148回例会

講演予稿集

1999年6月26, 27日

さん だ
三 田 (兵庫県)

日本古生物学会
表紙の図の説明

Volachlamys yagurai (Makiyama, 1923) ムカシチヒロ

神戸市垂水区西舞子産の同地標本に基づくスケッチ

殻高約42mm (Illustrated by T. Matsubara)

西日本太平洋側～東シナ海北部にかけて分布する現生種の*Volachlamys hirasei* (Bavey, 1904) ヤミノシキと比較して、多くの放射肋（普通20〜24本）、広い頂角および低い耳を有しているほか、後耳の後端が鋭突に対して殆ど垂直となっている点で異なる。

また、本種には現生種のような平滑〜弱肋型は見られない。

*Volachlamys yagurai*は神戸市西部に分布する中部更新統若狭層群明美層（「舞子貝層」「高帯山貝層」）および大分県の更新統日之津層群加津佐層から知られる。このうち、「高帯山貝層」および日之津層群加津佐層の図面群は、模式産地のものと比べて現生種に近い形態を有している（速水, 1985）。このことから、本種が*Volachlamys hirasei* に進化した可能性が指摘されているが、化石*Volachlamys*産出層の年代に関するデータが十分ではなく、今後の検討が待たれる。

（松岡尚志：兵庫県立人と自然の博物館）
日本古生物学会 第148回例会

兵庫県立人と自然の博物館（1999年6月26日～6月27日）

6月26日（土）

シンポジウム
（第1会場 ホロニピアホール）

日本の陸生哺乳類の起源

【12:45〜17:00】

世話人：小澤智生・河村善也

【12:45〜12:50】 シンポジウム開催の主旨-----------------------------小澤智生・河村善也
【12:50〜13:20】 アジア大陸との関連から見た中期更新世以降の日本の哺乳動物相の変遷----------------河村善也
【13:20〜13:50】 分子系統学的にみた日本の小型哺乳類の起源と系統----------------鈴木 仁
【13:50〜14:20】 形態学的にみた日本の小型哺乳類の起源と系統----------------子安和弘

【14:20〜14:30】 -休憩-

【14:30〜15:00】 日本哺乳動物相の起源と長鼻類化石------------------------橋野博幸
【15:00〜15:20】 コメント（鮮新～更新世における日本の長鼻類化石の起源）----高橋啓一
【15:20〜15:50】 琉球列島の第四紀脊椎動物相の起源---------------------------大塚裕之
【15:50〜16:15】 分子系統学的にみた日本の現生イノシシ類の起源----小澤智生・遠藤 守
【16:15〜16:40】 ミトコンドリアDNA遺伝子情報及び化石記録から見たニホンジカ Cervus nippon の起源と系統進化------------------桑山 龍・小澤智生
【16:40〜17:00】 総合討論

懇親会

【18:00〜20:00】

シンポジウム終了後、4F ティーラウンジミューズにて開催いたします。会費は5,000 円（学生は4,000 円）を予定しております。ふるってご参加下さい。

会期中の会場への連絡は博物館代表電話番号（0795-59-2001）へおかけ下さい。
６月２７日（日） 個人講演（第１会場，第２会場，ポスターセッション）

第１会場午前（本館４階大セミナーローム）

古脊椎動物の部

★座長 真鍋 豊【9:30~10:50】
1. 岐阜県可児市の中新統産アムコア類について 藤本 基孝・合田 隆久・富田 博幸
2. 東京市および貝塚市の上部白亜系から発見されたラプカの角化石について 後藤 仁敏・伊達 正宏・加納 学
3. カメ類の生存活動に関する研究について 平山 敏
4. 神戸市より産出したサイ上科化石について（予報） 三枝春生・松原 昌志
5. 阪の遠藤樹を訪問して（予習） 柴田口 聖司・Li Chuan-Kuei

憩い【10:50~11:00】

中・古生界放射虫の部

★座長 八尾 昭【11:00~12:20】
6. 半島及び国南部の Saha Yoi 地域から産出された三叠紀放射虫とその意義 桂田 豊男・川崎 直
7. ダイケ北方西部マサリック地域から産出された三叠紀放射虫（予報）
8. 美濃地方のマンガノジュール中のジュラ紀中世の放射虫化石群
9. 八溝地域機子山下南部のマンガノジュールより産出されるジュラ紀末放射虫化石
10. 中部三叠系層状チャート層における Pseudostylusphaera 塩の頻度および形態変化

憩い【11:00~12:00】

古環境の部（１）

★座長 谷川西四【11:30~12:50】
1. 現生河川での生態観潮の観察に基づく古生代生態系の試み 東京大学妙法川流域下部更新統白亜系放射虫化石群を例として 大久保 敦
2. バルト海の泥沼植物における泥沼化石を用いた古環境の定量的復元 佐藤 喜・藤原 一
3. 長江流域における在来花粉の花粉類群集 長江河口部の海相花粉植物と
4. 鹿児島県南部地域植物の泥沼植物の分布 趙 賢珍・松岡 敏雄
5. 徳島県の第三系岩屑層の石灰質鉱物・泥沼植物化石年代（中~上部中新世） 松原 昌志・山本 裕雄・栗田 誠司

憩い【10:50~11:00】

古環境の部（２）

★座長 鹿島 薫【11:00~12:20】
1. A new, stratigraphically important species of Buryella (Radiolaria) from DSIP site
2. 有孔虫化石群の古地理的動向
3. 南太平洋クツマムシ海溝における過去15万年間の浮遊有孔虫群集と表層海洋環境変動
4. 新潟県北部沿岸地域の物語層（新統）から産出した有孔虫化石 Globorotalia inflata s.1.の検出について
5. 佐藤 喜男・鈴木 裕一郎・山本 正伸・井藤 忍

憩い【12:20~13:30】
ポスターセッション（ホロンピアホール1階エントランス）【12:30～13:30】

21. ベルム紀後世後期の殻サイズの大きな放散虫群集... 桑原浩之子・八尾 昭
22. 岐阜県西部第四紀海盆堆積物からの絶滅後世放散虫化石の産出とその剖面 ... 岡村 真
23. 韓国南部異常圧密帯南部のシナミア科魚類化石... 佐本美夫・梁 承宗
24. 境界倉生 "Spongopilema antarcticum" Group（新生代球状放射虫）の種分類... 鈴木紀雄
25. 高知県南部快楽中層セッションのステージ6から7にかけてのGliana属の形態変化......................... 古谷 裕

第1会場午後（本館4階大セミナー室）

古生物相の部（1）

★座長 江崎洋一【13:30～14:35】

26. Anti-tropic distribution; a key to the understanding of Palaeozoic biogeographical provincialism of Japan. ----------------------------- Weiping Yang and Jun-ichi Tazawa

27. 南部北上系と地層から産出したベルム紀脊椎魚類 Scenicchella ... 田沢純一・荒木英夫

28. 南部北上系と地層から産出したベルム紀脊椎魚類 Scenicchella ... 田沢純一・荒木英夫

29. 三宝山系から産出した三宝山系の大型水生生物 ... 牧野耕治

～休憩～【14:35～14:45】

古生物相（2）・形態解析（1）の部

★座長 閔啓【14:45～15:35】

30. デボン系地層のデボン動物群 ... 江崎洋一・足立奈津子

31. デボン系地層の微生物類 ... 江崎洋一・足立奈津子

32. シルリ紀中期 南海 Sauria favosa の増殖様式と成長パターン ... 安原有美・江崎洋一

第2会場午後（本館4階中セミナー室）

生層序の部

★座長 古谷 裕【13:30～14:35】

33. 龜崎地層上のベルム系 - 三宝系の放散虫化石群集（その2）... 桑原浩之子・八尾 昭

34. 丹後湾周原 P/T 界面セッションからの最前期三巨紀コノドント化石の産出 ... 田中 眞

35. 南部北上系と地層から産出した放散虫化石 ... 田中 眞

36. 北海道中部地方の上部巨大系の地層群の岩相変形と大型化石発育 ... 田中 眞

～休憩～【14:35～14:45】

古生物相（3）・形態解析（2）の部

★座長 閔啓【14:45～16:05】

37. 始新統ボンガウン層（マンマ）の哺乳類化石動物群について ... 竹本武久・高井正成・茂原信雄・U Aye Ko Aung

38. 河川堆積の形態によるトリティロドン科種群の系統考察 ... 尾崎浩司・江崎洋一

39. 境界倉生 "Spongopilema antarcticum" Group（新生代球状放射虫）の種分類 ... 鈴木紀雄

40. 三宝山系の中層群（下部中新統）の種のコホトデ化石 ... 石田昌明

41. オウガイの脊体と外見模の付着様式 ... 伊佐治尚樹・加藤友喜・藤間一成・内山公夫
会場案内図

4階

受付：エントランスホール
懇親会場会場：ホロピアホール
懇親会場：本館4階

第1会場

第2会場

ホロピアホール

シンポジウム会場

2階

ボスターセッション会場

1階

※図書館は1階入口。テイラー・ウエンジームズ1階“バークロピー”およびホロピアホール3階ホワイト（26日のみ）で飲食は休息室またはテイラー・ウエンジームズにてお願いします。

※入館の際には一般来館者との識別が出来るよう、名札をきちんと左胸に付けてください。

※27日(日)は、開館時間を午前10時まで4階入口から入館してください。また、3階以降はこの時間まで入れませんのでご注意ください。

※エレベータは少人数しか乗れませんので、館内の移動は階段をご使用ください。

※ホロピアホールのエレベータからは本館4階に入れませんのでご注意ください。

※シンポジウム会場へは3階または1階から、ボスターセッション会場へは1階からお入りください。

※館内の案内につきましては、もとのミュージアムメイト（図の③）にお尋ねください。
博物館への交通のご案内

伊丹空港から（一例）
バスまたはモノレールで阪急宝塚線「空港駅」へ→阪急宝塚線「宝塚」ゆき乗車→「宝塚駅」でJR福知山線「新三田」→「福知山」ゆき乗り換え→「三国駅」で神戸電鉄公園都市線「ウッディタウン中央」ゆきに乗り換え→「フラワータウン駅」で下車→徒歩3分（所要時間約1時間）

新幹線新大阪駅から（一例）
JR東海道本線（神戸線）神戸方面ゆき電車で「尼崎駅」へ→福知山（宝塚）経「新三田」→「福知山」ゆきに乗り換え→「三国駅」で神戸電鉄公園都市線「ウッディタウン中央」ゆきに乗り換え→「フラワータウン駅」で下車→徒歩3分（所要時間約1時間）

新幹線新神戸駅から
北神急行「上北」ゆき乗車→「谷上駅」で神戸電鉄有馬線「三田」ゆきに乗り換え→「福知山駅」で神戸電鉄公園都市線「ウッディタウン中央」ゆきに乗り換え→「フラワータウン駅」で下車→徒歩3分（所要時間約1時間）

博物館周辺地図

博物館の入口は4階ありますので、駅から建物は見えません。「フラワータウン駅」で下車後、改札を右に曲がり、その後案内に従ってお進みください。

駐車場は近隣商業施設と共用となっています（1日1回500円）
日本古生物学会第148回例会宿泊案内
日時：1999年6月26、27日
会場：兵庫県立人と自然の博物館

◆共済組合関係宿泊施設(会場まで1時間〜1時間半)◆
組合関係の宿泊施設は、料金設定が細かく分かれておりますので、予約の際によく確認してください。参考までに、組合員の宿泊料金を表示しております。また、交通の便もよく確認してください。

・神戸市中央区
 ひょうご共済会館（市） 078－222－2600 ￥7,024〜（2食付税含）
 バレス神戸（警） 078－371－7800 ￥4,000〜（食税別）
 六甲荘（公） 078－241－2451 ￥4,645〜（食別、税税含）
 有馬温泉
 瑞宝園（地） 078－903－3800 ￥5,500〜（食税別）
 鼓ヶ庄（警） 078－904－2424 ￥10,007〜（2食付税含）

・神戸市北区
 五社駅（市） 078－981－5458 ￥6,948〜（2食付税含）

・伊丹市
 ラ・コート伊丹（防） 0727－73－3195 ￥5,300〜（2食含、税税別）

・大阪市北部、新大阪周辺
 大阪弥生会館（R） 06－373－1841 ￥3,965〜（食別、税税含）
 大阪ガーデンパレス（私） 06－396－6211 施設へ直接お尋ねください
 新大阪シティプラザ（市） 06－393－1111 ￥6,000〜（食税別、無し）

◆一般宿泊施設（三田市以外のホテルは、会場まで40分〜1時間半位）◆
注1）三田市周辺には大きな宿泊施設はありません。
注2）三田市内のホテルは例年ゴルフトーナメント開催のため、混雑することが予想されます。早めにご予約ください。
注3）平日と休日の料金設定が異なる場合があります。予約時に確認してください。（表示は平日）
注4）その他、詳細については各施設ご予約時に確認してください。

・三田市内
 三田サミットホテル 0795－62－5200 ￥7,000〜
 さんたサンライズホテル 0795－59－2660 ￥6,300〜
 三田セントラルホテル 0795－62－4800 ￥7,000〜
 ビジネスホテル北六甲 0795－63－3232 ￥6,200〜

・宍塚駅周辺
 宍塚ワシントンホテル 0797－87－1771 ￥9,100〜

・伊丹駅周辺
 ホリディイン伊丹 0727－84－2600 ￥5,800〜

・新神戸駅周辺
 ホテルグランドビスター 078－271－2111 ￥8,600〜

・大阪駅周辺
 ホテル関西 06－315－6871 ￥6,200〜
第2回日本古生物学会野外ワークショップ
「海産無脊椎動物の古生態学」

古生態学は、確立した手法で決まった手続きをとれば結果が出るというタイプの研究とは異なり、個人の想像力や独創性、そして経験に基づく観察により研究が進展するというワクワクする面をもっています。しかしその一方、いざ研究を始めてみると、どんな手法を取ればよいのか、また自分の観察方法・思考過程・議論などに悩みや行き詰まりを感じる人もいるかもしれません。そこで今回、古生態学の分野で活躍中のドイツのフェルズィヒ教授の来日を合せて、古生態学に関する会議を企画しました。参加者全員に話題提供の機会があり、その内容はどんなに細かくてもかまいません。フェルズィヒ教授と直に議論したい人は、内容をポスターにまとめ、英語で簡単な説明ができるように準備してくださいとと思います。（近藤康生・金沢謙一）

日時：1999年9月23日（水）～9月25日（土）、26日（日）は自由参加

内容：23日午後：講義「古生態学の研究方法と実例」（Prof. F.T.Fürsich、Würzburg大学）
24日：参加者による話題提出、研究発表と議論
25日：野外巡検（白亜紀）、露頭を前にしての議論
26日：浜における現生生物の観察と採集

集合・宿泊場所：高知大学海洋生物教育研究センター
所在地：郵便番号781-1164　高知県土佐市内間井町194
電話番号：0888-56-0422　ファックス：0888-56-0425

人数：20人前後

申し込み・問い合わせ先：〒113-0033本郷7-3-1 東京大学総合研究博物館 金沢謙一
電話03-5841-2817　Fax03-3815-7053　E-mailkanazawa@um.u-tokyo.ac.jp

詳しい情報：古生物学会ホームページ
申し込み締め切り：9月3日
日本古生物学会のホームページのアドレスが変わりました

日本古生物学会のホームページが下記に変更されました。

http://ammo.kueps.kyoto-u.ac.jp/palaeont/

ホームページに関する問い合わせやご要望は広報担当常務委員までお寄せ下さい。

広報担当常務委員
〒606-8224 京都府京都市北区北白川迫分町
京都大学大学院理学研究科地球惑星科学教室
TFL 075-753-4158
e-mail maeda@terra.kueps.kyoto-u.ac.jp
前田晴良

日本古生物学会

Palaeontological Society of Japan

このページに関するご意見は管理者まで

Copyright (c) 1999 Palaeontological Society of Japan. All rights reserved.
シンポジウム
日本の陸生哺乳類の起源
シンポジウム開催の主旨

このシンポジウムを企画した動機は、「日本の生物相の起源・現状・保全に関する学際的考察」と言った自然史科学の深くかかわる内容の特定領域研究を立ちあげられたんだと言う強き願望をかながわ世話人らが持っていたことに根ざしている。今回もその準備ためのキックオフシンポジウムとして日本の陸生哺乳類の起源についての話題を取り上げ。研究の現状を整理したい。

東アジアの東縁に位置する日本列島の陸生哺乳動物相の変遷は大陸からの哺乳動物（群）の移入、定着、絶滅のくりかえしの歴史として捉えることができる。それ故、日本での化石・現生陸生哺乳類の起源を明らかにするためには、大陸の化石・現生種を含めた詳細な比較形態学的なならばに分子系統学的研究を行いその系統的進化を明らかにする必要がある。

日本の化石哺乳類の研究において、起源にかかわる系統問題を扱った論文は思いの外少ない。その理由の一つとして、日本から産出する化石の多くはそれを顕存する地層の堆積環境を反映し、一般に断片的なものが多く、比較形態学的研究に十分耐えうる標本が少ないケースがあげられる。

その中にあって、小型哺乳類と長鼻類は材料が比較的豊富で、これらの<key taxa>を中心にこれまでも日本の第四紀哺乳類動物群の起源、渡来時期、動物群の置き換えなどが議論されてきた（河村善也、鈴野博昭、高橋啓一の講演）。とりわけ、最近進展を見せている日本列島と中国の小型哺乳類化石相の比較研究、日本の現在の哺乳類相の起源と成立プロセスについて、古生物学の立場から制約を与えつつある（河村善也の講演：現生種の情報に関しては子安和弘の講演）。

特異な生物地理区を形成している琉球列島の動物相の起源と成立過程については、これまで明確にされていなかったが、最近、渡来直後の動物群の内容を示すと考えられる重要な化石群の発見がなされ、その起源についても古生物学的事実にもとづいて言及できる状況になってきた（大塚裕之の講演）。

一方、哺乳類学の中心的研究手法の一つとして定着した分子系統学は、日本の哺乳類の起源、集団構造、渡来時期、品種序列的比較検討、哺乳類化石の研究と密接な関わりを持つに至ってきている（鈴木仁、小澤智生、遠藤守、桑山龍、小澤智生の講演）。

分子系統学者は化石記録や形態情報をまた古生物学者は分子系統学的情報を積極的に取り込んで、両者のデータを統合して系統を復元しようとする学風が次第と系統学の主流となりつつある。

本シンポジウムはこのような状況下で時宜を得て企画されたものであり、古脊椎動物学、解剖学、動物学、分子系統学の研究者にお会いの分野の最新の研究結果を持ち寄り、日本の陸生哺乳類の起源について議論するまたない機会でもある。

シンポジウム参加者の積極的な討論への参加をお願いしたい。

世話人：小澤智生（名古屋大学大学院理学研究科地球惑星科学教室）
河村善也（愛知教育大学地理教室）
アジア大陸との関連から見た中期更新世以降の日本の哺乳動物相の変遷*

河村善也 (愛知教育大学・地学)**

これまで私は、日本産第四紀哺乳類化石の系統・分類学的研究とその産出層の層序学的・年代学的研究にもとづいて、日本列島における第四紀哺乳動物相の変遷史を研究してきたが、そのような研究を始めた当初から、日本産の化石を詳しく研究するには中国など周辺の大陸地域の化石やそれに関連するデータとの比較が不可欠であると考えていた。しかし研究を始めて間もない頃は、そのような地域への渡航もデータの入手も現在ほど容易ではなかった。ところが、この20年ほどの間に状況は大きく変わり、そのような地域への渡航やデータ収集は容易となり、現地研究者との交流も盛んになってきている。このような状況のもとで、私は中国など大陸地域での野外調査や現地での標本の直接比較、現地研究者との共同研究を推進することが、この分野の研究を発展させることになると考え、そのような研究活動を少しずつ行ってきている。中国などの大陸地域でのデータ収集や標本の比較はまだ十分とは言えないが、これまでに得られた日本や大陸のデータを整理して、私はこれまでに日本列島での中期更新世以降の哺乳動物相の変遷史を私なりの考えでまとめることができた。また、日本と大陸の動物相との関係についてもモデルを考え、日本列島の各陸塊間や大陸との間の陸橋・「氷橋」形成についてのモデルや、さらには日本列島に分布する現生哺乳類の起源についてのモデルも考えてみた。本シンポジウムでは、私のこのような動物相の変遷史についての考えや、いくつかのモデルを「たたき台」の一つとして議論していただければよいのではないかと考えている。

日本列島の中期更新世以降の動物相の変遷史と大陸の動物群との関係について、かつては中期更新世前半に中国南部の万県動物群が日本に大量移入し、その後半には中国北部の周口店動物群が同様に移入し、後期更新世前半には中国北部の黄土動物群が、その後半にはシベリアのマンモス動物群が大量移入し、日本列島の動物相はこのような大陸からの動物群の移入によって時代とともに大きく移り変わってきたと考えられていた。このようなモデルに対して、私は中期更新世の動物群の移入は比較的限られたものであり、中期更新世の中期の中国南部からの移入にしても、またその後期の中国北部からの移入にしても日本列島の動物相を根本から大きく変えてしまうほどのものではなく、比較的限定されたものと考えている(図1)。また、後期更新世の前半には大陸からの動物群の

* Mammalian faunal succession since the Middle Pleistocene in Japan in relation to the mammalian faunas in the Asiatic Continent.
** Yoshinari KAWAMURA (Department of Earth Sciences, Aichi University of Education)
移入はなく、その後期のマンモス動物群の移入も大部分は北海道までで、その一部が本州まで南下したにすぎないと考えている。

また、私は哺乳類化石のうち、その産出層準が日本の鮮新・更新統の中で連続して続いている長鼻類化石のデータを用いて陸橋の形成期を推定し、それぞれの種類と大陸の近縁種との関係を考慮して、陸橋と動物群の移動に関するモデルを考えた。これらの長鼻類化石のうち、中期更新世以降のものに限定すると、0.5Ma頃（0.6Ma頃になる可能性がある）には本州にトウヨウソウの最初の出現があり、上記の中更新世初期の中国南部からの動物群の移入は、この頃に形成された陸橋を経て行われたものと考えられ、0.3Ma頃（0.4Ma頃になる可能性がある）には本州にナウマンソウが最初に出現するが、上記の中期更新世後期の中国北部からの動物群の移入は、この頃に形成された陸橋を経て行われたものと考えている（図1）。後期更新世とそれ以降には陸橋の形成はなく、最終氷期の最寒冷期には狭くなった津軽海峡に形成された「氷橋」を渡って、北方から本州へ若干の哺乳類の移入があったと考えている。

分子系統学的にみた日本の小型哺乳類の起源と系統
鈴木 仁（北海道大学大学院地球環境科学研究科）

ネズミ類を中心とした小型哺乳類は寒冷帯域から熱帯域までくまなく分布し、また森林から草原といったさまざまな生態学的環境に生息している。その分子系統学的解析は分類学的再編成や種分化機構の解明に有用であるばかりでなく、地質学的および生物学的古環境の推察に大いに役立つものと思われる。現在、日本列島に生息する小型哺乳類種を中心にそれらの分子系統学的解析を進めており、各構成員の遺伝的背景が明らかになるそうしている。しかし、それから得られる情報は必ずしも明解なものばかりではなく、従来の見解とさまざまな点で食い違いがみられる。ここでは、これまで得られたデータの概説を行うとともに顕在化した問題点を提示し、今後の研究動向の指針を得たい。

日本産小型哺乳類の分子系統

日本列島には1000種ほどて在来の陸生哺乳類が生息し、小型哺乳類を中心に固有種が多い。例えば阿部(1994)に従うと在来ネズミ目は14種に分類されるが、そのうち8種は日本固有種である。さて、日本産陸生哺乳類の系統と起源についての分子系統学的知見データが蓄積されつつあるが、その中で判明したことは以下の四つの仮説に要約できる。

（1）3つのブロック説：動物相としては大陸種との類縁性から大きく北海道、本州-四国-九州、南西諸島中部の3つのブロックに分けることができる。北はサハリン、中央は韓半島、南は台湾などの異なる地域からの流入があったことが検証できた。

（2）第三紀起源説：日本産の哺乳類は小型哺乳類は中心に固有性の高いものが古く系統の起源が第三紀末までさかのぼるものも存在する（例えば、ニホワンマネ、アカネズミ、ヒメネズミ、ハタネズミ、トゲネズミ、ケナガネズミ、ミズラモグラ、サドモグラ、アズマモグラ、アマミノクロウサギ）。

（3）大規模な断続的流入説：時間を越えての大陸からの流入が繰り返し行われ、そのうちのいくつかは形態的な特徴の原型を留め、固有な系統として維持されている。それぞれの系統が「種」として認識されているため、列島内の種の多様性は高くなっている。

（4）列島内での南北の移動説：本州-四国-九州ブロックでは特に小型哺乳類を中心に地理的分化が進んでいる。また、モグラ類やヤチネズミ類では東北地方の要素が紀伊半島南部や関西の山間部に断片的に存在している場合もある。種内変異のレベルの高さの要因として、地形が複雑であることに加え、第四紀の地球環境の変動とともに、北と南の集団間あるいは近縁種間で列島の中で大幅な分布域の変動があったものと考えられる。

日本産小型哺乳類の起源と系統に関する4つの謎

上記のように日本産小型哺乳類の特徴を遺伝的の観点から概説したが、この荒削りな推察は各方面からの検証を必要としている。今後解決しなければならないこととして、以下の四つの項目を挙げることができる。
（１）系統の分岐年代の推定
遺伝子の変異から種が分岐した年代を推定できるのが分子系統学手法のひとつであるが、現点として用いるのが化石からのデータである。しかし現点として用いるべき確固とした「標準」が小型哺乳類の場合ないので現状である。例えば、標準としてよく用いられるラット・マウスの分岐はネズミ亜科の分岐を採用すると1200－1400万年前となり、哺乳類・鳥類の分岐を基準にすると4000万年前となる。一方、ヤマネ類の放散の時期を中新世中頃とし、それが現在の属の分岐の時期であり進化速度がヤマネ類とネズミ類で同じであるとして仮定すればラット・マウスの分岐は中新世の後期となる。このような数個の起点を採用し、より正確な分岐年代の推定を行う必要があると思われるが、いったいどのような「起点」が利用できるのかについて議論が必要である。

（２）日本列島の小型哺乳類の系統はそれほど古いか
ネズミ類、モグラ・ヒミズ類の日本固有の系統としての起源をたどると、その多くはかなり古いことが知られている。例えばミトコンドリアDNAのチクトームβ遺伝子領域の塩基置換の変異に基づき、日本産の種を大陸産の最も近縁とされている種と比較したとき、ラット・マウスの分岐の1200－1400万年前という最大の評価を用いても、系統の起源は第三紀後期（2000－200万年前）までさかのぼる種が多い。従来の日本の陸生哺乳類は第四紀の末期の際の陸橋形成を通じて渡来してきていると考えられている。またこの古さをサポートする化石も列島内には産出されていない。では列島内の遺伝的固有度は極めて高いという事実をどのように受けとめればよいのであろうか。

（３）渡来の時期は
列島内の遺伝的固有度の高さはどのような歴史的過程を通じて形成されたのであろうか。系統の分化・維持は日本列島内で行われたと考えるか、あるいは、実際の系統の樹立は大陸で行われ、最近（第四紀）日本に渡来したであろうという2つの対立する立場をとることが可能である。後者の立場をとると、大陸の祖先集団は第四紀中に絶滅しなければならない（あるいは現在未発見または未解析）。しかもこの考えは多少無理がある。まず、ニホンヤマネやトゲネズミのように遺伝子の種内変異の度合いが第三紀にさかのぼるものがある。これは渡来した祖先集団の多型性でも説明できるが、ニホンヤマネの場合、6つ以上の多型性が同時に大陸から移入されたとは考えにくい。列島内でこの種内変異が形成されたと考えるほうがより自然である。また、日本固有種のアカネズミ、ヒメネズミは大陸の優先種のセスジネズミ、ハントウアカネズミと朝鮮半島を境に対峙しているが、これらは一種内変異のレベルはそれぞれ同等に高い。その種内変異の起源は最低で見積もっても第四紀初期にまでさかのぼるかもしれない。前者の立場に立つと、列島内で数千年もの長時間を多くする系統が絶滅することなく維持されたということを容認しなければならない。

（４）列島内の遺伝子系列の複雑系はいかに生成されたのか
起源の問題もさることながら、列島内で地域集団間の変異がどのような過程を通じて形成されてきたのか未知である。モグラ類の移動性の低い種で地域分化のレベルは高い。また調べる遺伝的マーカーによってその垂直的分布パターンがしばしば異なることも多く、その実態は極めて複雑である。第四紀の地球環境の変遷の中でこれらの地理的変異が蓄積したと思われるがその全体像ほどには至っていない。
形態学的にみた日本の小型哺乳類の起源と系統

子安和弘（愛知学院大学・歯学部・解剖学第二講座）

日本産の陸生現生小哺乳類は主として食虫類とネズミ科の齧歯類で構成されている。これらについ
et全般的に述べることは適切ではないので幾つかのトピックスに限定して話を進める。

現生の日本産食虫類を構成する主要な分類群はモグラ科とトガリネズミ科である。モグラ科の下
位分類にはさまざまな意見があるものの、日本産に限ってみればモグラ科はモグラ科内の2亜科
（ScalopinaeとTaipinae）ないしモグラ亜科内の2族（UrotrichiniとTalpini）ということ近いの
ヒミズ類と大型のモグラ類に分けられている。小型のヒミズ類にはヒメヒミズとヒミズとがいるが、
この両者は下顎の歯式が異なり、ヒミズではヒメヒミズに存在するP₄（例えばImaiizumi & Kubota,
1978）ないしC（例えばZiegler, 1971）が欠如しているために歯の数では2本の差が認められる。
欠如した歯種の名称が異なるのは、上顎歯の本数に対する見解が異なるためである（両側とも国
内では2本、国外では3本とされている）。上顎の切歯を2本とする見解は今泉（1949）に始まり、
Imaiizumi & Kubota（1978）によって決定づけられたといってよい。国産の見解は“乳歯が生産し
と交換しない小臼歯はP²(=P₃)”という前提でなされている。結果的にいえば、国内で示された
切歯縦合の位置は誤っている。正しい歯式はヒメヒミズでI₃/2.C₁/1.P₃/3.M₃/3=38、ヒミズで
I₃/2.C₁/1.P₃/2.M₃/3=36である。これらの歯式は切歯縦合の位置から3本の上顎切歯を持つことが
Villanyianに生息：Skoczen, 1980）とも中国のQuyania属（RuscinianとTuolianの境界）のI₃/3,
であることを支持している（McKenna & Bell, 1992参照）。

Urotrichiniの中で乳臼歯の形態が部分的にでも示されているのはヒメヒミズ、ヒミズ。Quyania
chowi, アメリカヒミズのみである（Ziegler, 1971; Storch & Qiu, 1983; 花村ほか, 1996)。下顎第
四乳臼歯（dP₄）はヒメヒミズ、ヒミズ、アメリカヒミズではP₄よりも複雑な形態をなしているのに
対し、奇妙にQyaniaのdP₄はP₄よりも単純な形態である（Storch & Qiu, 1983）。Storchら
の歯種の同定に誤りがないなら、QyaniaのdP₄はTalpiniのように“単純化の進んだ乳臼歯形態（=
単純化”）（Ziegler, 1971）をとっていることになる。ヒメヒミズとヒミズ間では、dP₄の形態（花村
ほか, 1996）、t₁₁の形態、P₃の歯根数、下顎小臼歯数の差、などに明確な差が認められるので、
両者には相違の差があるとしてよいだろう（Yates, 1984; Yates & Moore, 1990; 阿部, 1998)。
QyaniaのdP₄を除外すれば、UrotrichiniのdP₄の形態がTalpiniのそれより原始的であることは両者
の骨盤形態の違いが示す傾向とも一致している（Stroganov, 1948）。すなわち、両族はともに脛骨
結合が大きく離れた骨盤を持つが、Talpiniでは左右の脛骨頸が二次的に結合する傾向を示す。モ
グラ科の骨盤背面は仙鬚靭帯と仙鬚靭帯の脛骨によって骨性の大坐骨孔と小坐骨孔が形成され
る場合がある。ヒメヒミズとヒミズでは靭帯間も骨化しない原始的状態を示すが、Mogeraでは
靭帯の骨化によって大小坐骨孔が形成される。これはミスラモグラ¼Euroscaptorや尖関諸島魚釣
島のみに生息するセンカモグラ¼Nesoscaptorにも共通する特徴である（今泉, 1964; Abe et
al., 1991）。ただし、真のEuroscaptor（E. longirostrisやE. micrus）では仙鬚靭帯のみが骨化する
ので、TalpaやScaptochirusと同様に骨性の大坐骨孔のみが形成される（Stroganov, 1948など）。仙
鬚靭帯と仙鬚靭帯の骨化がapomorph的な形態であることは明らかであるから、骨盤形態からみる
限り、日本産の3属がTalpini内部で特化化した系統をなしている可能性が浮上する。耳小骨の形態、
椎骨数、染色体核体（ただしミスラモグラとニホンモグラ属のみ）などもこの可能性を否定しない。

食虫類のもうひとつの主要な分類群はトガリネズミ科である。日本産現生種はトガリネズミ亜
科とジェンズミ亜科がこの科を構成している。トガリネズミ亜科のSorex属はモグラ類同様、旧北区と新北区にひろく生息し、主に前者にSorex亜属が、後者にOtisorex亜属が生息するとされる（総説としてDannelid.1991）。日本産のトガリネズミはすべてSorex亜属に含まれるが、旧領土である北千島のパラムシリーズにはOtisorex亜属のSorex leucogasterが生息している（Kuroda.1933: Yudin.1971: van Zyll de Jong.1991）。主として旧北区に生息するSorex亜属内で特に興味深いのがS. araneus-arcticus groupと呼ばれるグループである。このグループには旧北区のS. araneus、S. asper、S. coronatus、S. daphaenodon、S. granarius、S. saltini、S. 'tundrensis' と、新北区のS. arcticusと真のS. tundrensis（以後'tundrensis'は区別しない）とが含まれている（Dannelid.1991）。このグループでは性染色体のX（本来のX）が常染色体のひとつと融合した結果、すべての雄がXY1Y2という3個の性染色体を持っている（Y1が本来のYで、Y2は融合の結果残された常染色体）。この融合は進化の過程で1度のみ起こったと考えられるから、S. araneus-arcticus groupは明らかに単系統である（Volobouev & van Zyll de Jong.1988など）。Sorex亜属とOtisorex亜属の単系統性とSorex亜属内でのS. araneus-arcticus groupの単系統性は酵素多型（George.1988）やmtDNA核内転写子（Ohdachi et al.）を用いた解析などを繰り返し確認されているので、形態解析の際に参考資料として格段の意義を持つ。Fig.1は上下顎の小白歯と大臼歯の咬合面の26計測部位についてUPGMA法によるクラスター分析をおこなった結果である。この表型樹は観察部位の類似の程度を示しているのであって、各種の系統関係を示しているのではない。Fig.1は現時点での極めてフラグメントの結果を示しているが、日本産トガリネズミ類の類縁を考える上で重要な形態的示唆も含まれていると考えられる。そのひとつは韓国や中国甘肅省のS. caecutinesが、サハリン、西シベリア、バイカル湖、アムール流域のS. caecutinesや本州産のS. shintoが含まれるクラスターとは別のクラスターに分類されたことである。韓国産S. caecutines内にS. tundrensisが混入している可能性（Hoffmann.1987）も否定はできないが、S. tundrensisのクラスターとも一致していないことから、この地域のS. caecutinesには形態上の特異性が含まれているのかもしれない。

その他、トガリネズミの顎骨形態と除歯亀頭形態、ハタネズミ類の性染色体対合様式と頭骨の類似性についても簡単にふれる予定である。

Dendrogram using Average Linkage (Between Groups)

<table>
<thead>
<tr>
<th>CASE</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. caecutines(Fin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. caecutines(Pol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. leucogaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. hosonoi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. shinto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. caecutines(Sag)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. caecutines(WS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. tundrensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. caecutines(Bal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. caecutines(Far)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. caecutines(Amr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. caecutines(Kor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. caecutines(Gam)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. bucharensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. unguillaturn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. daphaenodon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. minutissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. gracilimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. mirabilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Distance phenogram derived by UPGMA clustering including Sorex mirabilis.
日本の哺乳動物相の起源と長鼻類化石

樽野博幸（大阪市立自然史博物館）

長鼻類や偶蹄類のような大型の種類は日立ちやすく、日本列島ではそれらが時代とともに入れ替わるために、限られた数が時代を通して、大規模な動物種の移入と入れ替わりが何度もあったと考えられていた。しかし、すでに河村（1988，1989など）の小型哺乳類に関する研究で明らかにされているように、日本の哺乳類相の起源は古く、中期更新世には、その骨格はできあがっており、それ以降は列島内での進化と置き換え、あるいは絶滅といえることが哺乳類相変遷の特徴である。つまり、日本列島の哺乳動物相の起源を考える際には、より古い時代を問題にしなければならない。しかし、日本列島における小型哺乳類の変遷が明らかにされているのは、ほぼ中期更新世以降に限られるため、それ以前に関する考察は、大型種に頼らざるを得ない。つまり、日本列島に生息した長鼻類の起源について考えることは、日本の哺乳動物相の起源を明らかにしてゆく上で、一定の役割を果たせるものと考える。

そのような事情から、最初、演者に与えられたタイトルは「中期更新世以降の長鼻類の起源」であったが、鮮新世以降の長鼻類の変遷と、それらの起源について述べることにする。

1. Stegodon shinshuensis シンシュウゾウ

鮮新世の初期から後期鮮新世（3Maまで）に生息。東北地方南部から九州に分布。かつて、S. elephantoides, S. bombifrons, S. clifti, S. insignisなどに同定されていた大型のスゲゴドンである。これらはインドあるいはカン мощнマーで記載された種であり、これらに同定されることから、インドあるいは東南アジア起源とされていた。しかし、これらの形質は上記の種より原始的であり、产出年代はほぼ同時期であることから、むしろ中国北部産のS. zdanskyiとの関係が深いと考えられる。同じ時期の地層からは、複数種のシカ類が产出しているが、詳細は明らかにされていない。

2. Zygalophodon sendaiensis センダイゾウ

下部鮮新緑のみから知られている。仙台の竜ノ口層から産出。島根、沖縄からもこの種の可能性のあるものが産出している。Zygalophodonは中国でも、内モンゴル（中新世）、山西省（鮮新世）などから知られている。四川省から報告されたSinomastodon yanyuanensis（鮮新世）は本種のシノニムであろう。

3. Stegodon auroraeアケボノゾウ

後期鮮新世から前期更新世（中期？）に生息。やはり東北南部から九州にかけて分布。体は小型で、高齢者かつ多種歯化の進んだ臼歯を持つ、特殊化したスゲゴドンである。S. akashiensis, S. sugiyamai, S. kwantoensisなどはシノニム。中国には類似の種は分布していない。台湾から本種に同定されているものが産出しているが、断片的なものであり、確実とはいえない。S. huanghoensis（黄河流域）に類似しており、両者は系統的に近縁であるとされている。また黄河沿いはS. zdanskyiとも近縁あるいは同種と考えられており、さらに後者はシンシュウゾウとも近縁で推定されることから、アケボノゾウはシンシュウゾウに由来すると考えられる。アケボノゾウのレンジは、古琵琶湖
層群発の臼歯1点をのぞくと、ほぼ2.5Maから1.2Maの間であるが、典型的なものは鮮新-更新境界付近から上位で産出し、2.5Maあたりからはやや原始的な形質を持つ臼歯が産出する。

アケボノソウと同時期の地層からは、Elaphurus shikamaiシカマシフソウとNipponicerous kazusensisカズサジカが産出する。シカマシフソウは中国北部から産出するE. bifurcatusに近縁とされている（Otsuka, 1972）。

4.Mammuthus protomammonontusムカシマンモス

前期更新世の後半から中期更新世の前期（1.2Ma〜0.7Ma）に、北海道から沖縄まで分布していた原始的なMammuthusである。松本（1924）によって報告された、Paralephas protomammonteusを始め、Archidiskodon paramamontes shigensis（シガゾウ）（Matsumoto & Ozaki, 1959）などいくつかの種、亜種が記載されている。しかし、少なくとも近縁産の標本で見る限り、時代による形質の変化は明確とはいえない。

中国ではArchidiskodonとされるものが山西、山東、河東、河北各省と東北部の下部更新統から報告されている。しかしこれらと、日本の古型Mammuthusとの関係は明らかにされていない。台湾から報告されたMammuthus armeniacus taiwaniaicusは日本産の種との類似性が指摘されている（Shikama et al., 1975）。

5.Stegodon orientalisトウヨウゾウ

化石の産出年代は中期更新世の中頃に限られるが、分布はシンシュウゾウやアケボノソウと同様である。臼歯はこれら2種の中間的な形質をもつ。模式標本はきわめて断片的なものであり、後にOsborn（1929）が亜種として記載した標本が、今では模式標本のような扱いを受けている。これらと日本産のトウヨウゾウとされるものは、第3大臼歯の稜数においては一致しない。本種は中国南部の中・上部更新統から多産することが知られている。しかし、これら中国産の標本の変異については、研究は進んでおらず、日本産のトウヨウゾウとされるものとの比較は十分にできていないのが現状である。

6.Palaeoloxodon naumanniナウマンゾウ

中期更新世の後期から最終氷期最寒冷期前後まで、北海道から九州に広く分布。中国からはPalaeoloxodon tokunagai（華北：前期中期更新世）、P. namadicus（華中：中期更新世）、P. naumanni（華北：後期更新世）が報告されている。もしそれが事実なら、P. naumanniは日本から中国へ分布が広がったことになるが、日本と中国の標本の比較研究はまだされていない。

7. Mammuthus primigeniusマンモスソウ（プリミゲニウスソウ）

産出地点と産出層が明確なのは徳島県付近から発掘された2点の臼歯のみである。層準は広域デフサSpfa1付近と見られる。M. primigeniusは後期更新世にユーラシアならびに北アメリカの北部の広い地域に分布した。日本列島付近でもシベリア、サハリン、中国東北部から華北で化石が産出している。明らかに、サハリン経由で北海道に南下したと考えられる。

亀井（1987）は、日本産のMammuthusは典型的なM. primigeniusと比較してやや原始的な形質を持ち、むしろM. sungariに近いとし、北海道への南下も中期更新世と考えている。しかし渡来時期についての証拠はなく、M. sungariとM. primigeniusとの関係を検討されなければならない。
鮮新－更新世における日本の長鼻類化石の起源

高橋啓一（滋賀県立琵琶湖博物館）

長鼻類化石は、日本列島の鮮新－更新統から産出する陸上哺乳類化石の中では最も材料が豊富であり、詳細に検討されている分類群のひとつである。演者は、この長鼻類化石を指標として鮮新－更新世における東アジアの哺乳動物相の変遷を再検討する仕事をしている。今回は、中国産の長鼻類化石について文献から得られた結果、分布の問題点、さらに実物調査の成果をもとにこのシンポジウムでの発言についてコメントする。

シングシュウゾウ Stegodon shinshuensis は、中国北部産のツダンスキーゼソウ S. zdanaskyi（コウガソウ S. huangoensis）と関係が深いことは、樽野や三枝によって指摘された。中国のツダンスキーゼソウの分布は、おもに陝西省や山西省の鮮新世～中期更新世から報告されている。この地点の塩基度は、日本におけるシングシュウゾウの分布がほぼ一致する。ツダンスキーゼソウの骨格形態については報告はなく、研究もされていない。しかし、シンボルとされるツダンスキーゼソウは全身骨格が知られている。一方シングシュウゾウの骨格形態についても十分な研究はされていないが、Konishi and Takahashi(1998)のシングシュウゾウ下顎骨の形態観察によれば、シングシュウゾウの方がコウガソウよりも進歩的な形態をしていたことから、中国産と日本産の大型ステゴドンがまったく同種とは考えにくい。むしろ、シングシュウゾウは日本で形態的な変化をした種である可能性が考えられる。

アケボノソウ S. aurorae は、台湾産の断片的な資料があるものの、中国からは報告されておらず、ほぼ日本固有の種であるとされている。演者が調べた限りにおいても、文献的にも現地調査においても現在まで確認していない。

シガソウ Mammuthus shigensis あるいはムカシマンモス M. protomammontaeus などと呼ばれている古型のマンモスソウ類は、メリディオナリス－トロコンデリー系のソウで、そのほとんどがトロコンデリー段階のものであると考えられている。同様な種は、台湾では報告されているが、中国では確認されていない。このことは、マンモスソウ類の移動と進化を考えるうえで重要な問題であると思われるが、世界的に注目されてはいない。

トヨウソウ S. orientalis は、中国では前期更新世～約4000年前まで南から北までの広い範囲で報告されている。演者はこれらの標本については、現在では十分な観察を行っていないので多くのコメントできない。中国南部では、ステゴドン属は鮮新世更新世を通じて生息していたが、北部では鮮新世と中期更新世に分布していたことが文献から読みとれる。この中期に北部に分布していたものがトヨウソウであると思われる。

ナウマンソウ Palaeoloxodon naumanni とされるものは、中国の中、北部の中期～後期更新世から報告されている。これらは、経度的にも日本における分布とほぼ一致している。ナウマンソウの属しているパラエオロクソドン属の種は、中国からトクナガソウ、ナマディクスソウ、ナウマンソウなどが前期～後期更新世まで報告されているが、種の同定に難しいのあるものも多い。

日本の長鼻類化石は、時代ごとに分帯がなされているが、これらを中国産の長鼻類化石にあてはめると、中国北部から東北地方ではマンモスソウ带、ナウマンソウ带、トヨウソウ带に相当するものがみられるが、シガソウ帯やアケボノソウ帯は見られないことがわかった。
また、南部では前期〜後期更新世にかけてステゴドン属が優勢に分布しているが、後期更新世末になってエレファス属が現れる。

| 中国の人類遺跡から産出するゾウ類化石と日本のゾウ化石種との対比 |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| 南部地域 | 中部地域 | 北部地域 | 日本 |
| 生存種 | 灭绝種 | 生存種 | 灭绝種 |

マンモスゾウ属 (M. primigenius)

ツラマンゾウ属 (P. antiquus)

ツラウゾウ属 (C. scotti)

シガノゾウ属 (M. japonicus)

アカボノゾウ属 (S. scrofa)

凡例
- マムス (M)
- ステゴドン (G)
- バラシロツグマ (P)
- ゴンシラリウム (G)
- マストリコン (M)
- 不明ゾウ類

(南部地域) (中部地域) (北部地域) (日本)

URBAN KUBOTA NO.37
琉球列島の第四紀脊椎動物相の起源

大塚 裕之（鹿児島大・理）

琉球列島には新生代第四紀更新世前期を初めとする何回かの陸繋期に、大陸から渡来し、それらの子孫が約150万年以上にわたって島々に隔離された後、絶滅した陸棲脊椎動物化石が多産するほか、それらの遺存種である固有種が現在多数生息している。同列島におけるそれら動物群の分布ならびに構成は、列島の地史と古地理の変遷に密接に関連している。渡瀬線が通るトラカラ海峡以南の中・南琉球の化石および現生動物群には、リュウキュウジカ化石が代表される脊椎動物化石群のほか、奄美大島のマミノクロウサギ、トケネズミ、ケナガネズミ、西表島のイリオモテヤマネコおよび列島の広い範囲に分布するハブで代表されるような現生の固有種の存在によって特徴づけられ、この海峡以北の北琉球および日本本土の化石および現生陸棲四肢動物群とは著しい対照をなしている。トカラ海峡以南の島々から産するこれらの脊椎動物化石群のあるものは、第四紀更新世前期に渡来した動物群と更新世末に渡来した動物群との混交動物群である。また、中国大陸起源のシカ類化石にみられるように、更新世末までの島嶼への隔離によって小型化がこする進行し、また島嶼の環境に適応して種々のモルフォタイプを形成している。現在および地質時代の島々の動物群の起源は、いつの地質時代に発生するのか？近年の琉球列島各地での脊椎動物化石の発見は、その解明のために重要なデータを提供している。

1. 琉球列島における陸稜脊椎動物化石の産出層準：琉球列島には、ほぼ次の4つの脊椎動物化石の産出層準がある。

1）層準1（中新世後期、ca.8Ma）：琉球列島南部の宮古島に同島の基盤をなす鳥取層の最下部の砂岩層からマストドン類を産したが、この象は、日本本土の小川動物相（N18,N19）の南への延長を示す。

2）層準2（更新世前期、約160万年前）：沖縄島において、更新世琉球層に覆われる更新世前期の浅海性ないし内湾性の地層に含まれる脊椎動物化石群で、更新世中期半生存し、繁栄した鮮新世型シカ類のリュウキュウジカCervus astylodon，キョンMuntiacus sp.，ケナガネズミ？Rattus legata？，ミナミイシガメMauremys mutica，ヘビ類のアカマタ？Dinodon sp.？を産する。イノシシSus sp.も最も古い産出層準が存在する可能性がある。

3）層準3（更新世前期、ca.1.3 Ma）：このレベルは、北琉球の種子島の増田層（ca.1.3Ma）に含まれる動物群で、奄美諸島以南に現生するイソワガエルRana ishikawai，ニホムカシカCervus prae-niponicus，ムカシマンモス？Mammuthus sp.？を産する。これらの構成は、更新世前期に、当時、陸化していたトラカラ海峡を越えて、日本本土要素と琉球要素の動物群の混交が起こったことを示している。

4）層準4（更新世後期；ウルム氷期、3万年～1.5万年前）：琉球層群および段丘石灰岩の裂縫や洞窓堆積物に含まれている動物群で、他の3つのレベルの動物群に比べて、特に豊富であり、その分布は従来島以南の列島の全域に及ぶ。その構成は、シカ類（リュウキュウジカ、リュウキュウカシカ）、リュウキュウイノシシSus scrofa riukiuanusや大型リクマメン類、ハコガメ類、他の、列島に現生している哺乳類、爬虫類、両生類、鳥類などの固有種の先祖やヒト（港川人など）を含む、また南琉球の宮古島では、更新世後期に大陸から渡来したアジア大陸北東部や東部の低地地から渡来し、現在は宮古島には生息しない北方系の動物－やマネコFelis sp.、ハタネズミMicrotus fortis、イノシシSus scrofa scrofa、ミヤコノロCapreolus miyakoensisを産するが、これに更新世前期の第2陸繋期に日本本土から渡来した古型マンモスのシガゾウMammuthus shigensisの遺存種を混交している。
2. 琉球列島における脊椎動物の渡来期と現生遺存種のルーツ

琉球列島における各脊椎動物化石産出層準から産出する陸棲動物化石は、必ずしもそのレベルが示す地質時代の渡来者とは限らず、多くの場合、その包含層の形成の直前の陸棲期の渡来者か、ずっと以前の陸棲期の渡来者の遺存種である場合が多い。琉球列島における第四紀動物群の主な渡来期は、以下の通りである。

1) 第1陸棲期：島尻層群下部におけるマストドン類の産出によって示される。琉球列島には、中新世中～後期の海成堆積物をほとんど欠如しており、このことから、当時、琉球列島一帯が周辺海域を含めて広く陸化していたと示す。

2) 第2陸棲期：この期の脊椎動物の大陸からの渡来は、琉球層群を堆積せしめた“琉球サンゴ海”の堆積開始前の更新世早期（約160万年前）に行われた。トカラ海峡形成以前で、リュウキュウジカ C. astylodon と大型リクマ（オオヤマリクマ）Manouria n. sp. の渡来期である。沖縄島南部に分布する島尻層群下部からは“Palaeoloxodon? sp.”の臼歯化石を産じた（野原，長谷川，1973）が、この臼歯化石は古型マンモスMammuthus sp. の可能性が高い。沖縄島北部における更新世前期の今泊－赤木又化石群Imadomari–Akagimata Fossil Assemblage（層準2）には、リュウキュウジカ Cervus astylodon, Muntiacus sp. ケナガネズミ？Rattus legata?, ニマニシガマ Mauremys mutica やヘビ類のアカマタDinodon sp. 等を含むが、これらの渡来は1.6 Maの第1陸棲期である。C. astylodon は大型で、矮小化していない、徳之島の小動物群集落はC. astylodon, Pentalagus furnessi, Rattus legata, Tokudai sp., Manouria sp., ハコガマ類 Cuora sp. を含む“リュウキュウガマオオヤマリクマ動物群”C. astylodon－Manouria Fauna の徳之島への延長である。リュウキュウマカンシオニDicrocerus sp. を欠如していることから、この動物群の徳之島への渡来は第2陸棲期に行われた可能性が高い。この時期には、トカラ海峡は不完全ながらも陸化しており、イシカワガエルの北方への移動ならびにMammuthus属の列島南部への移動も行われた。

3) 第3陸棲期（中期更新世後半）：約20万年前。琉球サンゴ海の海退と、それに続くブロック運動（ウルム変動）によって、琉球列島一帯は広大に陸化した。沖縄島の第4層準（更新世中期後半）に普通産するMunticinaceaeのDicrocerus sp. は、中国の鮮新統産のMuntiacusに近縁である。このDicrocerus属の小型化程度の小さいグループや、両生類、爬虫類のあるものは、第2陸棲期にひきつづき第3陸棲期に渡来した可能性がある。

4) 第4陸棲期（後期更新世最末期、ウルム氷期）：この期には、南琉球（八重山諸島、宮古諸島）は、台湾および当時の大陵緑辺部にある低地帯に陸地接続し、森林～草地帯のの哺乳動物群（Sus scrofa）が、アジア大陸の北東部から移住してきた北方系動物群（ノロジカCapreolus miyakeiensis、ヤマネコFelis sp.およびハトネズミMicrotus fortisなど）をともなって移住し（宮古動物群）、クレマギップ以南に存在したであろう陸地に生息したであろう第2陸棲期および第3陸棲期の渡来者遺存種（Mammuthus shigensis, Rattus legata, Cervus astylodon, Mauremys mutica）などで混交した。

第3陸棲期の断層運動（ウルム変動）によって、琉球サンゴ海は陸化し、侵食されながら、沖縄島を中心とする陸塊は、当時形成されていたであろうケラマギャブの海によって、宮古八重山諸島とは繋がらなかったし、トカラ海峡は水路が存在したが、動物が移動するほどには十分には繋がらなかった。

結論的に、琉球列島の化石および現生動物群の起源は、更新世前期の第2陸棲期（約160万年前）に移住してきた動物群に通じるものがあるが、これに第3陸棲期（約20万年前）と、南琉球では第4陸棲期（最終氷期最盛期、3～1.5万年前）に移住した大陸の動物群が加わったものである。シカ類で代表される第2陸棲期の大型の渡来者は、160万年の長い期間にわたる島嶼への隔離によって、すこぶる矮小化が進行し、多くの適応型（モルフォタイプ）を形成後、更新世末に一斉絶滅に至った。
分子系統学的にみた日本の現生イノシシ類の起源
小澤智生・遠藤守（名古屋大学大学院理学研究科地球惑星科学）

イノシシ属（Sus）[偶蹄類イノシシ科（Suidae）]は森林性大型哺乳類のなかで最も繁栄しているグループの一つで、北アフリカ、ユーラシア大陸、東アジア・東南アジアの島嶼地域の生息域に8種が棲息している。このなかの1種ユーラシアイノシシ（Sus scrofa）は北半球全域に分布し、多くの地方亜種を含む多型種である。日本列島にはユーラシアイノシシ（Sus scrofa）の2亜種が認められ、東北地方南部以南の本州、四国、九州にニホンイノシシ（Sus scrofa lecomptii）がまた琉球列島にリュウキュウイノシシ（Sus scrofa riukiuensis）が分布している。これらのイノシシは、現在の哺乳類の種の主要構成要素であるため、これまでの生態学的研究がなされてきたが、遺伝的構造、起源、渡来時期などに関してはまだほとんど明らかにされていない状況にある。

ここでは、日本産イノシシ2亜種の起源、群集間の遺伝的構造、渡来時期について、主として分子系統学的な立場から考察し、シンポジウムへの話題提供とした。

イノシシ属（Sus）の分子系統解析
ユーラシア大陸及び東アジア・東南アジアの島嶼地域に棲息するイノシシ属（Sus）のすべての野生種を含む8種10亜種48個体についてミトコンドリアDNAシントクロームb遺伝子の全塩基配列（1140塩基対）を決定し、これまでに報告されたイノシシ属4種7亜種の配列データを加え、イノシシ科のイボイノシシ（Phacochoerus africanus）とバビルサ（Babyrousa babyrussa）を外群として分子系統学的解析を行った。

その結果、イノシシ属の単系統性が確認され、属内では最初に、ベトナムイノシシ（Sus bucculentus）の系統が分岐した後、（1）セレベスイノシシ（Sus celebensis）の系統、（2）フィリピンイノシシ（Sus philippinensis）の系統、（3）ヒゲイノシシ（Sus barbatus）、スンダイイノシシ（Sus verrucosus）およびスマライノシシ（Sus vittatus）が含まれるbarbatus種群、（4）ヨーロッパイノシシ（Sus scrofa scrofa）とそのユーラシアのすべての亜種が含まれるscrofa種群の4系統がほぼ同時に分岐することが明らかにされた。イノシシ属内での分子距離は小さく、4系統間でも塩基配列の違いは約5％程度であり、またscrofa種群の亜種間では最大でも2％程度で、多くの亜種間の分子距離は1％以下という極めて差異の乏しい結果が得られた。

この事実はニホンイノシシやリュウキュウイノシシのような Sus scrofa の亜種の分化は最近の出来事であることを示唆している。イノシシ属（Sus）の化石としてはbarbatus種群の祖先と考えられるSus minorがヨーロッパの下部鮮新統から、またSus scrofaの系統の祖先とみなされるSus streemiがインドネシアの下部鮮新統から報告されているので（Groves, 1981; Sjarmidi and Gerard, 1988）。イノシシ属の4系統が分岐した時代は鮮新世前前期以前であり、これらの系統がフィリピン種群、ジャワ島、スラウェシ島に渡来できた地理的条件を考えるとメソニア期を含む中新世－鮮新世境界付近が推定することが妥当であろう。この分岐点を5Maとして、分子時計によりscrofa種群の亜種分化の年代を推定すると、インドイノシシ（Sus scrofa cristata）の種群が最初に分化した時代は约2Ma前後で、他の亜種の分化は1Ma以降の更新世に次々と放散する形で行われたことが示される。
リュウキュウイノシシの起源と琉球列島への渡来

リュウキュウイノシシ（Sus scrofa riuikianus）は、奄美諸島の奄美大島、加計呂麻島、徳之島から沖縄本島を経て八重山諸島の石垣島、西表島に分布する。その起源と渡来に関しては、本種の骨が琉球歴史博物館の遺跡から多産するにもかかわらず、更新世の地層より化石が発見されることからホタル時代に移入された家畜の豚が二つ目の牛と同様であるという説（直良、1937；林田、1960；仙波、1964）が有力であったが、1971年に高井と長谷川は、沖縄本島の港川の琉球石灰岩の裂経堆積物の中で、更新世末期の化石ホモ・サビエンス（港川人）とリュウキュウイノシシ化石が共存する事実を認め、リュウキュウイノシシは野生種であることを明らかにした。また、その渡来時期についても、宮古島で大陸の亜種に比較できる大型のSus scrofa化石が発見された約3万2千年前の最終氷期期であると言うとされている。

今回の著者らによる分子系統解析の結果から、リュウキュウイノシシはユーラシアイノシシ（Sus scrofa）の亜種群の中で、インドイノシシの系統の分岐に引き続き分岐した古い系統に属することが明らかになった。同様の結論は、Okumura et al.（1996）によるミトコンドリアDNAのD-loop領域にもとづく系統解析からも得られている。リュウキュウイノシシの渡来時期については、化石を含む裂経堆積物の年代、すなわち更新世後期であったのかあるいはそれ以前であったのかは定かでない。

琉球列島からより古い化石の発見が待たれるところであるが、最近、鳥居群知念砂層相当層からイノシシ化石が発見されたので（大塚裕之博士による私信）この化石の詳しい年代学的検討が待たれる。

ニホンイノシシの起源と渡来時期

Sus scrofaの亜種間の分子系統樹において、アジアイノシシの系統は、ラオスやベトナムのイノシシが含まれる東南アジアのクレードと中国中南部のキタンアイノシシ、韓半島のチウセンイノシシ、ニホンイノシシが含まれる東アジアのクレードから構成される。これらの姉妹クレードが分岐したのは分子時計に基づけば40～50万年前（中期更新世）と推定される。日本のイノシシが含まれる東アジアのクレード内をさらに詳細に検討すると、東日本インニホンイノシシ群が最初に分岐し、次に本州中西部のニホンイノシシ群と九州+韓半島+中国本土のイノシシ群が2分岐したことが示される。これらの集団間にはミトコンドリアDNAのD-loop領域の塩基配列の変異に基づくハフロタイプとその類似度にも違いが認められている。この様にニホンイノシシは遺伝学的に1つの均一な集団でなく、東日本集団、本州中西部集団、九州集団の3集団から成り立っている。本州中西部集団と九州集団が姉妹群を形成し、九州の集団に知念及び中国の集団が含まれ、かつ集団内の遺伝的分化が少ないことから、九州の集団の渡来は新しく恐らく最終氷期またはリス氷期の可能性が高い。西日本の2集団に対し外縁関係にある東日本の集団の渡来はそれ以前の更新世にさかのぼる可能性がある。3集団の渡来の時期に関してはニホニホイノシシの化石の産出記録が乏しいこともあり、化石記録から制約を与えることは現時点では困難であるが、大陸から何回かの波状的な流入があったことは確実に思われる。日本産のSus属の化石としては、下部疎生層（中部更新統）よりSus cf. lydekkeriの産出報告がなされている（Shikama, 1949; Kawamura, 1991）。また中国地方の石灰岩帯の更新世末期の裂経堆積物よりSus scrofaの産出が報告されている（Kawamura, 1988）前記の化石は周口店の中部更新統のSus lydekkeriの模式標本に比べ小型であり今後の形態学的研究においてscrofaの化石とされる可能性がある標本であり、ニホンイノシシの起源と渡来時期を検討する上からも早急な再検討がおざるならない。
ミトコンドリアDNA 遺伝子情報及び化石記録から見た
ニホンジカ Cervus nippon の起源と系統進化

桑山 龍・小澤智生（名古屋大学大学院理学研究科）

ニホンジカ Cervus nippon は、日本に現生する唯一のシカ類で、その分布域は日本列島のほぼ全域、中国大陸の東部一帯、そして台湾にまで及んでいる (Whitehead, 1972; 大森, 1986)。本種は、角の分岐パターンや歯などの形態的特徴により、ヨーロッパ及び中東に現
生するアカシカ C. elaphus と東アジア及び北米に現生するワビチ C. canadensis に最も近縁であ
ると考えられている (Lydekker, 1898; Groves and Grubb, 1987)。アカシカとワビチは、その形態的類似性から現在でも同種に分類されることがあり (Flerov, 1952; Lowe and Gaddiner, 1989)。その大型な体サイズや複雑な角の分岐パターンからシカ属内で最も派生的な形質を
多く有する種群と考えられている (Geist, 1971)。一方、ニホンジカは、その小型な体サイズ
やより単純な角の分岐パターンから、祖先形質を保有しているより原始的な種と考えられ
ている (Geist, 1971)。それらの形態的特徴や化石記録に基づいて、Lydekker (1898) および
Geist (1971) は、前期更新世には既にニホンジカの祖先と思われる種が出現しており、中期更新世
初期にその祖先からアカシカやワビチが派生してきたと考えている。しかしながら、ニホン
ジカの種としての化石記録について見ると、中国大陸の上部更新統 (Zong et al., 1996) 及
び日本列島の約5万年前以降の地層 (Shikama, 1949) からは比較的豊富に産出するが、そ
れ以前の地層には明確な記録が残っていない。また、ニホンジカの直接の祖先である可能性
のあるグレイ斑ジカ C. grayi の化石記録についても、中期更新世中期以降の地層からしか産
出していない (Young, 1932; Qi, 1989)。したがって、化石記録に基づくと、実際にニホンジカ
の祖先からアカシカやワビチが派生してきたかどうかは定かではない。また、ニホンジカの
各亜種について見ると、それらは、比較的温暖な森林地帯からより寒冷な草原地帯まで生
息しており、それぞれの環境に適応して、その体サイズや角の分岐パターンに大きな変異が
見られる (Imaiuzumi, 1970)。そのため、これまでの形態学的研究のみでは、ニホンジカの各亜
種間の系統関係が明確にされていなかった (Imaiuzumi, 1970; 1977: Groves and Grubb, 1987)。

そこで演者らは、近縁種間の系統関係を推定するの
に有効なミトコンドリアDNA のチトクロームb 遺伝
子の全塩基配列 (1140bp) を用いて、ニホンジカ、ア
カシカ、ワビチの種間及び亜種間の系統関係並びにそ
れらの分岐年代の推定を試みた。本研究では、ニホン
ジカ1亜種、アカシカ1亜種、そしてワビチ3亜種のチ
トクロームb 遺伝子の塩基配列を決定した (右表)。
これらの塩基配列に、これまでに報告されているニホ
ンジカ1亜種、アカシカ2亜種、そして外群として同
亜科別属のダマジカ Dama dama (右表) の塩基配列デー
タを含めて、それらの分子系統学的解析を行った。解
析には最大節約法 (MP) と近隣結合法 (NJ) を用いて
系統樹を作成し、各枝の統計的信頼性を評価するため
に、1,000 回のブートストラップを行った。
その結果、ニホンジカ、アカシカ、ワビチの単系統性は、それぞれ高い統計的信頼性で支持された。しかしながら、従来の形態学的な見解とは異なり、ワビチはアカシカと姉妹群を形成せず、ニホンジカより近縁な関係にあることが非常に高い統計的信頼性（94%）で支持された。また、Tamate et al. (1998) 等の分子系統学的研究によって示唆されていたが、日本列島に生息するニホンジカには2つの亜種群が存在することが明確となった。一つは、北海道及び本州に生息する亜種群で、もう一方は九州、対馬、馬毛島、そして慶良間諸島に生息する亜種群である。本研究では、前者を北海道・本州型ニホンジカ、後者を西南日本型ニホンジカと呼ぶ。台湾産のニホンジカ（C. n. taiouanus）については、北海道・本州型ニホンジカ及び西南日本型ニホンジカとともに、ほぼ同時期に分岐したことが示された（図）。各々の分岐年代は、1) ニホンジカ+ワビチとアカシカが約76万年前、2) ニホンジカとワビチが約53万年前、3) 北海道・本州型ニホンジカと西南日本型ニホンジカが約38万年前と推定された。1) 及び2) の分岐年代は、化石記録から見たワビチの初出現時期（Mindel 水期：Vangengeim and Sher, 1970）とニホンジカの祖先とされるグレイ斑ジカの初出現時期（46~23万年前：Young, 1932; Qi, 1989）に良い対応を示している。また、Shikama (1941) や Shikama (1949) 等の古生物学的研究によると、後期更新世以降、東日本と西日本とで形態の異なるニホンジカの二つのグループが存在していたことが示されており、このことは3) の分岐年代に矛盾しない。

これらの分子系統学的解析結果を化石記録に照らし合わせて、ニホンジカの起源やその系統進化について考察してみる。アカシカは化石記録から中更新世の初期（Günz 水期）に、ヨーロッパにおいて初出現したことが知られている (Kurtén, 1968)。これまでの研究では、ワビチの系統のみが Mindel 水期に、より寒冷な地域適応してヨーロッパから北東アジアへ移動し、アカシカから分岐したと考えられてきた (Geist, 1971)。しかし、本研究によりニホンジカ+ワビチの系統が、Mindel 水期の初期（約76万年前）にアカシカから分岐したことが示された。その後、およそ53万年に、比較的温暖な気候に適応したニホンジカの祖先は東アジア東縁部の森林地帯へと移動し、ワビチの系統から分岐したものと考えられる。本研究で推定されたニホンジカの分岐年代（約53万年前）は、ニホンジカの直接の祖先がグレイ斑ジカであった可能性を示唆している。ニホンジカの日本列島への移入時期やその経路については現在のところ明確ではない。しかしながら、本研究によって日本列島に生息するニホンジカには二つの亜種群が存在し、それらの分岐年代は約38万年と推定された。日本におけるニホンジカの化石記録や日本列島の古地理を考慮すると、これらの亜種群が日本列島への渡来後に分岐したとは考えにくい。おそらく両亜種群は、中期更新世の中頃に中国大陸において既に分化していたものと推定される。そして、これらの2亜種群は、中国大陸から日本列島へ時期の異なる二度の渡来をしたか、共に、二つの異なる移動経路を経て日本列島へ移入してきた可能性が高いと考えられる。今後、ニホンジカの化石記録の詳細な検討と中国大陸産のニホンジカ各亜種のDNA塩基配列データの蓄積により、ニホンジカの日本列島への移入時期やその経路がより明確にできると期待される。
個人講演
岐阜県可児市の中新統産アミア科魚類

籬本美孝（北九州自然史博）・合田隆久（愛知県江南市）・富田幸光（国立科博）

岐阜県可児市の木曽川河床に露出する瑞浪層群中村層（前期中新世）からアミア科に属すると考えられる魚類化石が産出した。共産する小型哺乳類からはヨーロッパのMN3ゾーン（20.5～17.5Ma）にあたると考えられる。主上顎骨、歯骨、副蝶形骨、腹椎などが認められるが、いずれも分離した不完全なものである。

副蝶形骨は左右の上向突起が太く、前方へ向かうこと、腹側面にtooth patchがあることなどアミア科魚類の特徴を有する。さらにtooth patchが長く、上向突起の位置より前方へのびることからアミア属に属するものと考えられるが、tooth patchが幅広く、後部中央に歯のない部分があることで他のアミア属魚類とは異なる。

主上顎骨は、一列の大きな歯を備えること、上主上顎骨のための顕著な窪み（supramaxillary notch）があること、後縁にV字状の切れ込み（posterior maxillary notch）があることなどからアミア科魚類に属するものと考えられるが、supramaxillary notchより後部が長いうち、後縁のV字状の切れ込みが深く、ほぼ中央にあることなどで他のアミア科魚類とは異なる。

腹椎は高さより前方方向の長さが著しく短いこと、側面に窪みがないこと、側突起が発達し、椎体に癒合することからアミア亜科魚類のものと考えられる。

歯骨は前部が分厚く、coronoid boneとの接合面があること、歯は大歯状で、舌側方向へ曲がり、先端が尖ること、歯槽に内側に向かういくつかの仕切りがあることからアミア科魚類に属するものと考えられる。

アミア科魚類はジュラ紀後期から化石が知られており、現生では北アメリカにAmia calva一種が生き残っている。化石記録のもっとも古いものはカザフスタンとシベリアの後期中新世である。今回の中記録はアジアで最も東に位置し、前期中新世からのはじめての記録である。

A new record of amiid fish from the Miocene of Kani City, Gifu Prefecture, Japan.
Yabumoto, Yoshitaka (Kitakyushu Mus. Nat. Hist.), Takahisa Goda (Konan, Aichi) and Yukimitsu Tomida (Natl. Sci. Mus.)
夕張市および見塚市の上部白亜系から発見されたラブカの歯化石2標本について*

後藤仁敏（鶴見大・歯・解剖）**・伊達芳正（大阪市住之江区）***・加納 学（三笠市立博物館）****

軟骨魚綱板鰭綱ラブカ目にラブカ科に属するラブカ属の歯化石についてはすでに、本学会1997年年会にて後藤ほか（1997）が大阪府貝塚市の和泉層群の谷泥岩層（Maastrichtian）産の標本（第1標本）を、1998年年会にて後藤ほか（1998）が熊本県天草市波岳町の亀浦層群下部亀浦層頂部層（Santonian）産の標本を報告した。また、谷本・谷（1998）は和泉層群産のラブカ科のThrinnax sp.の歯化石2標本を報告している。

今回は、北海道夕張市鹿島東北東の夕張川中央の沢において、穂石雄見氏が上部蝦夷層群（または本山ほか（1991）による蝦夷層群蝦夷層（Santonian）を構成する泥岩中の石灰質ノジュールから発見した標本と、大阪府貝塚市藤原において、後藤ほか（1997）が報告した標本が発見された同じ箇所で、第1標本が産出した位置から約25m東の地点で、1998年9月23日に現者の一人伊達芳正他、和泉層群産の谷泥岩産（Maastrichtian）を構成する青灰色のシルト質の塊状泥岩から発見した第2標本について報告する。

夕張市産の標本の産出地点からは、Gaudryceras tenumiatum、Damesites dami、Neopozosia japonicumなどのアンモナイト類、Sphenoceramus naumanniiなどの二枚貝類などが共産している（早川浩司氏の同定による）。また、貝塚市産の標本の産出地点からは、Pachydiscus aff. flexuosus、Gaudryceras izumenseなどのアンモナイト類、Nanonas singdens、Perioplonya grandisなどの二枚貝類、他のサメ類やモササウルス類の歯化石などが共産している。

(1) 夕張市産の標本（図1、標本番号MCM-A679）

歯冠は、褐色の光沢のあるエナメロイドに覆われた3つの先の尖った咬頭からなるが、中央の主咬頭と舌側面右側の側咬頭の尖頂側1/2～2/3の部分のみ保存されており、上記2つの咬頭の基底部側と舌側面側の咬頭、歯根部はすべて印象のみが残存している。

計測値は、歯の全高8.5mm、歯冠幅13.7mmである。歯は、現生のラブカChlamydoselachus anguineusの計測値である歯の全高13.0～9.9mm、歯冠幅1.5～6.1mm（後藤・舟橋、1976）における最大の歯と比べても1.7～2.2倍で、かなり大きい。

(2) 貝塚市の標本（図2、標本番号DC-S002）

歯冠は、黒色の光沢のあるエナメロイドに覆われた3つの先の尖った咬頭からなるが、唇側面右側の側咬頭と歯根の唇側面右側の部分と、唇側面左側の側咬頭の尖頂部は欠如している。各咬頭は細長く、近遠心両側には明瞭な切縁がみられ、比較的平滑な近い唇側面に突出した凸面をなす舌側面が区別され、横断面はレンズ状である各咬頭は舌側に強く傾斜している。歯根は、黒色の骨様組織からなり、舌側に突出している。

計測値は、歯の全高13.2mm、歯冠高9.5mm、歯根長4.1mm、歯冠幅9.5+mm、歯根幅7.8+mmである。歯は、現生のラブカと比べて約2.7倍の大きさである。

図1. 夕張市産の上部蝦夷層群産のChlamydoselachus sp.の歯

図2. 貝塚市産の和泉層群産のChlamydoselachus sp.の歯

* On two teeth of Chlamydoselachus sp. from the Upper Cretaceous in Yubari City, Hokkaido and Kaizuka City, Osaka Prefecture, Japan.

** Goro, Masatoshi (Dep. Anatomy, Sch. Dental Medicine, Tsurumi University, Tsurumi, Yokohama)

*** Daisuke, Yoshimasa (Suminoe-ku, Osaka)

**** Kanto, Manabu (Mikasa City Museum, Mikasa, Hokkaido)
カメ類の有羊膜類の中における系統関係について

平山 廉（帝京平成大学情報学部）

カメ類（目）は三疊紀後期（約2億2000万年前）に出現して以来、特に白亜紀から古
第三紀の主要な脊椎動物化石の一つとなっているが、カメ類自体の単系統性が疑われたこと
はない。つまり、彼らの独特な構造の甲羅により、断片的な資料でもカメ類の特異性は容易
に認識できるし、甲羅の基本的な構造は最初期の最も原始的なカメ（Proganochelys）で
も既に確立されているのである。

ところで、カメ類の有羊膜類（Amniota）の中における位置付けは近年、論争的になって
いる。カメ類の頭骨には、いわゆる側頭窩がなく、これに基づいて側頭窩のない無鳥類
（Anapsida）に含めるのが、分岐分類学の登場以前の伝統的な考え方であった。Lee
類を原始的な爬虫類の一群であるPareareptilia（擬爬虫類あるいは側爬虫類とも訳され
る）に含めるという最近の見解は、この“伝統的な”考えの焼き直しとも言うべきもので
ある。しかし、同じ形態学の立場でも、Rieppel & DeBraga (1996)やDeBraga &
Rieppel (1997)はカメ類を鱗竜類（Lepidosauromorpha）に近い双角類（Dipsida）
に含める考えという全く異なる系統仮説を出しているが、両方の仮説を支持する形質の数が
ほぼ等しくあり、いずれも決定的とはいえないとする。実際、カメ類が双角類に含まれ、それも
二足類又は鳥類からなる主竜類（Archosauria）により近縁であるという考えはかなり以前に頭
骨の個体発生学的な証拠から提案されてきた（de Beer, 1937）が、なぜか不適に無視され
てきたようである。しかし、カメ類が双角類の中に含まれるのではないかという仮説は近
年、分子生物学的な証拠に基づいて提案されており、特にHedges & Poling (1999)は、
カメ類は有羊膜類の中でもワニ類に特に近縁であるという驚くべき結果を発表した。

これまで何故か注目されてこなかったが、卵の形態にはカメ類と主竜類を共通して見られ
る明らかな派生形質が認められる。彼らの卵にはいずれも頸著な卵白が存在するが、現生の
有鱗類やムカントカゲ、および哺乳類（単角類）では無羊膜類と同様に卵白が認められな
い、また卵殻の構造をとると、単孔類では柔らかい膜状のものに過ぎないが、爬虫類では多
なんよりと石灰質の結晶が形成されている。有鱗類の大半やムカントカゲでは石灰質の結晶
は膜状構造の周辺で散在するに過ぎないが、カメ類、主竜類、そして一部のヤモリ類では卵
膜のうちに頸著な石灰質の層が形成された二層構造となっており、卵殻をより強固なものに
している。つまり、頸著な卵白の存在やより強固な卵殻は、カメ類が現生主竜類の姉妹群で
あるという仮説を支持する共有派生形質になりうると考えられる。

ところで、卵の化石は古生代から三疊紀中期にかけて発見されておらず、この時期に繁
栄した哺乳類類爬虫類や擬爬虫類は恐らく石灰質の堅い卵殻を発達させていなかった可能性
が高い。また強固な卵殻や卵白を持つ卵は三疊紀後期からジュラ紀にかけて卓越した乾燥気
候に対して特に効果的だったと思われるが、こうした優位性が三疊紀後期に登場した恐竜や
ワニ類、カメ類の陸生での繁栄に貢献した可能性が考えられる。いずれにしても、発生学的
な証拠や、卵に見られる派生形質は、カメ類が二足的に側頭窩を失った双角類であり、しか
も主竜類にかなり近縁な有羊膜類であることを、強力に支持しているように見える。

Phylogenetic relationships of turtles (Order Testudines;
Class Reptilia) among the Amniota

Ren Hirayama

(Faculty of Information, Teikyo Heisei University)
神戸層群より産出したサイ上科化石について（予報）

三枝春生・松原尚志（人と自然の博物館）

神戸市西部・三田盆地および淡路島北部に分布する第三系は神戸層群（鹿間，1938）として知られている。本層群からは魚類化石を多数産出するほか、神戸市西部および淡路島からは海棲頭類化石を産することが知られているが、これまでに哺乳類化石の産出は報告されていない。

最近、著者らは三田盆地に分布する神戸層群吉川（かわがわ）層からサイ上科に属する哺乳類化石を採取した。本研究では、この標本について分類学的な考察を行うとともに、その生層学的意義についても触れる。

今回得られた標本は、上顎臼歯のectolophの破片および切歯各一点、肋骨片および椎弓の破片各二点で、全種では同一層準の約10mの範囲にわたって産出した。

Ectolophの破片の咬耗面上には、ハンターシュレーゲル条紋のvertical decussationによって生じる微細で規則的な凹状の凹凸が見られる。旧世界に分布する大型哺乳類でこのような形質が見られるのはサイ上科に限られるので（Porterius, 1985）。今回の標本はサイ上科に属する。また、エナメル質は2.5mmと厚く、保存部位の近遠心長が42mmを越えることから、かなり大型の個体であることが推定される。

切歯の歯冠は前歯形が近遠心長を上回る円錐形を呈し、舌側には歯帯から歯冠の先端に向かって伸びる稜で互いに分割される二つの平面が発達する。サイ科（Rhinocerotidae）では原始的で小型の属以外では、ノミ状の上顎第一切歯と牙状の下顎第二切歯を除き切歯は退化するので、今回の標本はサイ科には属さない。アミノドン科（Ammnodontidae）とインドリコテリウム亜科（Indricotheriinae）では切歯が円錐形に派生するもがある（Radinsky, 1966; Prothero et al., 1989など）。今回の標本の切歯はこれらのうち、特にアミノドン科のものに類似していることから、大型のアミノドン科(Zaisananamynodon, Cadurcotheriumなど)に属す可能性がある。

しかしながら今回神戸層群から得られた標本では臼歯が一部のみしか保存されていないことおよびサイ上科における切歯の詳細な形質分布が明らかになっていないことから、インドリコテリウム亜科である可能性も残されている。

神戸市西部および三田盆地に分布する神戸層群からは近年、後期新世～前期新世を示す放射年代が報告されているが（尾崎・松浦, 1988；尾崎ほか, 1996など）。十分な生層学的データは得られていない。

アミノドン科とインドリコテリウム亜科は新世から新世の間で繁栄したグループで、その一部は前期中新世まで生存した（Prothero et al., 1989）。また、これらのグループに含まれる属・種の生存期間についても十分な検討がなされている。従って、今後サイ上科における切歯の形質分布の再検討が行われ、今回得られた標本の分類学的帰属がより明らかとなれば、神戸層群の時代を限定する重要な資料となると考えられる。
幻の遠藤獣を訪ねて

瀬戸口烈司1・Li Chuan-Kuei2

1) 京都大学理学部地質学植物学教室
2) 中国科学院古脊椎動物与古人類研究所・京都大学総合博物館

鹿間時夫は、日本人としては極めて異例な、中生代哺乳類の研究に手を染めた古生物学者である。当時は満州と呼ばれていた現在の中国東北部、遼寧省のジュラ系から発見されたMamnochordum、Endothamniumを記載、報告した。原稿本は、現在では、両方ともに行方不明である。ただし、「満州獣類」の類似については、遠藤隆次著「原人発掘」にふれられているが、「遠藤獣」に関する記載はほとんどない。

「遠藤獣」の研究のくいさつについて、鹿間は雑誌『科学』(1948)で次のように述べている。「1938年筆者が東北帝大にてMamnochordum研究当時、矢部教授が大連の満蒙資源館にて遼新炭田新邱炭坑の主要炭層（阜新鉱に属する）産の石炭層中に保存された動物下顎骨の写真を示され、この研究の遂行は筆者の念願であった。その後長野の国立中央博物館在職当時、遠藤隆次博士と満蒙資源館長新繁博達の御厚意により、筆者自ら大連にて研究に当たり、新哺乳類の保存されるのを発見した。Mamnochordum 以後二回目の発見である。石炭坑中に原始蝙蝠類と哺乳類の下顎骨が一緒に保存されて、かなり脆弱な標本であったが、資源館では大切に陳列されていた。文献その他、矢部教授からの御援助もあり、筆者北京にてCarlin氏より援助も與えられ、この新哺乳類の記載を完結して満州国立中央博物館論叢に出版の印刷中、戦災に会い出版不能となった。その後資料は筆者生命がけで日本に持ち帰り、稿を改めて他日正式の記載は発表されるであろうが、筆者にとっては、この研究は多くの優れた先達の援助を記念する意で、とりあえず中間発表をして置き度い。両標本とも新属新種、蝙蝠はTeihardosaurus carbonarius、哺乳類はEndothamnium niimoniiと命名した。」

鹿間は、陳列欄におさめられていた標本をガラス越しにしか、観察を許されなかったようだ。原記載論文に貼付されている写真も、ガラス越しに撮影したものである。標本は満蒙資源館に保存されているまま、鹿間は帰国した。鹿間は、その後「遠藤獣」の原標本がだたった運命については、知る立場にはなかった。

中国科学院の古生物学者周明鏡は、中国で刊行が始まった学術雑誌『古生物学報』(1953)に鹿間が報告した2種類の中生代哺乳類の意義について論じ、その論文の脚注に次のように書き加えた：「本論文の原稿出稿後、大連東北資源館（＝南満資源博物館）から遠藤獣の標本が発見されたとの連絡があったが、満州獣類の標本は不明のままである。」

「遠藤獣」の原標本の行方についてふれた文献は、これがすべてである。1955年に北京を訪れた瀬戸口が周に会って直接確認したところ、「『古生物学報』の報告の直接に周自身が石炭層を大連博物館から借り受け、北京の古脊椎動物与古人類研究所の自分の研究室に保管していたが、その時すでに「遠藤獣」の下顎骨は石炭層から取り除かれて、存在していない」そうである。周は、1958年か59年に、その石炭層を大連博物館に返却している。

1955年に大連博物館を訪れた瀬戸口は、石炭層そのものが同博物館に保管されているのを確認した。周の話したとおり、「遠藤獣」の下顎骨はもはや存在していない。1998年に古脊椎動物与古人類研究所が同石炭層を大連博物館から借り受け、再研究に着手している。
半島部タイ国南部の Saba Yoi 地域から産する三叠紀放散虫とその意義
指田勝男（筑波大学地球科学系）・Nakornsri, N. (%タイ国地質調査所)

半島部タイ国南部の Saba Yoi 地域には石炭系～三叠系のチャート、石灰岩、砕屑岩、火山碎屑岩類等が複雑に分布することが知られている。しかしながら、この地域の Grant-Mackie et al. (1980) による報告以外、総括的な地質学的研究報告はほとんど行なわれていない。演者らは文部省科学研究費国際学术研究で Songkhla～Saba Yoi 地域を訪れ、石炭紀放散虫および三叠紀石灰岩相と有孔虫について予察的な報告を行なってきた (Sashida et al., 1993; 1999)。本報告では Saba Yoi 地域に分布する細粒珪質堆積岩から保存不良であるが、前期三叠紀および中期三叠紀放散虫を得ることができたのでそれらについて紹介し、この放散虫の産出意義について述べることにする。

Saba Yoi 地域は Songkhla からその南東約 100km に位置する Saba Yoi 周辺に至る地域で、構造・層序区分では Shan-Thai Block 内の BS-4～BS-5 (Bunopas, 1992) に相当する。この地域は Grant-Mackie et al. (1980) により、国道 42 号線沿いで、見掛け上下位から Mi Kiat Conglomerate, Na Thawi Formation, Wang Yai Siltstone および Lan Long Sandstone という岩相層系が、また Saba Yoi 南西地域では Suan Channel Formation, Chedi Conglomerate, Khlong Kon Limestone および Sani Formation という岩相層系が設定されている。しかし、これら各層系の層厚、層序関係、具体的な年代等については明らかにされていない。前期三叠紀放散虫が得られたのは Na Thawi から東へ約 10km の国道 42 号線沿いに位置する道路の切削に露出する砂岩・頁岩互層中の頁岩に挟まれるチャートの薄層からである。チャートからは Parentactinia nakatsugaensis, Archaeosemantis venusta, および Tetrarchiplagia sp. 等の針状体格からなる放散虫のみが得られた。これらの放散虫は Sugiyama (1997) の前期三叠紀の後期を示す Parentactinia nakatsugaensis 群集带に含まれるものである。一方、中期三叠紀放散虫は国道 43 号線沿いの Chana の北西約 10km に位置する採石場から得られた。保存不良のためこれまでに、Triassocampe sp. Eptingium sp. および Pseudospongoprunum sp. のみが識別されている。このチャート層にはチャート中の粘土の薄層中に薄い殻をもつ二枚貝類が含まれている。三叠紀放散虫はこれまで演者らにより、タイ国北部の Chiang Mai 北方地域、東部の Chanthaburi 南東地域、また西部の Kanchanaburi 地域から報告されている。これらの地域ではチャートはレンズ状の形態をもち、玄武岩、碎屑岩類、石灰岩を伴う複雑な地質構造を呈するのが一般的である。

Sashida et al. (1999) は半島部マレーシアの北西部に分布する石灰岩相の Chuping および Kodiang Limestone、またチャート相からなる Semanggiol Formation を三叠紀中期の Shan-Thai Block から Paleotethys にかけての堆積相変化を示すものとし、これらが半島部南部地域からタイ国西部の Kanchanaburi 地域に至るとした。これまでの演者らの古生代後期～三叠紀中期のチャートおよび含まれる放散虫化石に関する資料からこの時代の Shan-Thai および Indochina Block さらに Paleotethys の古地理が具体的に明らかになってきた。
タイ国北西部マエサリアン地域から産出する三疊紀放射状化石（予報）
鎌田祥仁1・指田勝男2・久田健一郎2・上野勝美3・
Nikorn NAKORNNSRI4・Punya CHARUSIRI5
(1山口大学理学部, 2筑波大学地球科学系, 3福岡大学理学部,
4タイ国地質調査所, 5ジェラローンコーン大学)

タイ国西部および北西部のKanchanaburi, Um Pang, Mae Sot, Mae Ramat, Mae Sariang, Mae Hong Son地域には、ほぼ南北に古生代中期〜後期三疊紀までの玄武岩類、石灰岩、チャート、珪質頁岩などからなるMae Sariang層及びMae Hong Son層が分布する。演者らは、微化石に基づく東南アジアの中-古生代構造発達史の解明を目的として、1997年度の文部省国際学術研究の現地調査で、Mae Sariang及びMae Hong Son周辺に分布する珪質岩類を組織的に採集した。演者らの調査は完了していないが、予期的なかなりMae Sariang近辺の珪質岩類から三疊紀放射状化石が得られたので、その年代と地質学的意義について報告する。

今回検討した試料は、タイ国北西部のMae Sariangで採集したもので、Bunopas(1981)によれば、主に三疊紀の砂岩とチャート、さらに石灰岩の薄層を挟む頁岩で構成されるMae Sariang層に属する。検討セクションは、Mae Sariangの中心街から西に500mほどの中道沿いの切り口で、見掛け上、下位に層状チャート、上位に石灰岩の薄層を挟む赤色頁岩が累重する。後述する放射状化石年代から、この検討セクションは逆転していると考えられる。走向は北西-南東方向で、傾斜は一部を除いてほぼ垂直に立っている。Bunopas(1981)によってチャートとされるこれらの珪質岩類は、研磨面では数mm間隔の平行異状の堆積構造が発達し、緑色・灰緑色・赤色・赤紫色・乳白色など様々な色調を呈する。顕微鏡観察では、非常に細かな粒子で構成される珪質頁岩である。著しく珪質な部分もまれ、微晶質石英の基質中に不透明鉱物が散在する。また、鉱物が溶脱しと思われる空隙がみられ、菱形の形から初生的にはドロマイト粒子が含まれていたと思われる。

調査ルート沿いに14試料を採取し、このうちMSR-11,12,13,14,16,17,18の7試料から年代決定に有効な放射状化石を得ることができた。得られた放射状は、early Anisian-early Carnian(?)を示すと考えられる。特にMSR-11,12からはMulleritortis cochleata, Tritorit sretaensis, Triassoscaphe cf. solovensis, Duntiticcasphaera cf. geostlingensis, Spongiosverulcus curvispinus, Pseudostylusphaera helenicaなどが得られた。さらにMSR-11からは、今未確定であるがCapnushosphaeraもしくはSarlaと考えられるCapnushothesphaeridaeが産出する。これまでにヨーロッパ及び東南アジアで報告されたこれらの種類の細菌から、MSR-11,12の放射状群が示す年代はLate Ladinianからearly Carnianに及ぼす可能性が高いと考えられる。

東南アジアにおけるIndochina blockとSibumasu blockの衝突時期については、マレー半島(Sashida et al.,1995)及びタイ国西部のKanchanaburi(指田ほか,1998)での放射状化石の検討からLate Ladinian以降とされている。Paleotothysの閉塞時期については今回の検討によって、タイ国北西部においてもLate Ladinian以降を示すデータが得られ、更にこれまでよりも若干若いearly Carnian以降にまでおよぶ可能性が考えられる。
美濃帯のマンガンノジュール中のジュラ紀中世の放射虫化石群集*

西原ちさと（大阪市立大・理）**

美濃帯の中下部ジュラ系に含まれるマンガンノジュールには、保存が良く多種から構成される放射虫化石群集が知られている。この群集の概要は八尾（1997）によって検討され、この放射虫化石群集には当時の海洋環境および堆積環境に関する情報が含まれており、群集解釈および産状の検討からそれらの復元が可能であると考えられる。本研究では、八尾（1997）のNJ-12, HK-140, MKM-1, IN-7, IN-1のうち、連続した層序断面である鶴沼セクション（IN-7とIN-1）を検討した。今回検討したIN-3は、IN-7とIN-1の中間層準（IN-7から層厚約19mまで、IN-1から層厚約8m下の層準）のマンガンノジュールであり、約50gを酸処理し走査電子顕微鏡下で種を同定した。

IN-3から識別した278種のうち八尾（1997）の5地点の試料との共通種は179種で、IN-3のみに見出される種（短期間種）は99種である。IN-3の短期間種にはZartus imayi Pessagno and Blome, Eucyrtidiellum unumaense pustulatum Baumgartnerがあり、IN-7との同一種にNapora deweveri Baumgartner, Trilococalpsa plicarum Yaoがあり、IN-1との同一種にTrilococalpsa aff. fusiformis Yao, Podobursa polycantha（Fischeri）がある。これらの種にもとづけばIN-3の年代はlate Bajocian-early Bathonianと考えられる。

各群集の構成種数と共通種数から群集間の類似度をもとめた。IN-3と他の試料間の類似度は、IN-1(0.37)とIN-7(0.36)でほぼ等しく、MKM-1(0.26), HK-140(0.22), NJ-12(0.16)の順に低くなっている。IN-3の短期間種と長期間種の割合は、IN-7, MKM-1, HK-140と同様におよそ1:3である。IN-3の群集の特徴の一つは球状のSpumellariaが少なくCanophaeraが1種で、Xiphostyrisがみいただれないことである。一方、HaliommaやZartusに特徴のある種がみいただける。Nassellariaでは、コスタ上に孔のあるStylocapsa aff. catenarum Matsuokaや刺のほとんどないUnumaに属する種が含まれるが、刺の多いArcaicapsa, Sethocapsa, Parvicingulaに属する種が多数みられる。

Spumellaria/Nassellaria比は、NJ-12(0.88), HK-140(0.89), MKM-1(1.31), IN-7(1.08), IN-3(0.99), IN-1(0.86)である。MKM-1(1.31)は最大の値を示し、それより上位で減少の傾向がみられる。上記の類似度とSpumellaria/Nassellaria比の値は、IN-3がIN-7とIN-1の中間にあることを示す。またIN-3はIN-7およびIN-1と同様に放射虫化石群集に高い多様性がみられ、ほぼ同数の出現・絶滅種数を示すことから判断すれば、IN-7からIN-1にかけて一定の割合の変化で群集が変遷したといえる。

* Middle Jurassic radiolarian faunas in manganese nodules of the Mino Terrane
** NISHIHARA Chisato (Fac.Sci., Osaka City Univ.)
八溝山地鷲子山塊南東端部のマンガンノジュールより産出する
ジュラ紀末放散虫化石
堀 常東*** 指田勝男**・木股三善**
(*筑波大学地球科学研究科、 **筑波大学地球科学系)

関東平野北東縁部に位置する八溝山地は、北から八溝・鷲子・鶧足・筑波の4山塊からなる。これらのうち北部の3山塊には、チャートおよび碎屑岩を主とする堆積岩コンプレックスが分布し、その岩相・化石年代から西南日本内带の丹波・美濃帯の東方延長と考えられている。演者らは、八溝山地に分布する堆積岩コンプレックスについて、地質調査および放散虫化石を用いた年代的検討を行っているが、このたび、鷲子山塊南東端部に露出する珪質頁岩中からマンガンノジュールを見出し、従来知られている西南日本内帯のジュラ系マンガンノジュールとしては最も新しい年代を示す放散虫化石を得ることができたので報告する。

・マンガンノジュールの産出地点および産状

マンガンノジュールは、茨城県那珂郡総川村小瀬から小瀬沢に至る小瀬沢川に沿った道路沿いに露出する珪質頁岩中に産出する。長さ約80cm、幅約40cmの桶円形で、長軸は周囲の珪質頁岩の層理面にほぼ平行である。顕微鏡下では、粒径0.5mm程度のマイクロノジュールが泥質基質中に散在しているのが観察される。また、基質の珪質頁岩部およびノジュールの周囲の珪質頁岩中にも多くの放散虫化石が含まれている。

・マンガンノジュールから産出する放散虫化石とその年代

採取したマンガンノジュールを、塩酸およびフッ酸を用いて酸処理を行い、放散虫化石を抽出した。得られた放散虫化石には、Mirifusus dianae, Podocapsa amphitrepetera, Protunumajaponicus, Tethysetta boesii, Wrangelium okamurai などが含まれているが、現在までのところ年代決定に有効なLoopus primitivusやPseudodictyonitra carpaticaは識別されていない。しかしながら、Parvicingulinae, Syringocapsinae各亜科、Emiluliva, Paronaella, Spongocapsula各属の放散虫化石を多産すること、さらに、1個体であるがMesovallupus sp.が識別されたことなどを考慮に入ると、本マンガノジュール中の放散虫化石群集は同山塊大平地域から堀(1998)およびHori (1999)が報告・記載したジュラ紀末のTithonian後期の群集に比較できると思われる。なお、得られた残渣中には、最近Zugel et al. (1998)が南西ドイツから報告したような放散虫のinternal cast が多量に含まれている。

・他地域のマンガンノジュールとの比較

中部三畳系層状チャート層における
_Pseudostylosphaera_属の
頻度および形態変化
谷口雅章（株式会社富貴警備保障）

美濃帯中の三畳系層状チャート層は、層序的連続性が良好で、かつ多数の放散虫化石が
含まれている。三畳紀中世の放散虫化石群集の種数を規制する要因の1つとして、spineの
形状の数が上げられる。つまり形状のパターンが多いほど、1属における種数も多くなっ
ている。さらにそのようなパターンは、異なる属においても共通して確認される場合があ
る。

同一の属において、ある形状パターンを持つ種と別のパターンものとの頻度などの関係
については、これまで十分議論されていなかった。これは対象となる形状の区分を客観的
に行うことが困難であることなどに起因している。そこで今回、中部三畳系の1連続層序
断面（猿見岩セクション）において、_Pseudostylosphaera_属の_**P. compacta**_と_**P.
japonica**_との間の関係を従来よりも客観的に捉える試みを行った。

両種の形態的な違いは、前者の2本のpolar spineが直線状であるのに対して、後者では
それらの先端が若干膨らんでいる点である。本研究では、spineの特定部分（spine全長の
中央部およびspineの根本から全長の1/6だけ先端方向に進んだ部分）における幅の計測を
行い、両種の時間的な頻度変化の検討を行った。その結果、次のような知見が得られた。

1. _**P. compacta**_はセクション全体に渡って産出が確認される。一方、_**P. japonica**_
はセクションのほぼ中位の層準において出現する。両者の頴度は、後者の初産出当時では、
_**P. compacta**_が明らかに優勢である。しかし上位に行くに従って、_**P. japonica**_の個
体数が増加し、最終的に両者の比はほぼ1:1となる。

2. _**P. compacta**_は、_**P. japonica**_の初産出層準の直下の層準より上位では逆U型の
ものが優勢である。しかしそれより下位の層準では、逆V型のspineを持つ化石しか確認さ
れない。

産出順序および頻度変化から_**P. compacta**_と_**P. japonica**_は系統関係にあり、前者
が祖先型であると考えられる。また_**P. compacta**_において確認される形態変化が、_**P.
compacta**_から_**P. japonica**_が分岐した要因となった可能性がある。

*Changes in frequency and morphology of _Pseudostylosphaera_ from Middle
Triassic bedded chert.*

TANIGUCHI Masaaki (Fuki guard and security company)

28
現世河川での葉器官運搬の観察に基づく古植生復元の試み
ー東京都多摩川中流域下部更新統平山層産葉化石群を例としてー

大久保 敦（東京学芸大・附属高校大泉）

東京都の多摩川水系を対象に、水源付近の植生情報（プナクラクサ域）が河口まで運搬される過程でどのようになされ、またより下流の植生情報（ヤブサバキクラクサ域他）がどのように影響を与えるのかを、遺体器官等集団に注目し観察した。次にこの観察結果をもとに多摩川中流域下部更新統平山層産葉石灰群から堆積盆地後背の古植生を復元することを試みた。

1．現世河川の葉器官集団の運搬様式
秋川－多摩川および南沢川－多摩川のルートを対象に、1997年6月から1999年5月にかけて採集条件（増水前後、季節、採集地点の間隔など）を変えて調査を行った。その結果以下のことが観察された。
1) 秋川水源地付近（三頭沢）が起源と考えられるプナの遺体器官は、プナ生息域下限（標高1100m）より最長で約80~15km地点（河口まで13km）まで確認されたこと。
2) プナ生息域下限以下では、遺体器官等集団内のプナの優占度が高いが、流域の植生が変化すると急速に優占度が低下すること（優占度変化は他の分類群でも同様な傾向）。
3) シラカシなど常緑広葉樹の遺体器官はプナ生息域をすぎると少量であるがすぐに（プナ生息域下限より約10km）確認され、特に約55km下流で激激に集団内のプナ優占度が高くなること。つまり集団の情報がプナクラクサ起源のものからヤブサバキクラクサ域起源のものに置き換わること。
4) 多摩川河口干渇（プナ生息域下限より約93km）に着着した遺体器官等集団は多摩川およびその支流の中流から下流域に生息する暖温帯性常緑広葉樹（シラカシ群集、ダブノキイノデ群集）および河岸植生（タチヤナギ群集）を起源とするものも主体としながらも、南沢川上流域高尾山（河口から60km）が起源と考えられる温帯性落葉広葉樹（ケヤキイロハミシ群集）を若干混合した構成を示したこと。

以上の観察から1) 大規模な運搬は主に落葉が河岸や河床に集積した段階で、風吹くなどにともなう増水時に起こること。
2) 谷岸や河川の植生情報は到達するが、尾根筋の植生情報は到達しないこと。
3) 落葉広葉樹や常緑広葉樹などの植種の違いによって運搬様式が異なること。
4) 遺体器官等集団の種構成は流域の植種を敏感に反映する。つまり上流の植生情報を消失しつつ、より下流の植生情報を新たに加えながら変化することが確認された。

これらのことから、河川での運搬様式に影響を与える要素は、河川の傾斜や流速延長、植物の生息場所の地形や生活史（特に落葉時期）、葉器官の生産量や物理的・化学的強度あるいは浮力などがあり、これららの組み合わせで情報の到達距離が変化すると考えられる。

2．葉化石群集からの古植生復元
多摩川中流域河床には上緑樹群平山層が分布する。平山層は陸成～浅海成の堆積物からなり海進海退の堆積サイクルを示す（高野、1994）。海嶺植物化石や海生化石を多産する。標高（1990）。大型植物化石や植食物微化石については松川（1991）により報告がなされているが、分類学的検討や植生解析は十分になされていない。松川（1991）で大型植物化石の研究を担当した相馬・村野はかれていて研究に使用した試料の再検討をする機会を得た。また新たに、大型植物化石（葉・種子・根芽・根などの各器官）を採取した。これらの分類学的検討は作業の途中にあるが、葉器官についてははおおよその概要が明言した。
平山層の葉器官群集は第三系緊要（メタソコイア属やカシガムア属）を一部含みプナ属が優占することが Roguenicht と多摩川流域植生の垂直分布をよく対応し、ツツヒゴクラクサ属の亜高山帯葉樹林、プナクラクサ属の山地常緑広葉樹、ヤブサバキクラクサ属の常緑広葉樹林、河岸林、湿地林、河辺林を形成する群集に属する分類群が認められた。
次に、前述した現世河川の観察で得た遺体器官の運搬様式を適用し、堆積盆地後背での植生の垂直分布高度の推定を試みた。

29
トルコ中部の湖沼堆積物における珪藻化石を用いた古塩分の定量的復元
鹿島 薫（九州大学・理）

1 研究の目的
地層中に含まれる化石群集の変化から、古環境を定量的に復元することは、古環境研究の最終的な目標のひとつと言えよう。しかし、古環境復元の基盤となる現生群集と環境との対応が複雑なため、その定量化には多くの問題点が残されてきた。近年、湖沼堆積物について、珪藻遺骸群集を用いて、Transfer Function 法による定量的な古環境復元がなされるようになった。本講演では、それを応用し、トルコ中西部の内陸湖沼群において、古塩分変動復元を行った結果を報告する。

2 Diatom Based Transfer Function法
本研究ではトルコ中西部の内陸湖沼群において、以下的方法を用いてDiatom Based Transfer Function法のための基礎資料を採取し、それを応用して湖沼堆積物コア試料について、古環境（古塩分）の復元を行った。
a）対象の湖沼群において、それぞれ、湖底表層堆積物を不規則のまま採取する。そして、表面0.5〜1 cmの試料を集め、この中に含まれる珪藻遺骸群集を明らかとする。この場合、この遺骸群集は最近2〜3年に湖沼で発生した珪藻群集の平均を示しているものとする。また、あわせて水質の測定も行う。
b）産出した主要分類群ごとに、出現頻度加重平均法により、それぞれの平均塩分値と偏差を計算する。
c）次に、古環境を復元したい湖沼において、ポーリングコア試料を採取する。そして、コア試料中に含まれる化石珪藻群集の変化を明らかとする。
d）産出した主要分類群ごとに、その出現頻度とbで求めた平均塩分値を掛け合わせ、珪藻群集の構成から推定される古塩分を計算する。上記の方法については、現生群集の代表として表層堆積物中の遺骸群集を用いていこと、サンプルのかたよりとその補正方法などの問題もあるが、珪藻群集から計算された値と実測値との相関が極めてよいこと、ポーリングコア解析の結果が他の分析手法との結果が調和的であることなどの特徴が認められた。

3 トルコ内陸湖沼群の第四紀後期における塩分変動と地球規模の気候変動
塩分の復元は、トルコ中西部のトウズ湖、アジギョル湖およびコンヤ盆地において行った。これらの地域は現在は湖沼、湿地、平野と異なる地形条件にあるが、四紀後期の過去10万年間において、湖沼が存在し、その湖水の塩分が周期的に変動したことが明らかとなった。各地域においても、温暖期（間氷期及び亜間氷期）には湖水の塩分が上昇し、寒冷期（氷期及び亜氷期）には塩分が低下する傾向が認められた。また、2〜5万年前後においては激しい塩分の変動が確認され、これとダンスガードオシュガーサイクルに見られるような地球規模の環境の変動との対応が示唆される。
長江沖表層およびG-1コア試料中の海産パリノモルフ群集

松岡数充（長崎大・水産）、斎藤文紀・片山　隼・金井　豊（地質調査所）
陳　建芳、周　懷陽（中国第二海洋研究所）

長江沖で採取した堆積物の表層部（A-1（0-2cm）、1-3（0-2cm）、A-5（0-2cm）、B-1（0-2cm）、B-3（0-2cm）、B-5（0-2cm）、C-1（0-2cm）、C-3（0-2cm）、Meso-1（0-2cm：以下M-1と省略））及びG-1コア（コア長88cm）についてパリノモルフ分析を行った。G-1コアについては表層部から5cmごとの18試料について分析した。

表層堆積物試料で確認したパリノモルフは花粉、シダ植物胞子、菌類胞子などの他に、渦鞭毛藻シスト（17属32種以上）、ブライシノ類ファイコーマ（2属2種以上）、緑藻類（淡水・浮遊性クエンショウモ属2種以上）、黄金藻類不動胞子（アーケオモンス類）などの植物性微化石、有棘類ロリカ、有孔虫類ライニング（内膜）、カイアフ属休眠卵や休養などの動物性微化石、アクリターア（4属5種以上）などの所属不明微化石である。渦鞭毛藻シストはA-4、B-1、B-5、C-1、C-3に多産する。

G-1コアは全長が88cmである。このコアの堆積速度は約1.5cm/年であり、それに基づくこの試料の最下部は1940年頃の堆積と推察される。海産パリノモルフは28-30cm試料ではなく産せず。18-20cmと24-26cmでは極めて少ない。独立栄養緑藻のシストが全試料を通して優占する。楔円形で透明のA.catenellaもしくはA.tamarensiと推察されるシストがコア上部から産し、8-10cmと14-16cmでやや多くなる。

表層試料では、1）A-1やA-3などの粗粒な砂質堆積物中にはパリノモルフは少なく、B-3では有孔虫やカイアフ類以外のパリノモルフは確認されない。2）表層試料での渦鞭毛藻シスト群集の種構成はこれまでに日本近海から報告されている群集と共通し、多様性も類似する。しかし、含有量は日本沿岸の内湾性表層堆積物に比較すると少ない。3）新鮮な原形質で満たされた渦鞭毛藻シストも産することから、堆積物表層は極めて新しくと判断される。4）楔円形で透明かつ平滑な膜のシストはAlexandrium catenellaもしくはA.tamarensiと、また卵形で透明かつ平滑なシスト壁を備える種類はA.minutumのシストであると可能性がある。Alexandrium catenellaやA.tamarensiは日本や韓国でのA.minutumは台湾やタイ湾で麻痹性貝毒原因種として知られている。さらに褐色楔円形で鰓状の突起物を備えたシストは日本・八代海や韓国・韓海湾で大規模な赤潮を引き起こし、魚毒性を持つことから養殖業に重大な被害を与えたChododinium polykrikoides（C.sp.78-Yatsushiro型）である可能性が考えられる。5）淡水性の浮遊性緑藻類であるPediastrum類がA-1、B-1、C-1及びMeso-1から産することは、これらの堆積層が長江から排出される淡水の影響を直接受けていることを示唆する。

G-1コア試料では、1）コア中部で海産渦鞭毛藻シストや有孔虫ライニングのみならずその他のパリノモルフも産出しない。あるいは産出量が極めて少なくなることは、パリノモルフに対して不適切な堆積環境の出現が推定される。この同の堆積物がやや粗粒であることから判断して、この間は水深が浅くなったかあるいは陸域から粗粒堆積物が急速に供給されたことが推察される。2）コア全体を通して独立栄養グループの渦鞭毛藻シストが50%以上を占める状況は、豊富な栄養塩が過去数十年にわたって適度に供給されていたものの、過栄養状態になったことはなかった。3）麻痹性貝毒原因種であるAlexandrium catenellaもしくはA.tamarensiと推察されるシストがコア上部から産することは、これらの種が数十年前よりも以前から長江河口沖（中国沿岸域）で生息していたと考えられる。この事実は有 أح・有孔渦鞭毛藻のモニタリングを沿岸域のみならず、東シナ海中央海域まで拡がる必要のあることを示唆している。
黄海と東シナ海表層堆積物中の渦鞭毛藻シストの分布*

趙賢珍（長崎大学・院）**, 松岡教充（長崎大学・水産）***

黄海と東シナ海における現生渦鞭毛藻シストの地理的分布を調べるために、27 点で表層堆積物を探集した。12属 22 種の渦鞭毛藻シストが同定された。Gymnodinioid と Gonyaulacoid グループは両海域で似た分布パターンを示したが、Protoperi dinioi d グループに属するいくつかの種、例えば、Trinovantedinium capitatum Reid や Protoperidinium americanum (Gran et Braarud) Balech, Quinquescuspis concretum (Reid) Harland, Selenopemphix quanta (Bradford) Matsuoka, Stekadinium reidi Reid, Votadinium calvum Reid、V. spinosum Reid などは東シナ海の試料からのみ検出された。両海域での優占種は Spiniferites bulloideus (Deflandre et Cookson) Sarjeant であった。本種は C 4 で最大の割合を示し、出現した総シスト数の 88％を占めた。黄海と東シナ海でのこの種が相対頻度に占める割合の平均値はそれぞれ 70％と 25.5％であった。北緯 29° 00′・東経 125° 10′から 35° 59′・東経 124° 20′のトランスクトに沿った各シストグループの出現状況は以下の通りであった。Protoperi dinioi d シストは東シナ海では多く出現していたが、黄海に向かって減少し、その代わりに Gonyaulacoid シストが増加した。最大シスト産出量は 6,311 cysts/g で、黄海のY9 で記録されたが、東シナ海の C10 からはシストは検出されなかった。シストの産出密度は南北方向では黄海に向かって増加する傾向を示すが、東シナ海では北西方向に向かって増えた。これは本調査地域の一次生産力と堆積環境のパターンと似ていた。

* Dinoflagellate cyst distribution and composition in the surface sediments collected from the Yellow Sea and the East China Sea

** Hyun-Jin Cho (Graduate School of Marine Science and Engineering, Nagasaki University)

*** Kazumi Matsuoka (Laboratory of Coastal Environmental Sciences, Faculty of Fisheries, Nagasaki University)
淡路島の第三系岩屋層の石灰質ナンノ・渦巻毛藻化石年代（中〜後期始新世）

松原 尚志1・山本 裕雄2・栗田 裕司3**
（兵庫県立人と自然の博物館、2大阪市立大学・理、3石油資源開発（株）技術研究所）

淡路島北部に分布する第三系は岩屋層と呼ばれ（鹿間、1938）。本層は、神戸市西部および三田盆地に広く分布する第三系とともに神戸層群として一括され、瀬戸内中新統に含められてきた（藤田ほか、1961；藤田・前川、1983など）。近年、淡路島を除く地域の神戸層群について放射年代測定が行われ、以前の魚類や植物化石による年代とは異なる後期始新世〜前期新世新世であることが明らかとされた（尾崎・松浦、1988；尾崎ほか、1996など）。一方、岩屋層の年代については、浮遊性微化石や放射年代に関する検討は行われていない。今回、淡路町西野島常磐の岩屋層“上部層”（水野ほか、1990）から採取した試料について石灰質ナンノおよび渦巻毛藻化石年代について検討を行い、豊富な微化石群集に基づいて精度良く年代が求められた。

◆石灰質ナンノ化石年代：Okada and Bukry（1980）のC14a亜帯の下限を規定するReticulofenestra umbilicus。Martini（1971）のNP20帯、Okada and Bukry（1980）のCP15帯の上限を規定するDiscostre saipanensisおよび、生存期間がNP17帯中〜NP20帯上限付近、CP14a亜帯中〜CP15帯上限付近に限られるCribrocentrum reticulatumが産出した。これらの種の共存により示される石灰質ナンノ化石帯は、Martini（1971）のNP17〜20帯、Okada and Bukry（1980）のCP14a亜帯〜CP15帯（中始新世後期〜後期始新世）である。

◆渦巻毛藻化石年代：Arcosphaerium diktynopokum、Phananodendrum compostumおよびRhombochymum dracoの3種の共存が認められた。これらの種の共存する年代は中始新世新世後期〜後期始新世（Bartonian〜Priabonian）の期間に限られる（Powell、1992；Williams et al.、1993；Stover and Williams、1995）。

以上の結果から、岩屋層“上部層”の堆積年代として、石灰質ナンノ・渦巻毛藻化石とともに中始新世後期〜後期始新世（Bartonian〜Priabonian）を示すことが明らかとなった。

今回、岩屋層から中始新世後期〜後期始新世を示す石灰質ナンノ・渦巻毛藻化石が得られたことは、岩屋層ばかりでなく、瀬戸内海東部地域に分布する第三系の年代・貝類化石群および西南日本の古地理についても再検討が必要であることを示している。

*Calcareaous nanofossil and dinoflagellate cyst age (Middle - Late Eocene) from the Iwawa Formation, Awaji Island, Hyogo Prefecture. Southwest Japan.

**Takashi MATSUBARA (Museum of Nature and Human Activities, Hyogo). Yasuo YAMAMOTO (Osaka City University) and Hiroshi KURITA (Japan Petroleum Exploration Co., Ltd.)
A NEW, STRATIGRAPHICALLY IMPORTANT SPECIES OF

BURYELLA (RADIOLARIA) FROM DSDP SITE 208

Barry O'CONNOR¹ and Yoshiaki AITA²

(¹JSPS fellow, Geology Department, Utsunomiya University, email: boconnor@cc.utsunomiya-u.ac.jp;
²Geology Department, Utsunomiya University)

The genus _Buryella_ is very important in the southern high latitude radiolarian biostratigraphy of the Early to early Late Paleocene. Radiolarian Zone RP5 (_Buryella tetradica_ Zone) in the South Pacific radiolarian zonal scheme has a base defined by the first occurrence (FO) of _Buryella tetradica_. However, in erecting Zone RP5 a three-segmented buryellid was included in _B. tetradica_. In actuality the three-segmented species stratigraphically precedes _B. tetradica_, and thus the lumping effectively lowered the true FO of _B. tetradica_ by approximately 1.5 million years, artificially increasing the length of time represented by Zone RP5. The three-segmented taxon is a new species which appears to be the direct ancestor of _B. tetradica_.

34
有孔虫化石群が示す第四系後期日本海東部の中・深層環境

長谷川四郎・高田裕行・板木拓也（北海道大学・研究院・地球環境）
・池原 研（地調・海洋地質）

日本海東縁の斜面中・下部から得られた堆積物コアについて浮遊性・底生有孔虫群集の層位分布を分析し、この海域における最終氷期以降の中・深層環境変遷について考察する。

試料は、秋田沖と松前海台付近の水深754〜2,250mの6地点において、地質調査所白崎丸および筑水大学海洋研究所岩青丸で採取されたグラビティたいしピストン・コア（GH93-KI-5; GH95-1202, 1203; GH96-1217; KT94-15, PC-8, PC-9）から、一辺2.5cmのプラスチック・キューブにより分取した。各コアの対照と年代は、コアに夹在する広域テフラおよびTL2・TL1に同定される暗色層により行った。

浮遊性有孔虫はTL2（22-15ka）からTL1（10-9ka）の区間で多く、とくに暗色層で激増する。それに対し、現在の水深1,300mより深い地点のTL2より下位の層準と各コアのTL1より上位層準では、浮遊性有孔虫はきわめて少ない。浮遊性群集の組成は、各コアの大部分でNeoglobobquadrina pachyderma（左巻）とGlobigerina umbilicataが卓越する。しかし、上部ではN. pachyderma（右巻）が多く、Globigerinoides ruberなどの暖流系種を随伴する。

底生有孔虫は、現在の水深2,000m以浅の地点ではTL1層準のみで多産するほかは、全般的に産出量が少ない。また、最終氷期最晩期にあたるTL2層準については、全コアにおいて全く産出せず、中・深層域が強度の無酸素状態にあったことが示唆される。TL2とTL1に挟まれた区間では、寒冷域の浅海相種であるElphidium excavatum forma clavataとBuccella frigidaが、現在の日本海における斜面中・下部を特徴づけるAngulogerina ikebei、Eiloedra nipponica、Nonionella labradoricaなどとともに産出する。この現象は北太平洋の表層水である親潮が日本海に侵入したことによると見なされている（大場ほか、1980、など）。本研究により、それが現在の水深約1,500mより浅い地点におけるのみ生じたことが判明した。TL1層準の底生群集には、Brizalina pacificaが卓越しており、約1万年前の短期間に、水深700〜2,000mの海底が貧酸素環境となったことが示唆される。

各コア地点において現世微骸群集と同様の底生群集が出現するのは、水深が1,000mより深い地点ではTL1層準の直上であるのに対し、1,000m以浅の地点（本研究では754mと807m）では、それより上位の、暖流系浮遊性有孔虫種群が連続的に産出し始める層準（約7,000年前）にほぼ一致する。したがって、この群集化現象は日本海東部海域に対馬暖流が進出し、現在と同様の海洋構造が成立したことを示すと考えられる。
南大洋タスマニ海台における過去15万年間の浮遊性有孔虫群集と表層海洋環境変動

木元克典（東大海洋研）・池原実（北大低温研）・
阿波根直一（海洋科学技術センター）・平朝彦（東大海洋研）

南大洋表層水は、亜熱帯と亜寒帯の境界である亜熱帯収束線（STC）と、高生産域である極域との境界の南極前線（APF）により明瞭に区分することができる。氷期にはこれらのフロントは現在の位置より2〜5°北上していたと考えており、これに伴う熱の移動は、過去の地球環境変動に大きな役割を果たしていると考えられている。本研究では南大洋タスマニ海台（48°08'S、146°52'E、2321m）から採取された石灰質堆積物中の浮遊性有孔虫の群集解析および堆積物の有機・無機化学分析を行い、過去15万年間の表層海洋環境変動を推定した。

本海域から産出する浮遊性有孔虫群集は、温帯・亜寒帯に生息する種で構成される。よくに温暖種であるG._inflata, N._pachyderma (sp.), N._eggeriが間氷期（酸素同位体stage 1, 5）に高い産出頻度を示し、寒冷種であるN._pachyderma (sp.)が氷期（stage 2, 4, 6）に高い産出頻度を示すことにより、本研究海域は温帯・亜寒帯の環境を周期的に受けていたことを示唆している。これらの群集解析結果をもとに、Modern Analog Technique (MAT)を用いて過去15万年間の表層水温を見積もった。それによると最終間氷期（stage 5c）における表層水温は11.5℃〜9℃であり、現在の表層水温とはほぼ等しかったことが明らかになった。また氷期における表層水温は、最終氷期（stage 2）よりもむしろstage 4に最も低く（6.5〜4℃）していることを示した。この表層水温の幅は現在におけるAPFの水温に相当する。さらに堆積物の有機炭素濃度は、stage 4の時期にもっとも高い値を示し、この時期に表層水の生物生産性が相対的に増加していたことを示している。これらの結果より、APFが最も本研究海域に接近していたのは酸素同位体stage 4の時期である可能性が示唆される。

下図：左から酸素同位体比（Ikehara et al. 1997）、表層水温、有機炭素含有量、および平均堆積速度、グレーの時期は氷期を表す。表層水温の下の矢印は現在におけるAPFとSTCの表層水温の幅を表す。
新潟県北蒲原地域、棚原山脈周辺の錦江層（鮮新統）からの浮遊性有孔虫化石 *Globorotalia inflata* s. l. の産出について**

三輪 美智子 平松 力**

（石油資源開発（株）技術研究所・同・探勘部）

新潟県下の上部新生界においては、これまで浮遊性有孔虫化石や石灰質ナンノ化石などの研究に基づいて化石帯区分と基準面の設定がなされてきた（米谷、1978：佐藤・工藤、1986など）が、新潟県北部の北蒲原地域からの浮遊性微化石の報告は少なかった。北蒲原地域に分布する錦江層（西田・津田、1961）は、中越地域の中央油帯の西山層下部に対比され（小林・渡辺、1985）、その下部に発達する砂岩・礫岩からなる粗粒粉砂物は、北蒲原地域の油・ガス田の主要な貯留岩となっている。平松・三輪（1998）は管内、石灰質ナンノ化石と有孔虫化石による分帯をおこない、錦江層底限の不整合形態を明らかにした。本講演では、棚原山脈周辺の地形・地層の記録から得られた*Globorotalia inflata* s. l. の多産で特徴づけられる浮遊性有孔虫化石群集の詳細について報告する。

【浮遊性有孔虫化石群集】

棚原山脈東方の胎内川央周辺の4地点と棚山周辺の6地点の錦江層から、浮遊性種を多量に含む有孔虫化石群集が検出された。浮遊性種全体の産出個体数は1000個処理した1件試料につき337〜4851個体と非常に多くかった。各試料から検出した浮遊性有孔虫化石群集は、いずれも*Globigerina bulloides, Globigerina quinquella, Neogloboquadrina pachyderma (dextral)*を主体とする。これらに加え、胎内川央周辺で得られた群集は*Globorotalia inflata praeflata, G. orientalis*を多数付随し、棚山周辺で検出された群集は多数の*G. inflata praeflata*と少数の*G. orientalis, G. menardii*を付随している。これらの群集が検出された地点は、N. pachyderma (dextral), G. inflata praeflata とG. orientalisの産出に基づき、N. pachyderma (dextral) / G. orientalis Zone（米谷、1978）に対比される。

【珪藻化石帯と石灰質ナンノ化石帯との関係】

胎内川央周辺の*Globorotalia inflata praeflata*と*Globorotalia orientalis*を多産した試料は、珪藻・石灰質ナンノ化石を産出し、Akiha（1986）の珪藻化石帯の*Neodenticula koizumii - Neodenticula kantschatica Zone*および、Okada and Bukry（1980）の石灰質ナンノ化石帯 CN12 Zone に対比される（平松・三輪、1998）。

【*Globorotalia inflata* s. l. の産出の意義】

新潟平野東縁においては、最近秋元ほか（1998）によって、棚原山脈南西に位置する簸神丘陵の安野川沿いの安野川層から、*Globorotalia inflata praeflata, G. orientalis*を多数含む群集が検出され、珪藻化石帯との関係において今回同様の結果を報告している。*G. inflata* s. l. の産出層序は、日本海側堆積盆における有効な対比面として広く用いられており（天然ガス鉱業会・大陆棚石油開発協会、1982）、秋元ほか（1988）と合わせ、その層序の層位学位置を他の浮遊性微化石と確認できたことは有意義である。

また、*G. inflata* s. l. を温暖化栄養とは、対的に温かい水塊の流入を示すとする考え（米谷、1988）に立てば、これらの種の広域的産状は、日本海地域の鮮新世の古海洋環境異常の有力なツールとなると考えられる。

Ogasawara（1996）は、北太平洋地域の鮮新世に4.5〜38 Maと3.6〜3.25 Maの2度の温暖化の時期を認めている。珪藻化石帯*N. koizumii - N. kantschatica Zone*の年代が3.5-3.9〜2.6-2.7 Ma（Yanagisawa and Akiha, 1998）であること、石灰質ナンノ化石帯*CN12 Zone*の下限の年代が3.75 Ma（Schneider et al., 1997）であることから、錦江層の*G. inflata* s. l. の産出する区間の年代は、3.75〜2.6-2.7 Maの間に位置する。従って、錦江層に見られる*G. inflata* s. l. の産出が示唆する相対的に温かい水塊の流入時期は、上記の3.6〜3.25 Maの温暖化の時期に相当する可能性がある。
鹿児島県熊毛郡南種子町大浦マンゴロープ沼沢地
堆積物の有機地球化学的研究及び堆積物中の貝化石群について

佐藤喜男・鈴木祐一郎・山本正伸・斉藤文紀（地質調査所）

地球温暖化に伴う海面上昇影響評価の研究をタイ王国バンコク市内で行ってい
る。特に過去1万年における自然の海面上昇速度を推定するため精密な14C年代値と
貝化石群の解析による深度推定が必要である。また堆積物の中でマンゴロープ沼
沢地起源の堆積物の認定は極めて有効である。今回、炭質物の有機炭素の識別に
よるマンゴロープ林の植生を復元する手法を考察し、パラオ、鹿児島県熊毛郡南
種子町大浦マンゴロープ沼沢地で行った。南西諸島地域では現在、鹿児島県喜入
町がマンゴロープ自生の北限である。琉球列島から続くマンゴロープ林は主要構
成種がメヒルギ（Kandelia）だけになるものの種子島まではマンゴロープ林を形
成している。種子島大浦地域のマンゴロープ林は大浦川の河口域に沿ってメヒル
ギを主体とするマンゴロープ林が発達している。沼沢地の調査はバックホーンに
より深度6mまでトレンチ掘削を行うことが出来た。表層から深さ10cmごとの堆積
物採取、貝化石密集層のブロック採取を行い、貝化石はカリボール処理後篩分を
行い試料とした。貝化石密集層は深度1.5mの層にあり二枚貝はAnomalocardia (An-
omalodiscus)squamos（Linnaeus）、Crassostrea sp.、Macomatokoensis Makiyama、Cy-
clina sinensis（Gmelin）、卷貝はPotamididae（Cerithideopsis cingulata（Gmelin）、C.
djadjariensis（Martin）、Batillaria zonalis（Bruguiera））の占拠によって特徴づけら
れる。有機炭素の識別は熱分解ガスクロマトグラフィー質量検出器によって行っ
た。パラオのヤエマハヒルギ属（Rhizophora）の葉の上面にはこの属にだけに含ま
れるTaraxerrol（タラックスロール）が直下の堆積物にも含有・保存されることが明
らかとなった。

Geochemical and palaeontological analysis of organic carbon and molluscan assemblages in the sediment of O-oura mangrove swamp, Minamitane town, Kagoshima Prefecture, Southeast Japan.

Yosio SATO, Yuichirou SUZUKI, Masanobu YAMAMOTO and Yoshiki SAITO (G. S. J.)
ベルム紀新世後期の殻サイズの大きな放散虫群集*

桑原希世子・八尾昭（大阪市大・理）**

ベルム系上部統上部の放散虫化石帯Neoalbaillella optima群集帯は、Neoalbaillella optimaとAlbaillella triangularisの組み合わせによって定義され、これまで日本、中国、東南アジア、北米などから報告されてきた。今回、中国雲南地域および貴州地域のNeoalbaillella optima群集帯から、巨大な殻サイズをもつ放散虫群集が見いだされたので、これについて報告する。

中国雲南省耿馬地域には、昌寧-孟連带を構成する中-上部古生界が分布する。耿馬南方の南皮橋セクション（R1042-1073; Yao and Kuwahara, in press）は、層厚約13mの厚い酸性凝灰岩からなり、一部に石灰質泥岩、泥岩を挟むする。南皮橋セクションからは、Albaillella triangularis、Neoalbaillella optima、Entactinia modesta、Entactinia? spp.、Entactinosphaerid? spp.、Ishigaum trifustis、Latentifistula spp.、Triplanospongiosp. sp.など、数種から20数種からなる放散虫群集が産出する。セクション全体が最上部ベルム系Neoalbaillella optima群集帯に対比される。このセクションの最下位層準（R1066）からは、巨大な殻サイズをもつstauraxonやentactinariansが見いだされた。Triplanospongiosp. CAとした種には殻高が630μmとなるものがある。これは、西南日本のTriplanospongiosp. musashiensishの殻高が約370μmであることに比較すると明らかに大きい。また、Entactinosphaerid? sp.およびLatentifistula sp. Aとした種群には、大きな殻サイズや長いspineをもつものが含まれる。

中国貴州省羅甸東方の沫陽南セクション（R1273-1295; 八尾・桑原，1999）には、揚子地塊上の浅海成堆積物であるベルム系-三対系が分布する。沫陽南セクションのベルム系（R1282-1295）は、酸性凝灰岩で構成され、Albaillella triangularis、Ishigaum spp.、Nazarovella inflata、Triplanospongiosp. musashiensisなどを産出し、Neoalbaillella optima群集帯に対比される。このうちR1289からは、殻サイズの大きなLatentifistula sp.が得られた。

放散虫化石の殻サイズの違いの原因として、種の違い、古地理・古環境の違い、年代の違い、堆積時の淘汰、堆積過程の違い、化石処理による分別などが考えられる。中国雲南地域および貴州地域の両セクションとともに、岩相層序から判断して比較的浅海成の堆積物と考えられ、ベルム紀新世後期当時は低緯度地域で堆積したと想定される。今回、同じ化石帯において、同種が少なくとも同属の放散虫において、殻サイズが大きく異なるものが存在することが判明した。

放散虫は、気候変動に関連した水温変化に対応して種内の変化を示すことが知られている（eg. Granlund, 1986, 1990）。大きな殻サイズの放散虫群集は、何らかの古環境的要因によって生じた可能性がある。

* Radiolarian assemblage composed of large size forms in late Late Permian time.
** KUWAHARA Kiyoko and YAO Akira(Fac. Sci., Osaka City Univ.)
四国西部四万十帯斜面海盆堆積相からの晩新世放散虫化石の産出とその層序

鹿納　晴尚・岡村　真（高知大・理）

晩新世の放散虫化石は世界でも報告が少なく、特に白亜紀最後期から晩新世後期までほぼ連続した放散虫化石層序の報告のあるシークエンスはニュージーランド周辺だけである(Strong et al., 1995; Hollis, 1997)。さらに晩新世前期の放散虫化石層序はごく一部の地域で明らかにされているに過ぎない。日本周辺の北西太平洋地域からの放散虫化石の報告は、北海道（Iwata and Tajika, 1986；植田・川村・若田, 1993など）と四国（須賀・山崎, 1991；岡村ほか, 1991）の付加帯中よりの産出に限られる。

このたび、四国西部高知県中村市から宿毛市にかけて分布する四万十帯百笑（ドメキ）層より白亜紀最後期から始新世中期を示す放散虫化石群集が産出した。百笑層は従来、四万十帯北帯大正層群有岡層から、岩相より再区分されたものである(岡村ほか, 1991)。百笑層は岩相から斜面海盆堆積物からなると考えられ、みかけの層厚は3,500m以上で、8つの部層（下位から上位へDM1～DM8部層）に区分される。

放散虫化石層序を確立するために、およそ1200試料を採取した。白亜紀後期から晩新世を示す放散虫化石が産出したのは、下部のDM3～DM4部層である。そのうち25層準から保存の比較的良い群集を得た。本層のDM3部層下部からAmphiphaera priva, Amphipyndax sp., Archaeodictyomitra sp. といった白亜紀型のみからなる放散虫化石群集が産出し、最下部のDM1部層相当層からはInoceramus kunimiiensii(甲藤, 1952)が報告されている。したがって百笑層中にはK/T境界層の存在が推定される。

百笑層から産出し、同定できた放散虫化石は41属54種である。そのうちspumellariansは18属でnassellariansは23属である。白亜紀型の放散虫は特にBathropyramis sanjoaquinensisとOribulicorma renillaformisが多産し、B. sanjoaquinensisは百笑層下部のDM6部層まで連続して産する。随伴する種はAmphipyndax stocki, Archaeodictyomitra sp. Cornulata californica, Dictyomitra koslovae, Stichomitra bertrandiiやStichomitra grandisなどである。一方、第三紀型の放散虫はspumellariansで、Amphiphaera goruna, A. macrosepaといったAmphiphaera属, Stylophaera minorやSpongerus alveatus, S. cf. bilobatusといったSpongerus属などが産出し、nassellariansはBekoma (?) sp. aff. demissa, B. (?) oliva, Buryella granulata, B. tetracidaなどのほか, Clathrocyclus australis, Dictyophilus aff. pocillum, Lithostrobus weroやLychnocanoma属などが産出する。百笑層上部のDM6部層からはPodocytis属やThyrscocytis属といった、始新世に特徴的なnassellariansが産出する。

百笑層より産する放散虫化石の頻度、保存および群集組成の検討の結果、第三紀型の放散虫ではAmphiphaera goruna, Amphiphaera coronata, Buryella granulata, Buryella tetracida, Clathrocyclus australis, Lithostrobus wero, Lychnocanoma auxillaやStylophaera minorは連続的に産し、そのうち、A. goruna, B. granulata, C. australis, L. wero, L. auxillaとS. minorの6種はその初産出層準が明瞭である。これらのうちA. goruna, B. granulata, B. tetracida, L. auxillaとS. minorは汎世界的な分布が報告されている種である。L. weroとC. australisはニュージーランド(Hollis, 1997; Strong et al., 1995)からも報告され、L. weroはDM3部層上部で全個体数の15～30％を占めるものの、この種は大西洋からの報告はない。
大韓民国の前期白亜紀慶尚層群東明層からのシナミア科魚類化石

籠木美孝（北九州自然史博）・梁 承栄（慶北大学）

大韓民国慶尚南道晋州からアミア目のシナミア科魚類に属すると考えられる化石が産出したので報告する。産出層は慶尚層群洛東亜層群東明層、時代は前期白亜紀である。

化石は淡い灰色の頁岩に含まれており、ガノイン鱗で覆われた尾柄と尾鰭の一部、関節した尾椎ならびに関節が離れた軟条や骨の一部が保存されている。尾椎はよく保存されており、17個が数えられる。各椎体は円筒形で、長さより高さの方がやや大きく、側面に梢円形の凹みがある。ガノイン鱗は表面に装飾がなく、前後方向に長い。尾鰭は下葉の一部が保存されており、12本の鰭条が数えられる。尾鰭の各鰭条の分節は細かい。臀鰭は後端の5本が関節した状態で保存されている。

この標本は限られた部分しか保存されていないが、椎体と鱗の特徴からシナミア科Sinamia属魚類に属するものと考えられる。Sinamia属魚類は中国の後期ジュラ紀と前期白亜紀から5種が記載されている以外に、我が国の前期白亜紀の手取層群からも産出している。また、慶尚層群では慶南河東郡辰橋面良浦里から同じSinamia属魚類が報告されているが、これは本層より下位の霞山洞層からのものである。東明層からはこの他にも数種の魚類化石が産出しており、今後の調査によって慶尚層群産魚類化石群の全体像が明らかになることが期待される。

なお、この標本は北九州自然史友の会の化石研究部会が1997年に行った韓国恐竜足跡見学会で発見され、採集者の黒河雅文氏から北九州市立自然史博物館に寄贈されたものである。
環境指標種” Spongoplegma” antarcticum Group（新生代球状放散虫）の種分類∗

鈴木紀毅（東北大学大学院・理）**

珪質骨格をもつ原生動物であるポリキスティン（放散虫）は様々な海洋環境で生息していることから、古環境解析の指標となりうる浮遊性生物である。たとえば、沢田世界的に生息している球状放散虫の一群である”Spongoplegma” antarcticum Haeckel Group では、表層堆積物での分布が古海洋環境解析に用いられている（ex. Nigrini. 1967）。このグループは後期新生世以降から現世まで生息し、互いの区分が困難な9種から構成される。accretive internal structure とprimus exosphere をもち、この骨格が fibril-like macrosphere beam で接続するといった骨格構造を特徴とする。現世種では、水温の違いで異なる3種が生息している。日本付近に分布する海成新生界からこのグループは多産するので、化石種の地理的分布を調べることで過去の環境変遷を明らかにする手段となりえる。しかし、このグループの分類に目を向けると、従来の種区分の方法では、区分できない個体が多数みられる。このグループの構成種は異なる11属（Actinomma, Cenosphaera, Cladococcus, Cronyechinus, Diplosphaera, Plegmosphaera, Rhizosphaera, Rhodosphaera, Spongoplegma, Styptosphaera, Thecosphaera）に属すると言われている。このような分類の混乱を解決するため、北西太平洋域の新生代試料（酒井豊三郎, 木山功, 船川哲, 林慶樹氏提供）に含まれる” Spongoplegma” 属の4406個体を用い、種区分と帰属を骨格構造に基づき検討した。

所属する属については、各属の模式種と骨格構造を比較した。その結果、このグループに共通する骨格構造である、accretive internal structure, macrosphere beams と primus exosphere をもつ属は Styptosphaera に限られることが明らかとなった。

種区分の方法は、骨格構造の組み合わせから検討を行った。任意の形状で異なる骨格構造が区分できるのは5形質で、primus exosphere と macro sphere の接続タイプ（2種類）、radial spine の有無、radial spine の形（3種類）、primus exosphere の殻孔（7種類）、primus exosphere の格（2種類）である。これらの組み合わせから84形態種が存在しうるが、11形態種の実在を確認した。

この区分方法に基づくと、S. antarctica, S. churchi (Campbell and Clark), S. acrocladon (Blueford) と S. nipponica (Nakaseko) の4種の区分を可能になる。S. antarctica は、polyhedral primus exosphere を持つことで S. churchi と区分できる。S. acrocladon と S. nipponica 両種は seconduexosphere を持つことで特徴づけられるが、この殻は成長に伴い形成される構造で、どの種でも発達しうる事が判明した。しかし、seconduexosphere に遮られて種を区分する形質部位を観察できない個体が多数あるので、この形態種を使わざるをえない。そこで2枚のexosphereの間に発達する密度の薄い一群を Spongoplegma spp. form A とし、密度の濃い一群を Spongoplegma spp. form B として区分することを提案する。

ここで明らかになった種区分の方法に基づき Styptosphaera を構成する種のシノニムを整理した結果、命名規約上適格名である14種のうち、S. aquatica (Pophosky), S. antarctica, S. arcadophora (Haeckel), S. churchi, S. haeckeli (Holland and Enjumet), S. medianum (Nigrini), S. spiniger (Stohr), S. spumacea Haeckel sensu Nigrini 1970, S. variabilis が有効名である。

* Taxonomic classification of “Spongoplegma” antarcticum Group (Neogene radiolaria, Polycystina).
** SUZUKI Noritosh: Department of Geoenvironmental Science, Tohoku University. Sendai: 980-8578 JAPAN.
Key words: Northwest Pacific, Radiolaria, Neogene, taxonomy, paleoceanography
高知県横倉山層群中畑セクションの
ステージ6から7にかけてのGlanta属の形態変化*

古谷 裕 (姫路工大 自然・環境科学研究研究所／兵庫県立人と自然の博物館)**

高知県横倉山層群の中畑セクション(Furutani, 1996)から産出するデボン紀のPalaeoscenidiidae科の標本に見られる
進化の過程は、ステージ1からステージ7までの7つのステージに分けて(Furutani, 1996)、このうちステージ6
から最後のステージ7の間の形態変化はもっともシャープでなおかつPalaeoscenidiidae科に見られる
Ceratoikiscidae科でしばしば同一タイプで大きな形態変化が起こるという点で最も注目されるものである。
Palaeoscenidiidae科、Ceratoikiscidae科における最も顕著な形態変化はそれぞれ次のようなものである。

Palaeoscenidiidae科、ステージ6ではTlecerina属のspineは明瞭なプレード状ではなく、apical windowが残って
いるものも多かった。ステージ7でspineがプレード状になり、apical windowのないTlecerina morphotype 7が出現した。

Ceratoikiscidae科、ステージ6では殻が多孔質でb.t.およびi.t.の幅が広いGlanta fragilisタイプのものが見られ
るが、ステージ7では殻がラメラ状になり、b.t.およびi.t.の幅が狭いGlanta (Glanta sp. B)が出現する。

これまで中畑セクションではこのステージ6から7への移行帯は南東の端近くの露頭からしか知られていない
かった。そこではステージ6から7への移行帯はかなり急激なものであり、Tlecerina morphotype 7は突然出現し、
Glantaは10cm程度の薄い層から、Glanta fragilisタイプ、Glanta sp. Bタイプの他、両者の中間的な形態を持っ
た、すなわち多孔質の殻の幅の狭いb.t.およびi.t.をもったGlanta sp. Cとが入り交ぜて産出する。

このほど、従来の露頭のおよそ70m北西でステージ6から7への移行帯を含む新露頭が見つかれた。ここ
では、厚さ約2.3mの酸性凝灰岩層のうち下から約70cmの層準(Y-719)からほぼ確実なTlecerina
morphotype 7が出現しはじめるので、ここから上位がステージ7を示すものと考えられる。また、
Ceratoikiscidae科ではGlanta sp. Bと考えられるものが下から約140cmの層準から見つかっている。それより
も下位の層準では、層準によりCeratoikiscidae科のあまり産出しない場合もあるものの、Glanta sp. Cを中心とし
て、Glanta fragilisに近い形態のものから、Glanta sp. Bに近いものまで、様々な形態のものが見られる。そして
その中で、下位ほどGlanta fragilisに近い形態、すなわち殻が多孔質でb.t.およびi.t.の幅の広いものが多く、上
位に向かってGlanta sp. Bに近い形態を示すものすなわち、殻の全体が多孔質ではなくなり、部分的にラメラ状
で、b.t.およびi.t.が狭くなったものが見られるようになる。以上の産出傾向はステージ6とステージ7の間の
Glanta属に見られる大きな形態変化が徐々に進行して行った過程を示しているのではないかとも考えることができ
る。すなわち、下位から上位に向かって、Glanta fragilisのb.t.およびi.t.の幅が狭くなり、殻が多孔質のもの
からラメラ状のものに置き換わっていき、Glanta sp. Bとなる過程である。

古谷(1997)は兵庫県択園山においてもステージ6からステージ7の境界付近のPalaeoscenidiidae科および
Ceratoikiscidae科の散発産物を報告しているが、今回横倉山で見いただされた露頭に比較できる部分は択園山でも
見いだされていない。今回の露頭は、Glanta属のGlanta fragilisタイプからGlanta sp. Bタイプへと形態を変化
する過程を知る上で重要なものである。

*Morphological change of the genus Glanta (Radiolaria) in the transition from the Stage 6 to Stage 7 at the Nakahata section in Mt.
Yokokura, Kochi, Japan.

**Hiroshi Furutani (Institute of Natural and Environmental Sciences, Himeji Institute of Technology/Museum of Nature and Human
Activities, Hyogo)
ANTI-TROPIC DISTRIBUTION: A KEY TO THE UNDERSTANDING OF PALEOZOIC BIOGEOGRAPHICAL PROVINCIALISM OF JAPAN

Weiping YANG\(^1\) and Jun-ichi TAZAWA\(^2\)

\(^1\) JSPS fellow of the Department of Geology, Niigata University, Niigata 950-21, Japan;
 Nanjing Institute of Geology and Paleontology, Academia Sinica, Nanjing 210008, China
\(^2\) Department of Geology, Niigata University, Niigata 950-21, Japan

Anti-tropic (or previously used as bipolar) distribution of biota has played an important role in the geological history of Asia, mainly in China. The appearance of anti-tropic distribution started as early as Silurian and became most conspicuous in late Paleozoic. The apparent anti-tropic (bipolar in original) distribution of Early Carboniferous brachiopods in Asia was proposed in 1961 by Ustritsky and afterwards emphasized by Yang in 1990. And Permian seems to be the strongest stage of anti-tropic distribution and has been mentioned or discussed by Xu and Yang (1987) and Shi et al. (1995). Anti-tropically distributive biotas, which are often regarded as temperate and psychrophilic ones (Yin et al., 1987, 1994), are usually distributed on both sides of tropically distributed biotas. Together with some features such as intermediate diversity between those of the tropic and cold biotas as well as the lower proportion of endemic and stenothermal organism than in tropic, anti-tropic distribution can be served as a useful mark to determine the paleobiogeographic provincialism of some regions like West Yunnan and South Kitakami regions to be a temperate or subtropical close to temperate provincialism respectively.

In Japan, the typical Boreal type brachiopod *Rotaia-Marginata-Syringothyris* assemblage has been reported by Tazawa (1996) from the Lower Visean lower Hikorochi and Arisu Formations of the South Kitakami regions. However, *Marginatia-Unispirifer, Syringothyris*, especially the later one is the typical genus with anti-tropic distribution in China, e.g. in Tianshan - Inner Mongolia regions and Tibet - West Yunnan regions.

In Permian, the most typical representative of anti-tropic distribution, *Monodexiodina* (Han, 1980), was reported from the South Kitakami, Kurosegawa and the Hida-Gaien Belts in Japan. This fusulinids genus has also been documented from Himalayan, C. Tibet-W. Yunnan, Inner Mongolia-Jilin, and Junggar-Xingan regions (Xu and Yang, 1987, 1994). The mixture of both Boreal-type and Tethyan-type brachiopods are distributed in the South Kitakami, Hida-Gaien, and Akiyoshi Belts. In South Kitakami, the brachiopods of the lower Kanokura Formation contain the Tethyan type genera, *Leptodus*, *Spinomarginifera*, and *Richthofenia* as well as the Boreal type genera, *Yakovlevia*, *Spiriferella*, and *Waagenites*. Among these, *Spiriferella* and *Waagenites* are of anti-tropic distribution in China and distribute mainly in Tibet-W. Yunnan and Tianshan-Inner Mongolia regions. The Permian plant, *Cathaysiopteris*, mostly distributed in N. America, N. China but not in South China, was reported by Asama (1956, 1967, 1970) from Maiya, NE Japan.

The sense of the correlative or comparable biotas in biostratigraphy is not the same one as in paleobiogeography. For example, the Late Devonian plant *Leptophloeum* and *Kueichowphyllum* were once treated as a mark between South China and Australia in terms of paleobiogeography (Kato1990). However, *Leptophloeum* is a good index fossils for the correlation of Late Devonian around the world since it has been reported from North America, South America, Sitsbergen, Africa, Russia, North China, Northeast China, South China and Australia. The Early Carboniferous coral *Kueichowphyllum* is distributed not only in South China and Australia, but also in the Tianshan-Jilin province (northern transition zone in China).

Above all, we conclude that in spite of the strong Tethys faunas similar to South China in South Kitakami, Japan, the provincialism of South Kitakami in Carboniferous and Permian was a temperate or subtropic very close to the temperate due to the anti-tropic distribution, the mixture character of Boreal type and Tethys type, and lower diversity compared with South China one, which is totally different from the provincialism of South China with typical tropic biotas. Such a conclusion also supports in different sense of biogeography the Tazawa's opinion (Tazawa, 1991, 1992, 1993) about the location of the South Kitakami regions along the eastern margin of North China and far away from South China in Permian.
南部北上山地から産出したペルム紀腕足類 Scacchinella

田沢純一（新潟大・理）・荒木英夫（気仙沼市太田）

南部北上山地、宮城県気仙沼市表松川（採石場）における葉倉層上部の灰色細粒砂岩から産出した腕足類 Scacchinella について報告する。従来わが国からは美濃赤坂と南部北上山地の中部ペルム系から Scacchinella の産出報告があるが（早坂, 1925; 馬淵, 1935; 安藤, 1986）、詳しい記載はなされていない。

このたび取扱った Scacchinella の化石標本は全部で5個体である。いずれも不完全な茎殻（pedicle valve）の雕型および雄型標本で、かなり強く変形している。しかしながら、異常に高く発達した茎殻、高くかつ幅広い凹面（interarea）、茎殻外部表面を覆う同心円状の不規則に発達した棘（rugae）および数多くの棘基（spine base）、茎殻内部にある1枚の強い中央隔壁（median septum）、間面を除いた茎殻内側表面を覆う数多くの小隆起（pustule）などにより、Scacchinella 属の1種であることは明らかである。

Scacchinella はプロダクタス目（Order Productida）の1属で、Richthofenia と同様、逆円錐形ないし円筒形の単体サンゴのような奇妙な形をしているペルム紀の腕足類である。この属はGemmillaro (1891)がシシリー島のSosio bedsから産出した2種、S. variabilis Gemmillaro、S. depressa Gemmillaroを基に提唱したもので、今日までに、シシリー島、カーニックアルプス、ウラル山脈、北カーサス山脈、フェルガナ南部、日本（赤坂、南部北上山地）、テキサス西部の下部～中部ペルム系から報告されている（Muir-Wood and Cooper, 1960; Muir-Wood, 1965; Cooper and Grant, 1975など）。

表松川の標本は、サイズが中型～大型で（最大のただしかなり変形している標本で、殻長15mm、殻幅43mm、殻高54mm）、茎殻の水平断面が横に幅広い円柱形を呈する。また茎殻前面が浅く幅広い縦溝（sulcus）のようにわずかに凹んでいることが特徴である。上記茎殻の諸特徴により、これらはScacchinella gigantea Schellwien, 1900 に同定される。S. gigantea は Schellwien (1900)がカーニックアルプスのTrogkofel Formationから記載した種で、そのほかウラル山脈・フェルガナ南部の下部ペルム系からも記載されている（Heritsch, 1935: Licharew, 1939; Ramovs, 1965）。

南部北上山地の中部ペルム系岩井崎石灰岩から馬淵（1935）が Scacchinella cf. gigantea として報告した（産出化石リストにあげた）種は、表松川産のものと同種（S. gigantea）である可能性がある。しかしその標本は紛失しており、比較することができない。美濃赤坂金生山の赤坂石灰岩帯（Parafusulina Zone）から早坂（1925）と安藤（1986）が Scacchinella sp.として図示・記載した標本は、本種よりもはるかに大型で、茎殻の水平断面が円形に近い。早坂（1925）はこの種がS. gigantea に似ていると述べているが、むしろテキサス西部の upper Wolfcampian から記載された Scacchinella titan Cooper and Grant, 1975 に近似するように思われる。
南部北上山地八景島産中期ペルム紀ボレアル型－テチシ型混合腕足類フォーナ

田沢純一（新潟大・理）・滝沢文教（応用地質）（株）・鎌田耕太郎（弘前大・教育）

南部北上山地八景島、宮城県日生郡（ものうぐん）雄勝町（おがつちょう）八景島（やけじま）に分布する中央ペルム系大八景島層から、ボレアル型－テチシ型混合腕足類フォーナが産出することが明らかになった。腕足類化石は、5万分の1地質図幅「大須地域の地質」（鎌田・滝沢、1992）を作成する過程で、矢倉層に匹敵される大八景島層中部の暗灰色石灰岩質細粒砂岩の塞岩から産出され、矢倉層に認められた。その結果以下の9属9種が同定された（数字は標本の個体数）。

Waagenites soochowensis (Chao)1
Transennatia grattiosa (Waagen)4
Kochiprocessus sp. ..1
Compressoprocessus compressus (Waagen)2
Rhynchopora tchernyshae Koczyrevicz1
Stenosisma margaritovi (Tschernyschew)7
Martinia sp. ..1
Spiriferella cf. lita (Fredericks)2
Cleiothyridina subexpansa (Waagen)2

三宝山帯から産出す三畳紀後期テチス型二枚貝化石群の
Palaeocardita, Bakevellia, Triaphorus について

牧野耕治（熊本大学）

そこで今回は比較的資料が蓄積されてきた熊本県球磨郡山江村大河内、球磨郡五木村仰鳥帽子岳、八原岳、高知県香我美町吉次（転石）から産出した *Palaeocardita, Bakevellia, Triaphorus* について報告する。

平田・市川（1966）が高知県香我美町吉次から報告した *Costatoria goldfussii* はその後の研究で *Costatoria* でないことが判明し、山江村大河内のものとあわせて Tamura（1990）, 田村（1992）などで *Palaeocardita* sp. と修正が提案されている。この種は主に中国雲南省から産出している *Palaeocardita singularis* に同定されており、吉次、大河内、仰鳥帽子岳、八原岳からも産出する。三宝山帯から産出している *Bakevellia* 類は Tamura（1981）によって埼玉県武甲山から記載された *Bakevellia（Neobakevellia）* sp. cf. *matsushitai* があるが、大河内、仰鳥帽子岳、八原岳からも同じ種に同定しうる二枚貝を多産するほか、保存は悪いがもう一種（*Bakevellia* sp.）産出する。*Triaphorus* は New Zealand の *Pleurophorus zealandicus* をもとして設定された属であるが、大河内、仰鳥帽子岳、八原岳から *Palaeocardita, Bakevellia* と共に産出し、ここでは *Triaphorus* sp. として報告する。

既に述べられているように、これら二枚貝化石がテチスの要素を強く含み、外帯の河内ケ谷二枚貝化石群や内帯の同時代の化石群と全く異なっている。三宝山帯のテチス二枚貝化石群を含めた日本の後期三畳紀二枚貝化石群は Tamura（1995）にみられるように当時の古地理を考察する上で非常に有効であり、現在におけるテチス型二枚貝化石群と河内ケ谷二枚貝化石群（内帯のものも含め）の対立は日本形成を論ずる上で考慮すべき事実であると考える。
デボン系福地層のサンゴ動物群

江崎洋一・足立奈津子（大阪市大・理）

飛騨外縁帯に分布するデボン系福地層は、四射・床板サンゴや腕足類などの大型化石を多産する黑色石灰岩と粒状される酸性凝灰岩で特徴づけられる。福地層は岩相上11の層に区分され（Kamei, 1955）、その年代はサンゴやコノドント化石から、LochkovianからEmsianに対応される（Kato et al., 1980; Kuwano, 1987）。

福地層の四射サンゴは、層孔虫や腕足類などの大型化石、GirvanellaやRothpletzellaなどの微細生物類と共産し、束状サンゴ（Entelophyllum, Cyathophyllum）ならびに単純な形態の単体サンゴ（Rhizophyllum, Tryplasma）で特徴づけられる。塊状サンゴ（Carlinastraea, Taimyrophyllumなど）、大型の単体サンゴ（Dohmophyllumなど）、盆地相に特徴的な単体四射サンゴ（Neaxon, Metriophyllumなど）は認められない。一方、床板サンゴは、Favosites, Heliolites, Squameofavosites, Thanmoporaで特徴づけられる。とくに、FavositesとHeliolitesが種数や個体数において卓越するが、各々のサンゴ個体およびサンゴ群の大きさは、種類によりまちまちである。四射・床板サンゴ化石は、層状石灰岩ならびに暗灰色泥質石灰岩でそれぞれ特徴づけられるBed 1とBed 7から最も豊富に産するが、礁の枠組み等を形成しているわけではない。また、全層を通しての種類の多様性は必ずしも高くない。それらの層序的な変遷は、福地層の層序や産出サンゴ化石（とくに床板サンゴのfavositids）の種レベルでの同定の問題もあり未解決である。しかし、岩相により特徴的な組み合わせが認められる。Tryplasmaは、塊状の層孔虫やラグーン相に特徴的なAmphiporaにより構成されるboundstoneから、EntelophyllumやCyathophyllumなどの束状四射サンゴは、腕足類とともに暗灰色泥質石灰岩から多産する。枝状のFavosites hidensisは淡緑色凝灰岩から産する。同じ飛騨外縁帯に属する他地域の“下部”デボン系（上穴馬層群）からは、酷似した構成を示す四射・床板サンゴ動物群が産する。しかし、南部北上帯の同年代層（大野層）の四射サンゴは、Carlinastraeaを産するCarlinastraea動物群で特徴づけられ、構成上差異が認められる。ただし、床板サンゴに関しては、少なくとも属レベルでの差異は認められない。

福地層のサンゴ動物群には、時空的に広範に分布するもの（Tryplasma, Cystiphyllloides, Cyathophyllum, Favosites）が多く、当該地域のデボン紀前期当時の占地的な位置付けを論じる場合には注意が必要である。今後、同地質帯のシルリ紀ならびに石炭紀サンゴ、サンゴ以外のタクサ、古候候・古海況などの変遷を考慮した比較・検討が必要である。福地層の四射・床板サンゴは、石灰岩の微岩相やサンゴの外の生物相組み合せの解析から、陸源堆屑物が間欠的に流入する、閉鎖した生息域の“地域的”群集を代表していると考えられる。
デボン系福地層の微生物類

足立奈津子・江崎洋一（大阪市大・理）

飛騨外縁帯に属する岐阜県福地地域には、黒色の石灰岩で特徴づけられる福地層が分布する。福地層は、岩相上11の層に区分され（Kamei, 1955）、その年代は産出するサンゴやコノドント化石から、LochkovianからEmsianに対比される（Kato et al., 1980; Kuwano, 1987）。今回、石灰岩の微岩相を検討した結果、石灰岩から石灰岩に微生物類が深く関与していたことが明らかとなったので、その産状を中心に概要を報告する。

福地層のBed1は、層状の黒灰色石灰岩で特徴づけられる。Rothpletzellaを伴ったWetheredellaが、四射サンゴ(Cyathophyllum)の周りに厚く被覆する。Rothpletzellaが直接、床板サンゴ(Thannopora)を層状に取り巻くこともある。Girvanellaは、主にミクライト中に散在するが、細状の層孔虫(Amphipora)を被覆する場合も認められる。斑点状のミクライトの薄層を挟在する層孔虫が、上方に層をなして成長し、boundstoneを形成している。Bed6は緑色の凝灰質石灰岩で特徴づけられる。Rothpletzellaが枝状のFavosites hidensisの表面に付着している。サンゴ体中のミクライト部にはGirvanellaが散在する。Bed7は灰色から暗灰色の石灰岩で特徴づけられる。Girvanellaが直接、あるいはGirvanellaを含む暗灰色のミクライトがFavositesを被覆する。Cystiphylloidesの表面が部分的にミクライト化し、そこにWetheredellaを挟在したRothpletzellaが層状に厚く取り巻き、binderとして働いている。ミクライト基質をRothpletzellaが被覆・固定し、さらにGirvanellaやWetheredellaが順次被覆する場合がある。Renalcisは量的には少なく、生殖物に直接付着することなくミクライト基質中に散在する。Bed10は主に灰色の凝灰質石灰岩から構成される。多産する四射サンゴ(cyathophyllids)の表面に、半円状のalgaeやまれにRothpletzellaが付着する。Bed11は灰色の石灰岩で特徴づけられる。ウミユリ片は微生物によって激しく穿孔され、その間隔はミクライト化している。その部分やオンコライト中に、Girvanellaが多産する。また、Favositesの周囲を、Girvanellaを伴うWetheredellaが厚く被覆する場合も認められる。RothpletzellaはWetheredellaを伴い、コケミシや四射サンゴの表面にわずかに被覆する。

Rothpletzella, Girvanella, Wetheredellaは、層縁を通じて共通した種類が産出するが、黒色から灰色の石灰岩で特徴づけられるBed1とBed7から多産する。これらの微生物は共産する場合が多い。RenalcisはBed7のみから産出する。また、サンゴやウミユリ片の表面は、穿孔性の微生物によって頻繁にミクライト化している。このように、微生物類は、積極的に石灰分を沈澱・堆積物を被覆している。福地層から産出する微生物類は、強固な枠組み形成には関わっていなが、サンゴを始めとする大型化石とともに石灰岩の形成に重要な役割を果たしていたと考えられる。
シルル紀四射サンゴ *Stauria favosa* の増殖様式と成長パターン

安原有美・江崎洋一（大阪市大・理）

四射サンゴの増殖様式には、有性生殖と無性生殖がある。無性増殖には、大きく分けて、軸増殖、側増殖、周辺増殖の３つの様式がある。これらの増殖様式は群体の形態形成に深く関わりがある。群体四射サンゴの増殖様式に関する詳細な研究例は少なく、無性増殖の方向性や、増殖後の体長等に不明な点が多い。そこで、典型的な軸増殖を示す *Stauria favosa* を用い、ビール法によって増殖様式の検討を行った。*Stauria favosa* は塊状あるいは束状の成長型を呈する。軸構造は形成されないが、主隔壁、側隔壁、対隔壁の４本の原隔壁がサンゴ個体中心部まで伸長し、互いに結合し特徴的な「十字形構造」を形作る。

Stauria favosa の親個体は、４本の原隔壁を境に四分裂し枯死する。まれに二分裂する場合もあり、その場合は、主隔壁、対隔壁、二枚の側隔壁の一枚が境となる。分裂が始まるとき、親個体の原隔壁は娘個体同士を仕切る壁へと変化し、その壁からそれぞれの娘個体の内部に向かい、独自の組織（新組織）が形作られていく。まず原隔壁が形成されるが、その場合、娘個体の主隔壁は、親個体の主隔壁と同様に形成される。すなわち、同じ親から生じた娘個体は、すべて同じ方向性を有する。親個体の原隔壁以外の隔壁は、長隔壁は長隔壁として、短隔壁（カタ隔壁）は短隔壁として、親個体の象限と同じ象限へと受け継がれる。三分裂の場合、分裂に関与しない一枚の側隔壁は、娘個体の側隔壁として受け継がれる。新たな隔壁は、主隔壁のすぐ両側と側隔壁のすぐ対隔壁側の、計４ヶ所に順次挿入される。これは、[ケントの法則]として知られる単体四射サンゴに特有な挿入様式に一致する。新しく挿入された隔壁が長くなるとともに、その両側に再び新たな隔壁が挿入される。それらのうち、対隔壁側のものは、終始短いままのカタ隔壁であり、主隔壁側のものは、その後伸長する後生隔壁である。隔壁は、個体成長初期に著しく増増するが、その後急速に増加率が低下し、数が安定する。横断面における面積は、成長初期にはほとんど変化せず、その後急速にあるは徐々に増加する。

Stauria favosa の４本の原隔壁が形作る「十字形」は安定した構造であり、それを活かして分裂することが、親個体にとって最も確実な増殖方法であると考えられる。娘個体も、親個体の壁を原隔壁を含む隔壁を、自らの壁や隔壁として再利用し、より効率的に、そして成長の最初期段階から安定した骨格を形成することができる。また、娘個体は親個体と同様の方向性をもって配置するため、娘個体同士の成長方向が一致し、よりスムーズに成長できると考えられる。今後の問題として、以下の点が挙げられる。群体としての方向性はあるのか、増殖様式とサンゴ個体の形態および群体の形態形成はどのように関係しているのか。*Stauria favosa* のような増殖様式は系統発生的観点からどう位置づけられるのか。
揚子地塊上のペルム系 - 三疊系の放散虫化石群集（その2）*

八尾 昭・桑原希世子（大阪市大・理）**

中国南部の揚子地塊上には、主として浅海堆積物からなる古生界-下部中生界が広範囲に分布する。これら古生界-中生界は複雑な変形作用を受けておらず、ほとんどの一連の層序をよく保存している。さらに、これらは保存良好な大型化石や微化石が豊富に含まれる場合が多く、精度よく地質年代が決定されている。しかしながら、放散虫化石の研究に関しては十分に進んでいるとは言えず、検討課題としては残されてきた。演者らは1987年以来、北京大学との共同研究を通じて、揚子地塊上のペルム系-三疊系の放散虫化石の検討を行ってきた。その結果、いくつかのセクションにおいて年代対比に有効な放散虫化石を摘出し、その放散虫化石群集の特徴を明らかにしてきた（八尾・桑原、1999など）。

今回、八尾・桑原（1999）で報告したセクションに加えて、新たに貴州省において、（1）平巴（Pingba）地域の肖家庄（Xiaojiazhouang）セクション、（2）紫雲（Ziyun）西方のビア仙（Biuxian）セクション、（3）羅甸（Luodian）西方の納隠（Namen）セクション、（4）羅甸東方の沫陽（Meiyang）南部セクションの4セクションで放散虫化石を見出した。以上の4セクションでは、上部ペルム系から下部三疊系にわたる連続層序が発達する。ペルム系上部統上部（大隆Dalong層及び晒瓦Shaiwa層）は、主として泥質岩と酸性凝灰岩で代表され、アモンイト化石を産することがある。その上位に連続する三疊系下部統下部（大冶Daye層及び羅園Loulou層）は、泥質岩から始まり、中・上位で層状石灰岩となる。さらにその上位に連続する三疊系下部統上部（谷腳Gujiao層及び紫雲Ziyun層）は、層状石灰岩で代表される。ただし、納隠セクションでは羅園・紫雲層とも泥質岩が卓越し、羅園層には多くの層準に酸性凝灰岩層が挟まれる。

上記のセクションの晒瓦層の数層準の珪質泥岩・酸性凝灰岩からAlbaillella sp.など。

以上の4セクションの曇瓦層の層準準の酸性凝灰岩からは、Parentactinia sp., Cryptostephanidium sp., Pseudostylosphaera sp., Pfaierium (?) sp., Oertiliospongus sp.などが産出する。

以上のように、セクションのペルム系上部統上部及び三疊系下部統上部からの放散虫化石は、八尾・桑原（1999）などで報告した化石とはほぼ一致する。揚子地塊上のペルム系上部統上部の放散虫化石群集の特徴としては、Latentifistridaeなどの数種から構成され、Albaillellariaは極めて見られ、西南日本群集と比較すれば多様性は明らかに低いことが確認された。一方、揚子地塊の上三疊系下部統上の放散虫化石群集は多様性がやや高く、ペルム紀/三疊紀境界での大量絶滅以降の急激な回復を示すものと考えられる。

* Permian - Triassic radiolarian assemblages from the Yangzi Platform (Part 2).
** YAO Akira and KUWAHARA Kiyoko (Dep. Geosci., Fac. Sci., Osaka City Univ.)

51
丹波帯菱角P／T境界セクションからの最前期三畳紀コノドント化石の産出*
山北 聡・門田直樹（宮崎大）
加藤拓弥・多田隆治・萩原成鷹・田近英一・濱田欣孝（東大）**

1980年代後半より、わが国のジュラ紀付加コンプレックス中から、深海堆積物からなるペルム／三疊系境界（P／T境界）近傍のセクションがいくつか報告されてきた。これらを総合して、深海堆積物中のP／T境界層序については、下位から、ペルム系チャート、上部ペルム系珪質粘土岩、下部三疊系珪質粘土岩とまとめられている。このうち黑色炭質粘土岩は、深海堆積物であるにもかかわらず有機炭素に富む特異な堆積物であり、P／T境界での大量発生をもたらした環境変動との関連が提案されている。しかしながら、上記層序のうち、黑色炭質粘土岩については時代決定に有効な化石が産されておらず、また下部三疊系を示す化石が得られていないため、黑色粘質粘土岩中またはその基底にP／T境界の存在が予想されるが、その層序については未確定であった。今回我々は、主なP／T境界セクションの一つである、京都府福知山市諏訪南方の菱角セクション（桑原ほか、1991）について、コノドント化石による検討を行った。

菱角セクションからは、Neoalbillaia orinithiformis帯およびNeoalbillaia optima帯の放散虫化石が報告されている。上部ペルム系放散虫生層序に関する新知見（Kuwahara et al. 1998）に基づけば、N. optima帯が最上部ペルム系にあたる。N. optima帯の放散虫化石を産するのは、灰色チャートおよびその上位の泥質チャートと灰色珪質粘土岩の互層部（76cm）であり、さらにその上位には、灰色珪質粘土岩（22cm）と黑色炭質粘土岩（24cm）が整合的に重なる。黑色珪質粘土岩から黑色炭質粘土岩へはシャープに移り変わることが、黑色炭質粘土岩の基底から5cm上位には、灰色珪質粘土岩の厚層（2cm）が挟まれている。黑色炭質粘土岩の上位には、断層によって断たれ、ジュラ紀のものと考えられる層を受けて泥岩と接している（第1図）。

黑色炭質粘土岩の最下部（基底より10cmの範囲）からは、Hindeodus minutusとともに、Hindeodus parvusが産した。H. parvusは、テスス浅海域各地のP／T境界セクションから報告されている、最下部三畳系Griesbachianを特徴づける種である。黑色炭質粘土岩から時代決定に有効な化石が産したのは、今回が初めてである。また、深海堆積物からGriesbachianの化石が得られたのも、これが初めてである。一方、これより15cm下位の灰色珪質粘土岩からは、Neocondolleta changxiegensis、Neocondolleta subcarinataが産し、最上部ペルム系Changxingianであることを示す。したがって、両層準の間にP／T境界が存在することは間違いなく、この間の顕著な岩質境界は、灰色珪質粘土岩と黑色炭質粘土岩との境界であり、同層準がP／T境界であることは、ほぼ確実であると言えよう。

* Earliest Triassic conodonts from the Ubara P/T boundary section in the Tamba Belt.
** Satoshi Yamakita, Naoki Kadota (Miyazaki Univ.), Takuya Kato, Ryuji Tada, Shigenori Ogihara, Eiichi Tajika and Yoshitaka Hamada (Univ. Tokyo)
南部北上、最上部ベルム系鎌越山層の石灰岩相と有孔虫化石
小林文夫(塩工大・自然環境研/人と自然の博物館)

南部北上、気仙沼北方の鎌越山層は砂岩と黒色粘板巻を主とし、レンズ状の礫岩と石灰岩を伴う。鎌越山層は砂岩と石灰岩に含まれる腕足類と有孔虫化石からベルム紀最新世と考えられ、登米統上部に対比される(Tazawa, 1975)。石灰岩はTazawa(1975)が示した鯨越山南方のほか、気仙沼駅の北1kmと1.2kmの林道沿い(C, D断面)、内松川(E断面)、西中才(F断面)に分布する。それらは2層準でみられ、いずれの地点でも厚さ3m以下で、成層し、砂岩または黒色粘板巻にレンズ状に挟まれる。ラミナが発達し、厚さ5cm以下の石灰質な泥岩や細粒砂岩を挟む。C断面の下位の石灰岩下部では海ユリ片を多量に含む径30cm以下の石灰岩塊が密集する。厚さ数cm～数10cmの石灰岩は岩相変化の著しい石灰質で礫質な砂岩に層状またはレンズ状に挟まれる。石灰岩は概して不純で、礫質粗粒砂岩は淘汰が低く石灰岩片や石灰質化石片を多く含んでいるため、両者の境界は不鮮明なことが多い。

石灰岩の大半は礫属性石英粒子や岩片を多く含み、弱い変態岩化をうけている。それらは海ユリと採取虫化石が圧倒的に多いrudstoneやpackstoneから成り、全岩の約7割が海ユリ片から成るものもある。藻類化石の含有量は低い。このような岩相から成る石灰岩は舞鶴層群上部層や球磨層最上部の石灰岩レンズでもしばしばみられる。

北海道中頸別地域の上部白亜系南満層群の
岩相層序と大型化石層序

安藤 寿男・友杉 貴茂（茨城大・理）・金久保 勉（バスキン工業㈱）

北海道北部の中頸別地域には蝦夷累層群最上部が露出し、白亜系一古第三系境界の存在が指摘されている重要なフィールドである。今回筆者らは、茂木津内川から知駒内川に挟まれた地域について、岩相層序と岩相の側方変化、大型化石層序を広域的に観察し、カンパニアン-マストリヒティアンのアンモナイト、イノセラムス層序を再検討したので、その概要を報告する。

南満層群とに 5 分する層序区分が示されており、本報告でも比較のためにこれに従う。全層
が露出する良好なセクションはないが、B から E のいずれにも基底に厚い砂岩層を挟在す
る。単調な暗灰色シルト岩の A 層と、塩状厚層砂岩を時々含むシルト岩主体の B・C 層とは
比較的明瞭に区別できるが、B と C とは岩相的に類似する。D・E 層は砂質シルト岩を主体と
し、砂岩は塩状が多く生物擾乱を受けており、全体として B・C より粗粒である。D 層下
部（厚さ 80～150m）、E 層下部（150～200m）の中～細粒砂岩層は、字津内向斜よりに連
続し岩相的関係として追跡できる。特に E 層基底には Glycymeris などの浅海生二枚貝集層
（数 20cm）を 6 カ所ほど確認できた。字津内川上流では、起伏のある浸食性基底をな
す海進性礫岩上に発着ハッモック状斜交層理砂岩が発達し（厚さ約 8m）、塩状生物擾乱細粒
砂岩に混在する。これは海進性の堆積相層序である。E 層上部はほとんど砂岩を挟在しない
単調な砂質シルト岩で化石は稀である。

芦別地域以南の南満層群で見られるような明瞭な堆積サイクルは認め難いが、少なくとも
D・E はそれぞれ一つの堆積シーケンスからなり、さらに小規模なシーケンスから構成され
る。B・C については細粒岩相が卓越するため広域に連続するサイクルが認められない。

2. 化石層序：E 層上部の 150m を除き、白亜系のアンモナイトあるいはイノセラムスを時々
～稀に産する。A・B はカンパニアン下部を示す Sphenoceramus schmidtii で特徴づけられ
字津内向斜の東西両翼と南部に広く分布する。A には Gigantocapillus transformis, G. giganteus
も稀に伴う。B 層下部は Anomia sp. がしばしば産する。C 層には化石が少ないが、C 層上
部から D 層下部に Inoceramus shikotanensis が産する。本種のレンジの上半は Sphenoceramus
hetenanus と重なっている。S. hetenanus は C 層上部から D 層上部に達し、D 層では
"Inoceramus" kusiroensis と共存する。マストリヒティアン下部の指標種と指摘されている
Pachydiscus flexuosus は、D 層の中部から上限までの 4 カ所で確認した。属の帰属が問題の
"Inoceramus" awajiensis は字津内川上流の 1 層準で確認したにとどまった。D 層上部 2 層準と
E 層上部で Gaudryceras hamanakense が産し、蝦夷累層群でこれまで報告された最も上位のア
ンモナイト化石として注目される。

Lithostratigraphy and mega-fossil biostratigraphy of the Upper Cretaceous Hakobuchi
Group, Nakatonbetsu area, northern Hokkaido.

Hisao ANDO', Takashige TOMOSUGI' and Tsutomu KANAKUBO' (Ibaraki University, 'Paskin Kogyo Ltd.)

54
始新統ボンダウン層（ミャンマー）の哺乳類化石動物群について*

箇本武久（京都大・理・地鉱）、高井正成、茂原信生（京都大・地鉱）、U Aye Ko Aung（ダゴン大）、U Tin Thein（ハテイン大）、U Aung Naing Soe（ヤンゴン大）、U Soe Thura Tun（ダゴン大）**

始新統上半部のボンダウン層はミャンマー中部に分布しており、陸生の哺乳類化石を産出することで知られている。ボンダウン層からは原猿類と真猿類との間シップをした始新世化石群が産出しており、我々がこれを含む真猿類の起源という観点で、人類学の分野からも注目されてきた。特に、Colbert（1938）以来、ボンダウン層の哺乳動物化石群としてのまとまった研究はなされていない。これまでに哺乳類化石としては原猿類・奇蹄類・鳥類を報告されており、北米のウインターハマや中国北部の內蒙古自治区のシャラムルン動物群と対比されている。今回、フィールド調査およびヤンゴンの国立博物館で標本調査をおこなった結果、ボンダウン層からはさらに、真猿類・真髄類・観節類などの種類が新しくみつかかった。また、今まで見つかった例の動物の追加標本も多数得ることができた。ボンダウン層は海成層に挟まれており、大半の同時代のアジアの哺乳類化石を産出する陸成層とは違って地質時代が決定やすい。哺乳類化石の種類・数とともに増大したことによって、南アジアの陸成層の生物相を考える上でも、ボンダウン層の哺乳動物群がアジアの同時代の化石動物群の中でより重要な位置を占めることができる予測される。

Preliminary Pondaung mammalian faunal list:

Primates Prosimii indet.

?Anthropoidea Amphipithecus

Pondaungia indet.

Artiodactyla Anthracotheriidae Anthracotherys

Anthracothema indet.

Anthracokeryx

Helothyidae Pakkokuhyus indet.

Suiformes Indomeryx indet.

?Gelocidae *Indomeryx* indet.

Ruminantia indet.

Perissodactyla Brontotheriidae Sivitanops

?Telmatotherium (Metatalmatherium)*

Amynodontidae Paramynodon

Tapiridae indet. Indolophus

Deperetellidae Deperetella (Diplolophodon)

Creadonta Hyaenodontidae indet.

Rodentia indet.

?Condylarthra indet.

*Fossil mammalian fauna of the later Eocene Pondaung Formation, Myanmar

**Takeshi Tsubamoto1, Masanari Takai2, Nobuo Shigehara3, U Aye Ko Aung4, U Tin Thein5, U Aung Naing Soe1 and U Soe Thura Tun6

1Department of Geology and Mineralogy, Graduate School of Science, Kyoto Univ.

2Primate Institute, Kyoto Univ.

3Department of Geology, Dagon Univ., Myanmar

4Department of Geology, Pathein Univ., Myanmar

5Department of Geology, Yangon Univ., Myanmar

上顎頬歯の形態によるトリティロドン科哺乳類形類爬虫類の系統発生論と、
手取層群桑島層産同類化石の位置づけ

松岡広繁・瀬戸口烈司・松田美香
(京都大・理・地質)

トリティロドン類の頬歯は、三日月型をした各咬頭が近遠心方向に、下顎のものでは2列に同じく上顎では3列に配列した。爬虫類のものとしては特異な形態のものである。そのため哺乳類における臼歯のように、そこには系統性が認められることが期待される。そこでこの度、特に「より情報量の多い」上顎のものを用いて、頬歯の形態学的特性により本グループの系統構築を試みた。あわせて、石川県白峰村の手取層群桑島層から産出した同類化石の系統的位置づけを検討したので、ここに報告する。

検討に用いたのはBienotherium, Bienotheroides, Dianzhongia, Dinnebido, Kayentatherium, Lutengia, Oligokyphus, Foliodon, Stereognathus, Tritylodon, Yunnanodonの11属及び白峰産化石で、その他の属（Bocatherium, Chaleopatherium, Likhoeria, Tritylodontoideus等）は上顎頬歯を示す良い図が得られなかったので省略した。

すべての属において、頬側と中央の列ではそれぞれの咬頭は遠位のものほど大きくなるが、頬側列の最も遠位の咬頭はしばしばすべての咬頭の中で最も大きなものである。一方で舌側列では、最も大きな咬頭は中心よりにあって、その近心側及び遠心側により小さな咬頭が付属する。この際Oligokyphus, Tritylodon, Lutengia以外の属では、2番目に大きな咬頭と3番目のものとの間には大きさの変化に著しいギャップがある。2番目に大きな咬頭が近心側にあるもの（Dianzhongia）と遠心側にあるもの（Bienotherium, Bienotheroides, Kayentatherium）の2グループがあるが、これは2つしか咬頭がない属でも同様である（Dinnebido, Yunnanodonが前者、Foliodon, Stereognathus, 白峰産化石が後者）。

このようにすべての属に“傾向”が見いだされることから、トリティロドン類の上顎頬歯の各咬頭は「相同」なものであり、同時に、以下のような進化的関係が描かれると考えられる。ここで、トリティロドン類中最も原始的な形態の頬歯を持つと考えられるOligokyphusは舌側・中央・頬側の各咬頭列に3・4・4の咬頭を持つが、それぞれの最も近心側の咬頭は他のものと比べて明らかに小さい。このためこれらを各列の0番目とし、それ以外の2・3・3には近心側から順に番号を与える。舌側・中央・頬側の各咬頭列はb、m、l（列）と呼ぶ。

\[
\text{Oligokyphus} \\
\begin{array}{l}
\text{b0, m0, l0短小化 Tritylodon, Lutengia} \\
\quad \downarrow 3短小化 Dianzhongia \\
\quad \quad \downarrow 1, 3完全消失 Yunnanodon, Dinnebido \\
\quad \downarrow 1短小化 Bienotherium, Kayentatherium \\
\quad \quad \downarrow m1短小化 Bienotheroides \\
\quad \quad \quad \downarrow m1, 1短小化 Foliodon, Stereognathus, 白峰産化石
\end{array}
\]

重要なことは、Oligokyphus以降のトリティロドン類には、遠心舌側の咬頭が消失するものと、近心舌側の咬頭が消失するものの、2つの系統が存在する点である。白峰産の化石は、後者に属し、Foliodon, Stereognathusなどと共に、最も進化型のメンバーであるといえる。
静岡県西部の上部鮮新統大日層から産出したハイエナイモガイの新亜種

延原尊美*・田中貴也**（*名古屋大学大学院理学研究科地球惑星理学、**（株）シモデン）

掛川地域に分布する上部鮮新統大日層は、西南日本の太平洋沿岸域で当時繁栄した暖流系
軟体動物化石群（掛川動物群）の模式産地として知られているが、現生の熱帯-亜熱帯性種を
多く産出すことから当時の古海洋気候・古生物地理を議論する上でも注目されている。大
日層からはこれまでにも、現在台湾以南に分布するヤグラモシオガイ Bathytormus fo沃olatus
（Sowerby）、屋久島以南に分布するヤコウガイ Turbo (Lunatica) marmoratus Linnaeus などが、
観察・報告されてきた（Ozawa et al., 1998）。しかしながらイモガイ類の化石記録について
は、熱帯-亜熱帯気候を指標とする代表的な巻貝類であるにも関わらず、分類上の重要な形質で
ある色帯・色斑が消失していることなどから種レベルで同定された事例は少ない。

Ozawa et al. (1998) は、掛川市五明の化石産地から大量に産出した50個体近くのイモガイ類
化石をCleobula sp.として記載・報告したが、種レベルでの同定に関しては保留していた。今
回、撮影者らはインド・ボンベイ産ハイエナイモガイ Rhizoconus hyaena (Ilwass) の現生標本を
入手し形態を比較検討したところ、Cleobula sp.と一括されていた標本群の大多数はハイエナ
イモガイの新亜種とみなし得ること、その他の標本はスジイモガイ Cleobula figulina (Linnaeus)
およびベッコウイモガイ Chelyconus fulmen (Reeve)であることが判明したので報告する。

化石産地は静岡県掛川市五明の道路工事に伴う切削の露頭で、イモガイ類を含む軟体動物
化石は、大日層の最下部にあたる厚さ約5mの礫岩層中にバッチ状に散在・密集していた。イ
モガイ類の他には、Mercenaria chitaniana (Yokoyama), Megacardita panda (Yokoyama),
Anadara (Scapharca) castellata (Yokoyama), Umbonium (Suchium) schuenke schuenkien Yokoyama,
Turritella perterebra Yokoyama, Ceratostoma ozawai Tomida & Tanaka, Siphonalia declivis
declivis Yokoyama, Babylonina elata (Yokoyama)が多産したもの。なお構成種は潮下帯から上部浅
海域の砂底および砂礫底に生息する現生種およびそれに近縁な絶滅種からなる。

Ozawa et al. (1998) によりCleobula sp.と一括されていた標本群の大多数は、以下の形質で
特徴づけられる。すなわち、1）sutural ramp が凹み、螺塔の外形はconcave もしくは階段状
になること，2）sutural ramp 付近は明瞭な螺線溝が2〜7本程度刻まれること，3）幼年層
部には顆粒列が生じるが成長とともに消失すること，4）体層殻底部の左側がしばしばやや
反った外側を示すこと，5）殻底部にはちりめん状の螺状彎曲が認められるが、体層上部
にはかすかに螺状線が認められるに過ぎないこと，6）成長脈にそった太い色帯が認められ
ることで、これらの形質は現生ハイエナイモガイのそれに一致するが、大日層産の化石
標本は縫合直上に竜骨状に角がり体層でのやや角ばった殻部に連続する点で現生ハイエナ
イモガイと明瞭に区別できる。ハイエナイモガイは現在、インド・西太平洋の熱帯・亜熱帯
域の潮間帯-潮下帯の様々な底質に生息し、分布の北限は南シナ海・香港である（Röckel et
al., 1995）。大日層より多産したこれらのイモガイ類は、インド・西太平洋域に分布するハイ
エナイモガイ R. hyaena のストックが2Ma 付近のこの温暖期に分布を日本付近に北
上させた過程で地理的に分化した亜種と考えられる。
三重県の一志層群（下部中新統）産のクモヒトデ化石

石田 吉明（東京都立一橋高校）

三重県津市西部美里村東部の家所に位置する採石場より50個体を越すクモヒトデ化石が発見された。これらのうち、3科3属1種を同定することができたのでそれらの形態的な特徴と生息環境を述べる。

化石を産出した地層は、一志層群大井層中に露持なるシルト岩砂岩層である（吉田ほか、1995）。同部層の年代は、浮遊性有孔虫化石からBlow（1969）のN.7（中新世前期）に対比されている（Yoshida、1991）。

[化石と形態]

Ophiomusium lymani Thomson、1873（Family Ophiuridae）: 51個体の平均盤径は22.2mm。背側の盤鱗は中央部で小さく、縁部で大きい。幅幅は卵形で盤の半径の2/3。口綱は長方形で縁部で最も大きい。口鱗は三角形で基部が尖る。腹腕板は腕の基部から3個認められ、第一腹腕板は長方形、第2、第3は三角形を示す。触手口は第2、第3腹腕板にのみ認められる。背腕板は小さな三角形。腕針は短く、腕に密着し、7本認められる。

本種は現生種であり、現生クモヒトデ中古生の化石記録となる。

Ophiocladion sp. cf. O. fastigatus Lyman、1878（Family Ophiocladionidae）: 1個体。腕は水平に曲がる。腹腕板は三角形で、中央で隆起する。触手口は大きい。側腕板は腹面側で接しない。背腕板は幅の広い長方形。腕針は太く円錐形で、腕節の1.5倍以上ある。O. fastigatusは現生種である。

Ophiacanthia sp.（Family Ophiacanthiidae）: 1個体。盤径6.1mm。腕は細く結節状を示す。腕針は細く腕に垂直。中空で、腕節の長さの1.5-2.0倍である。

[産状] Ophiomusium lymani は盤と腕が接合したものが多く、切れた腕の長い。密集した産状を示し、1ブロック中の個体密度は428個体/m²（55個体/1285cm²より産出）と計算され、腹面側と背面側の割合は2:3である。これらのことから、化石は近距離から移動してきたものと考えられる。他の種は1個体ずつであるが、とともに保存が良く、現地性または準現地性と推定される。

[生息環境] 本部層からは貝化石のMcamma-Lucinoma 群集とNeledina-Periploma 群集が卓越することから、上部前中生海帯の堆積環境と推定される。さらに暖流系外洋水の浸入を示す浮遊性翼足類や頭足類も報告されている（吉田ほか、1995）。したがって、クモヒトデ化石もこのような環境に生息していたと推定される。

現生種のOphiomusium lymani は、汎世界種で日本近海では深度700-1500mに、Ophiocladion fastigatusは三陸沖から東シナ海の深度128-860mに多く生息している（入村、1990）。Ophiacanthia属も深海の種である。したがって、これら現生種の生息深度と産出したクモヒトデ化石の推定深度は似渉している。

Ophiomusium lymani Thomson（背面側）
オウムガイの殻体と外套膜の付着様式

伊左治雄司（千葉県立中央博物館）・加瀬友豊（国立科学博物館）
棚部一成（東京大学）・内山公夫（鳥羽水族館）

軟体動物の殻体と軟体部は、付着細胞とよばれる特殊化した外套膜上皮細胞によって連結している。殻体への付着細胞の付着面は筋肉頸として残され、その形態や大きさ、縁の強さは化石軟体動物の軟体部を復元する際の手がかりとなり、系統分類や古生態の考察において重要な情報となる。殻体と軟体部の付着様式を明らかにすれば、筋肉頸をより広い観点から解析する事に役立つであろう。

単板類や腹足類、二枚貝類、掘足類では、殻体と軟体部の付着様式と付着細胞の微細構造が詳細に観察されている。一方、外殻性頭足類のオウムガイでは光学顕微鏡による観察例があるだけで、付着様式を他のグループと比較する試みはなされていない。オウムガイ類は、体重の多くを占める殻体を持たながら浮遊生活に適応している点で他とは大きく異なることから、その殻体と軟体部の付着様式は生態学的観点から興味深い。また、アムナイト類などの絶滅外殻性頭足類の古生態復元においても役立つものと期待される。

本研究では、オウムガイ（Nautilus pompilius）の殻と軟体の2個体について、retractor muscle末端部での外殻膜と殻体の付着様式を観察した。また、軟体についてはcicatrix部の観察も行い、比較検討した。その結果、今までの軟体動物のグループには知られていなかった付着様式を確認した。

【単板類、腹足類、二枚貝類、掘足類】
- 付着細胞は脊が低く、微細毛が非常に短い。
- 付着細胞と殻体内壁の間に極めて薄いフィルム（成体での厚み数μ）が存在する。
- 付着細胞の微細毛先端は薄いフィルムと細線によって連結している。

【オウムガイ】
- 付着細胞の脊が高く、微細毛が非常に長く、密に発達している。
- 付着細胞と殻体内壁の間に厚いフィルム（成体での厚み80μ）が存在する。
- 微細毛の先端部は著しく細く、厚いフィルムとの細線による連結はない。

オウムガイ以外のグループでは、付着細胞とフィルムとの連結が構造的に強く、このことは外殻膜を殻体から剥がす際に上皮が剥がされないが容易である。一方、オウムガイでは付着細胞とフィルムとの間に、特別な接着装置は認められず、両者は何らかの分泌物によって連結を保っているものと思われる。実際、オウムガイの外殻膜は殻体から容易に剥がれてしまうことがからも、付着細胞とフィルムはルーズに接着しているといえる。

オウムガイの殻体と軟体部の特殊な付着様式を、以下の2つの観点から説明できるかもしれない。

（1）殻壁で仕切られた気房を有したこと、軟体部にかかる負荷が軽減され、筋肉の伸縮運動の支点となる殻体にたいして、付着細胞の機能がさらに重要ではないかだろう。

（2）retractor muscleの殻体への付着部位は常に殻口近くに位置するため、個体発生を通じての付着部位の移動距離が長くなると同時に移動スピードが速くなる。ルーズな付着様式は殻体内壁を付着細胞が迅速に移動していく構造として効果的である。