

Abstracts with Programs The 2017 Annual Meeting The Palaeontological Society of Japan (June 9-11, 2017, Kitakyushu, Fukuoka Prefecture)

日本古生物学会 2017 年年会

講演予稿集

2017年6月9日-11日

北九州市(福岡県)

日本古生物学会

共催:北九州市立自然史・歴史博物館 協賛:北九州市、(公財)北九州観光コンベンション協会

表紙写真の解説・説明

Diplomystus kokuraensisのホロタイプ 全長44.0 mm Diplomystus kokuraensis Uyeno, 1979 Holotype KMNH VP 100,031 地層名 関門層群脇野亜層群熊谷層 時代 中生代白亜紀前期 産地 北九州市小倉北区熊谷

1974年に北九州市の旧山田弾薬庫跡地(現在の山田緑地)周辺で魚類化石がたくさん見つかることを小学生 が山遊びの最中に偶然発見したが、魚類化石はそれよりも20年も前に福岡学芸大学(現在の福岡教育大学)の 太田喜久博士による論文に登場する。日本では稀な中生代魚類化石の多産する場所が見つかったことから、 北九州市は福岡大学の鳥山隆三教授(九州大学名誉教授)を顧問にむかえ、秋吉台科学博物館の太田正道博士 を団長に北九州市産白亜紀魚類化石発掘調査団を結成した。発掘調査は1976年と1977年に行われ、上野輝彌 博士により Diplomystus kokuraensisと D. primotinus の2種が1979年に新種記載された。そのタイプ標本の 保存と発掘された標本を研究し、その成果を公開する機関をつくるため、1978年に北九州市自然史博物館開 設準備室が戸畑市民会館内に設けられ、1981年には国鉄八幡駅ビルに北九州市立自然史・歴史博物館の前身 である北九州市立自然史博物館がオープンした。その後、博物館を拠点に調査研究が進められ、脇野亜層群の 魚類化石の全体像が次第に明らかになっていった。

脇野亜層群は下位より道原層、高津尾層、蒲生層、熊谷層からなり、高津尾層を除く3つの層からそれぞれ 異なる魚類化石群が発見されている。これまでに22種が確認されており、そのうち18種に学名が与えられて いる。北九州市立自然史・歴史博物館のリサーチゾーンには各タイプ標本が展示されており、エンバイラマ館 では脇野亜層群が堆積した湖をジオラマで再現し、化石魚類が泳ぎ、時間とともに異なる種類の魚類が現れて 湖の変遷を見ることができる。

(写真と解説:籔本美孝 北九州市立自然史・歴史博物館)

日本古生物学会2017年年会・総会開催実行委員会

委員長: 籔本美孝

委員:太田泰弘・御前明洋・大橋智之

R<学協会著作権協議会委託>

本誌からの複製許諾は,学協会著作権協議会(〒107-0052 東京都港区赤坂9-6-41, 電話 03-3475-4621; Fax. 03-3403-1738)から得て下さい.

(講演予稿集編集:遠藤一佳・對比地孝亘・伊藤泰弘)

日本古生物学会 2017 年年会・総会

2017年6月9日(金)~6月11日(日):北九州市立自然史・歴史博物館

********1. プログラム 概要 ********

6月9日(金)会場:北九州市立自然史・歴史博物館A会場 [13:00-16:15] シンポジウム「魚類化石研究の現状と可能性」・・・・・・・・ii 総会 ・・・・・・・・・・・・・・・・・・・・・・iiii 16:25-17:35 18:30-20:30 懇親会(千草ホテル)・・・・・・・・・・・・・・・・・iii 6月10日(土)会場:北九州市立自然史・歴史博物館 A~C 会場,ポスター会場 学術賞受賞記念特別講演(A 会場) ・・・・・・・・・・・・・iii 9:30-10:30 10:45-12:00 一般講演 口頭発表1(A~C会場) ・・・・・・・・・・iii-iv [12:05-12:55] [13:00-14:00] 一般講演ポスター発表コアタイム(ポスター会場)・・・・・・iv-vi 14:15-15:15 一般講演 口頭発表 2(A~C 会場) ・・・・・・・・・・・・・vi-vii 15:30-16:45 一般講演 口頭発表 3 (A~C 会場) ・・・・・・・・・・・・vii-viii 17:00-17:15 ポスター賞表彰式(ポスター会場付近) ・・・・・・・・・・viii [17:30-19:30] 6月11日(日)会場:北九州市立自然史・歴史博物館 A~C 会場

【9:30-10:30】 一般講演 口頭発表4(A~C会場) ・・・・・・・・・・ix
 【10:45-12:00】 一般講演 口頭発表5(A・B会場) ・・・・・・・・・・ix-x
 【13:15-14:15】 普及講演会(化石友の会共催イベント) (A会場) ・・・・・・・

発表方法と機器についての注意事項など(必ずお読みください)・・・・・・・・xi その他会場案内など ・・・・・・・・・・・・・・・・・・・・・・・・・・xi-xiv

2017 年年会参加費 一般会員・非会員 5,000 円 学生会員 2,000 円 友の会会員 1,000 円 高校生以下無料(予稿集は有料 1 冊 500 円)

【13:00-16:15】北九州市立自然史·歷史博物館A会場

シンポジウム「魚類化石研究の現状と可能性」

コンビナー:籔本美孝(北九州市立自然史・歴史博物館)・髙桒祐司(群馬県立自然史博物 館)

近年,魚類化石研究を進展させる環境条件が整いつつある.例えば,日本の博物館でも国内 外の保存状態の良い魚類化石が蓄積されてきており,さらに,水族館では,世界的に飼育の 難しかった深海性魚類やサメ類に代表される大型魚類の長期飼育が可能となり,現生魚類の 生態に関する情報もより一層得られるようになった.また,近年の分子生物学の発展に伴っ て,現生魚類の多くのグループにおいて分子系統関係が明らかになっていることも,魚類化 石研究を進展させる一つの原動力となっている.魚類化石の研究は,現生魚類との比較形態 学的研究にもとづく分類学的記載や系統分類学的研究がほとんどであるが,最近では水族館 における現生種の行動観察にもとづく化石サメ類の機能形態学的研究や,分子系統学的研究 と古生物学的研究にもとづいた分岐年代の推定や魚類の多様化プロセスの解明といった融合 的な研究も進められるようになってきている.本シンポジウムでは,日本の魚類化石研究者 が行っている研究を紹介し,魚類化石研究の現状と未来の可能性について議論することを目 的とする.

13:00-13:10 趣旨説明 籔本美孝(北九州市立自然史·歷史博物館)

13:10-13:40 日本における軟骨魚類化石の研究 -現状と展望-

高桒祐司(群馬県立自然史博物館)

13:40-14:10 「水族館古生物学」の展望

冨田武照(沖縄美ら島財団総合研究センター)

- 休憩 - 【14:10-14:25】

14:25-14:55 **硬骨魚類化石の研究**

-日本の博物館所蔵の主な魚類化石と研究の可能性について-

籔本美孝(北九州市立自然史·歷史博物館)

14:55-15:25 **第四紀淡水魚類化石の研究**

- 玖珠盆地産淡水魚類化石を例に-

宮田真也(城西大学)

15:25-15:55 **魚類における分岐年代推定と多様化プロセス解析** 昆 健志(琉球大学) 15:55-16:15 総合討論

【16:25-17:35】 総会(北九州市立自然史・歴史博物館 A 会場)

【18:30-20:30】 懇親会(千草ホテル)

懇親会は予約制です.参加を希望される方は,必ず事前にメールかハガキで,5月25日(木)[必着]までに、お申し込み下さい.

- 会 場:千草ホテル 光琳の間
- 移 動:総会後,博物館→千草ホテルまでマイクロバス3台を随時運行します. 千草ホテルへはJR 八幡駅から徒歩約10分,博物館からは徒歩約20分です. アクセスなど詳細は千草ホテルHP(http://www.chigusa.co.jp)をご覧ください. 懇親会後,JR 八幡駅までホテルからマイクロバス3台を随時運行します.
- 会費:一般会員・非会員・友の会会員…6,000円,学生…4,000円
- 申込先:大橋智之(北九州市立自然史·歷史博物館)
- メール: psj2017@kmnh.jp ※件名は「日本古生物学会懇親会申込」とし、会員の種別 (一般・友の会・非会員・学生)を明記してください.
- ハガキ:〒805-0071 福岡県北九州市八幡東区東田 2-4-1

北九州市立自然史・歴史博物館 大橋智之 宛

6月10日(土)北九州市立自然史・歴史博物館

【9:30-10:30】学術賞受賞記念特別講演(A会場)

佐野晋一「太平洋域における厚歯二枚貝相の古生物地理学上・進化史上の意義」

【10:30-10:45】休憩

[10:45-12:00]	一般講演	口頭発表	1	(A~C会場)
---------------	------	------	---	---------

A 会場	B 会場	C 会場
形態解析の部	古環境の部(1)	生層序の部(1)
座長∶對比地孝亘	座長:西田梢	座長∶上松佐知子
A01 m 佐々木猛智・前川優・ 竹田裕介・厚芝真希・Chong Chen・野下浩司・上杉健太郎・ 星野真人 形態データの 3D 化 と古生物学への応用	B01 m 山田桂・黒木健太郎・瀬 戸浩二・池原実 貝形虫の幼体 殻の酸素同位体比を用いた冬 季古気候指標	C01_河野聖那・磯崎行雄・佐藤友彦・張興亮・劉偉南中国 雲南省小濫田セクションにおける下部カンブリア系の岩相および SSF 生層序
A02 m 神谷隆宏・西田翔・ス ミスロビン 海生貝形虫の精 子形態の多様性と受精過程で の精子変形	B02 m 川幡穂高・石崎維・黒柳 あずみ・鈴木淳・大串健一 日 本の寒冷地域における最寒期で の世界最古級の土器と石鏃の 出現	C02 m 佐野弘好・太田泰弘・杦 山哲男 岐阜県舟伏山東部,美 濃帯のペルム系円原石灰岩

形態解析の部	古環境の部(1)	生層序の部(1)
座長∶對比地孝亘	座長:西田梢	座長∶上松佐知子
A03 w 藤原慎一 四足歩行動 物の肩甲骨の理論上の最適位 置に体幹の加速度ベクトルと抗 重力筋の収縮力が及ぼす影響	B03 w 岡崎裕典・代田恵子・今 野進・久保田好美 珪藻群集に 基づく東シナ海男女海盆におけ る最終氷期以降の表層水塊変 動	C03w太田泰弘・佐野弘好・ 山哲男 岐阜県山県市円原地 域で発見された Parafusulina 属と Cancellina 属が共産する 灰白色石灰岩の地質年代につ いて
A04 m 山口龍彦・本田理恵・ 松井浩紀・西弘嗣 性選択は貝 形虫殻の性的二型を発達させ たか?	B04 w 佐々木聡史・入月俊明・ 瀬戸浩二・松浦康隆 宇部港の ボーリングコア中の完新世貝形 虫群集と相対的海水準変動	C04 w 杦山哲男・佐野弘好・太 田泰弘 美濃帯のペルム系円 原石灰岩からイシサンゴ化石を 発見
A05 w 生形貴男 アンモノイ ドの体房部の体積比と外殻の 比表面積の関係	B05 m Kenji M. Matsuzaki • Takuya Itaki • Ryuji Tada • Shunsuke Kurokawa How do the radiolarian species respond to the Milankovitch cycle during the late Miocene in the Japan Sea?	C05 w 太田泰弘・佐野弘好・牧 野帆乃香 カナダ, ブリティッ シュコロンビア州南部 Cache Creek 村近郊の Marble Canyon 石灰岩から産出した <i>Neoschwagerina</i> 属について(予 報)

【12:05-12:55】 ランチョン小集会 みんなで語ろう「古生物の普及」 (B 会場)

世話人:松岡篤・ロバート・ジェンキンズ

趣 旨:古生物の中で,世の中でよく知られている分類群は限られている.古生物研究者の大多数は、自分が研究対象としている分類群がもっと知られるようになって欲しいと願っている.この思いは、特定の分類群を創造活動のモチーフとしているアーティストも同様であろう.このランチョンでは、研究者とアーティストの立場から古生物の普及について話題提供する.何十年ぶりかに特定の分類群の国際研究集会が日本で開催される際に、普及という観点からわれわれは何ができるだろうか.

話題提供:松岡篤「研究者からみた古生物の普及」

徳川広和「アーティストからみた古生物の普及」

【13:00-14:00】 一般講演 ポスター発表

(奇数番号コアタイム 13:00-13:30 偶数番号コアタイム 13:30-14:00)

P01 三輪美智子・江森良太郎・平松力 秋田県男鹿市福米沢 SK-26D 坑井の更新統有孔虫化石群 集と古環境

P02 大串健一・塙周祐 ベーリング海の溶存酸素極小層における最終氷期底生有孔虫群集

- P03 戸城元甫・山崎あゆ・鈴木寿志 京都市北部市原地域の丹波地体群における放散虫年代
- P04 川谷文子・指田勝男・上松佐知子・甲能直樹 新潟県佐渡島の鶴子層から産する中新世放散 虫化石

- P05 小島隆宏・齋藤めぐみ・岡田誠 栃木県北部に分布する塩原層群宮島層から見出された化 石珪藻
- P06 酒井佑輔・松岡篤 福井県大野市上半原地域の手取層群上部より産出する前期白亜紀植物 群(田茂谷植物群)の層位学的位置
- P07 増井充・江﨑洋一・長井孝一・杦山哲男・足立奈津子 秋吉石灰岩層群で見られる前期/ 後期石炭紀境界直後の造礁生物相と礁の構築様式
- P08 徳田悠希・江崎洋一・久一沙彩・杉本雄祐・今野仁志・原口展子・和田年史 山陰海岸の 海食洞内に分布するイシサンゴ類
- P09 安里開士・加瀬友喜 岐阜県大垣市のペルム紀赤坂石灰岩から産するツノガイ類(掘足綱) の分類学的再検討
- P10 佐藤圭 化石原鰓類の貝殻微細構造とその進化:上部白亜系より産出する化石種を中心に
- P11 瀬尾絵理子・奥谷喬司・瀬尾芳輝・小島茂明 オウナガイ類の成長に伴う殻形態の変化と 内部形態
- P12 伊左治鎭司・大倉正敏 飛騨外縁帯福地地域に分布する石炭系一の谷層産微小巻貝化石
- P13 御前明洋・辻野泰之 四国北東部の上部白亜系和泉層群から産出するノストセラス科アン モノイドとその進化学的意義
- P14 竹田裕介 外殻性有殻頭足類の隔壁を構成する真珠構造の結晶学的性質
- P15 佐野晋一・0. S. Dzyuba・伊庭靖弘 岐阜県荘川地域の手取層群御手洗層産ベレムナイト再 訪
- P16 宮崎靖二・入月俊明・酒井哲弥 島根半島東部の下部中新統古浦層における非海生貝化石の 古生物学的意義
- P17 安藤佑介・御前明洋・猪瀬弘瑛・服部創紀・古野竹志・森木和則・疋田吉識・嶋田智恵子・ 加藤久佳 道北地域の白亜系および新第三系から産出した十脚類化石の追加記録
- P18 入月俊明・紫谷築・林広樹 千葉県更新統国本層・柿ノ木台層の貝形虫化石群集(予察)
- P19 高橋唯・加藤太一・相場博明・指田勝男 栃木県塩原産のクワガタムシ科及びオオムカデ 目化石について
- P20 高橋恵里・大路樹生 再生腕の出現頻度から見る現生ウミシダ類が受ける捕食圧の深度・ 地理的変化
- P21 前川匠・小松俊文・小池敏夫・重田康成 愛媛県西予市田穂に分布する三畳系田穂層から 産出した前期三畳紀のコノドント化石とその回復過程
- P22 Daisuke Nakatani•Yasuhiro Fudouji•David Ward The first record of the genus *Parotodus* (Lamniform: Otodontidae) from the Kishima Group in Saga Prefecture, Japan
- P23 徳丸沙耶夏・中島保寿・疋田吉織・佐藤たまき 北海道中川町産出上部白亜系産出のサメ化 石 Echinorhinus priscus と Cretodus borodini
- P24 中島保寿・高橋聡・佐々木理・永広昌之・御前明洋 稲井層群大沢層(下部三畳系 Olenekian) より発見された硬骨魚類化石群集が示す中生代初期の食物網の複雑性
- P25 宮田真也・Paulo M. Brito・籔本美孝・高橋謙輔・上野輝彌 ブラジル下部白亜系サンタ ナ層産ピクノドン科魚類 *Ieman ja palma*の新標本とその意義
- P26 安藤瑚奈美・藤原慎一 慣性モーメントに基づく四肢動物のパドリング遊泳法の復元指標
- P27 山下桃 有鱗類における眼の硬組織と軟組織の相関関係
- P28 筑紫健一・池上直樹・大谷順・椋木俊文・大森聡一・小松俊文 熊本県御船町に分布する 上部白亜系御船層群から初産出したトカゲ化石
- P29 加藤太一・橋本一雄・松本武雄・鈴木千里・長谷川善和・菜花智・国府田良樹・安藤寿男 福島県いわき市の双葉層群足沢層から産出したポリコチルス科首長竜の烏口骨化石とその 古生物地理学的意義
- P30 對比地孝亘・Brian Andres・Patrick M. O' Connor・渡部真人・Khishigjav Tsogtbaatar・ Buuvei Mainbayar モンゴル上部白亜系産巨大翼竜類について
- P31 原巧輔・金澤芳廣・林昭次・佐藤たまき 香川県さぬき市多和兼割の上部白亜系和泉層群か ら産出した脊椎動物化石

- P32 田上響・立畠潤一郎・長屋亨 福岡県の下部白亜系関門層群より産出した恐竜類の多様性 P33 田部智大・石垣忍・B. Mainbayar・Kh. Tsogtbaatar・實吉玄貴・浅井瞳 モンゴル国上部 白亜系ジャドフタ層の風成層に印跡された獣脚類足印の形成過程について
- P34 宮田和周 熊本県天草市の前期始新世バク形類の系統解析
- P35 江木直子・鍔本武久・ジンマウンマウンテイン・タウンタイ・高井正成 ミャンマー中期 始新世ポンダウン相の食肉型類 (Carnivoramorpha, Mammalia) の系統分類についての再検 討
- P36 辻川寛・中野良彦・仲谷英夫・國松豊・中務真人・菊池泰弘・石田英實 ケニア北部ナチョラ地域の中期中新世反芻類(哺乳綱偶蹄目)
- P37 松井久美子・荒諒理 束柱類(哺乳類:?アフリカ獣類)の古生物地理分布および進化・絶滅との関係性
- P38 荻野慎諧・仲谷英夫・高井正成・E. N. マシェンコ・N. P. カルミコフ ロシア鮮新統ウ ドゥンガ哺乳動物相中の大型アナグマ類 Ferinestrix 標本
- P39 田中郁子・András Markó・Balázs Bradák・兵頭政幸・Eleanor Strickson・Peter Falkingham ハンガリー北西部ウェータシュシェシュ考古遺跡における約 350ka のヒト科に似た足跡の 再解析
- P40 奈良正和・矢島穂高 高知県土佐清水市爪白の中新世潮汐低地堆積物に見られる生痕化石 群集
- P41 蔦永早也香・浅井瞳・実吉玄貴・B. Mainbayar・Ar. Batswkhj・Bu. Batsaikhan・Kh. Tsogtbaatar モンゴル国ゴビ砂漠南東部 Bayshin Tsav に分布する上部白亜系の岩相層序 と古環境
- P42 浦野雪峰・高木菜都子・田上響・藤原慎一 動物の硬組織と軟組織を同時観察する薄片作 製のための新たな包埋法
- P43 藤田和彦・昆健志・シンポジウム「沖縄に国立自然史博物館を!」実行委員会 「沖縄に国 立自然史博物館を!」シンポジウム開催報告

高校生ポスターセッション

HP1 安藤綾海・今村陸・島袋朱里 千葉県君津市西谷地域から産出する化石単体サンゴ HP2 秋山大成・吉田宙希 現生と化石のシャミセンガイの元素分析

【14:00-14:15】休 憩

A 会場	B 会場	C 会場
古脊椎動物の部(1)	古環境の部(2)	生層序の部(2)
座長:佐藤たまき	座長∶佐藤たまき 座長∶徳田悠希	
A06 w 中谷大輔 モロッコの 上部白亜系より産出した <i>Manemergus anguirostris</i> (長 頚竜亜目・ポリコティルス科) の新標本	B06 m 足立奈津子・江崎洋一・ 刘建波・園田ひとみ・渡部真 人・Gundsambuu ALTANSHAGAI・ Batkhuyag ENKHBAATAR・Dorj DORJNAMJA モンゴル西部ザブ ハン盆地に分布するエディアカ ラ紀/カンブリア紀境界付近に 特異なストロマトライト	C06 m 桑原希世子・佐野弘好 異なる年代を示す放散虫共存 の謎に挑む―美濃帯ペルム系チ ャートでの事例

【14:15-15:15】 一般講演 口頭発表 2 (A~C 会場)

古脊椎動物の部(1)	古環境の部(2)	生層序の部(2)
座長:佐藤たまき	座長∶徳田悠希	座長:鈴木紀毅
A07 m 平山廉・吉田将崇・伊 藤愛・滝沢利夫・佐々木和久 上部白亜系久慈層群玉川層よ り産出した化石カメ類	B07 m 江崎洋一・刘建波・足立 奈津子・闫振 北中国山東省の カンブリア系第三統微生物類礁 に認められる時代特異性	C07 w 指田勝男・佐野弘好・堀 田千二海・上松佐知子 大分県 津久見市網代島のチャートから 産する前期および中期三畳紀の 前期を示す放散虫化石
A08 w 林昭次・小林快次・飯 島正也・佐野祐介・伊東隆臣・ 恩田紀代子・中野貴由・上田貴 洋・江口太郎 骨組織から考察 するマチカネワニの年齢と性別	B08 m 磯崎行雄 オルドビス紀 末と Guadalupian (ペルム紀中 期) 末の絶滅事件比較	C08_山田敏弘 手取層群に おける手取型植物群のはじまり
A09 w 田中公教・小林快次・ Timothy Tokaryk 白亜紀の潜 水鳥類へスペロルニス目の体重 進化	B09 m 黒柳あずみ・豊福高志・ 長井裕季子・木元克典・西弘 嗣・高嶋礼詩・川幡穂高 白亜 紀無酸素事変時の環境が浮遊 性有孔虫へ及ぼす影響	C09 w 林圭一・川上源太郎・廣 瀬亘・渡辺真人 北海道北東部 網走地域, 能取湖周辺の新第三 系から産出した渦鞭毛藻シスト 化石群集

【15:15-15:30】休憩

[15:30-16:45]	一般講演	口頭発表	3	(A~C 会場)
---------------	------	------	---	----------

A 会場	B 会場	C 会場
古脊椎動物の部(2)	古環境の部(3)	生層序・分類の部
座長∶林昭次	座長∶山田桂	座長∶御前明洋
A10 w 高崎竜司・千葉謙太郎・ 小林快次・Philip J. Currie・ Anthony R. Fiorillo <i>Nipponosaurus sachalinensis</i> の成長段階の骨組織学的評価 および系統位置の再検討	B10 m ルグラン ジュリアン・ 山田敏弘・池上直樹・西田治文 熊本県上部白亜系御船層群の 古植生・古環境の解明	C10w 蜂矢喜一郎・佐藤正・山 田敏弘・水野吉昭 手取層群有 峰層から見つかったジュラ紀ア ンモナイト Perisphinctes (Kranaosphinctes) matsushimaiのミクロコンクと みられる新標本
Al1 m 久保孝太・小林快次 獣 脚類恐竜・オルニトミモサウル ス類の走行能力適応 アークト メタターサルの力学的機能	B11 w 堀内由衣・入月俊明・山 田桂 新潟県上部鮮新統四十 日層の貝形虫分析に基づく古環 境の復元	 C11 w 相場大佑 北西太平洋 地域における Hyphantoceras (アンモナイト目:ノストセラ ス科)の系統分類学的研究
A12 m 犬塚則久 マンモスの復 元の問題点	B12 w 辻本彰・野村律夫・野牧 秀隆・藤倉克則 2011 年東北地 方太平洋沖地震の,三陸沖深海 底生有孔虫群集への影響	C12 w 松岡篤 放散虫をもち いた地質多様性の評価指標 (RADIX)の提案
A13 w 澤村寛・安藤達郎・新村 龍也 椎骨・脊柱の形態から展 開する束柱類の水生性	B13 w 北村晃寿・今井啓文・宮 入陽介・横山祐典・井龍康文 東京都三宅島における離水した 海洋固着生物化石の発見	C13w 鈴木紀毅・张兰兰 熱帯 指標の現生放散虫 <i>Tetrapyle</i> と その近縁分類群との区別

古脊椎動物の部(2)	古環境の部(3)	生層序・分類の部
座長∶林昭次	座長:山田桂	座長:御前明洋
A14 m 松井久美子・河部壮一 郎・遠藤秀紀・對比地孝亘・甲 能直樹 頭骨形態を指標とし た束柱類(哺乳類:?アフリカ 獣類)の水棲適応の定量的解析 -Paleoparadoxia梁川標本を例 に-	B14 w 宇都宮正志 海底地す べり堆積物の形成様式と岩体の 起源との関係-石灰質ナノ化石 を用いた検討例-	C14 m Prerna CHAND • Takahiro KAMIYA • Robert JENKINS Two new species from the family Pontocyprididae (Ostracoda) from turtle bones in Tsukumo Bay, Noto, Japan

【16:45-17:00】休 憩

【17:00-17:15】ポスター賞表彰式(ポスター会場付近)

【17:30-19:30】 夜間小集会「古生物学における X 線 CT スキャナーの活用」 (A 会場)

世話人:佐々木猛智・竹田裕介(東京大学総合研究博物館)

趣 旨:古生物学においても,産業用・医療用X線CTや放射光X線CT (SPring-8など)を用 いた非破壊分析が一般化しつつあり,得られた断層像から多くの成果がもたらされている. しかし,これらの装置を保有する機関は多くはない.また、高解像度のデータを得るには, 対象試料の物質やサイズを考慮した測定条件の微調整といったテクニックが必要である. 今回は,CTの利用やデータ取得の流れを紹介し,測定におけるノウハウと課題を話題提供 していただく.CT経験者だけでなく,興味を持っている未経験者にも有益な情報を共有し たい.

話題提供: 佐々木猛智(東京大学総合研究博物館)

佐々木理 (東北大学)

木元克典(海洋研究開発機構)

上杉健太朗(高輝度光科学研究センター)

中島保寿(東京大学大気海洋研究所)

山口龍彦(高知大学海洋コア総合研究センター)

6月11日(日)北九州市立自然史・歴史博物館 【9:30-10:30】一般講演 ロ頭発表 4(A~C会場)

A会場	B 会場	C 会場
古脊椎動物の部(3)	古生態・生態の部	タフォノミーの部
座長:松岡廣繁	座長:足立奈津子	座長:ロバート・ジェンキンズ
A15 w 木村敏之・長谷川善和・山岡隆信・大澤仁 広島県 庄原市の備北層群より広義の ケトテリウム類化石の産出	B15 w 小松俊文・浦川良太・前 川匠・高嶋礼詩・田中源吾・山 口龍彦・グエン・ダック・フォ ン 北部ベトナムのドンバン地 域に分布する上部デボン系のフ ラスニアン・ファメニアン境界 とケルワッサー事変	C15 m 根之木久美子・前田晴 良・田中源吾・岩井秀夫・遠藤 広光 中新統師崎層群産ハダ カイワシ科魚類化石の保存状 態
A16 w 古沢仁 札幌市南区の 後期中新世から大型セミクジラ 科化石の発見	B16 m 延原尊美・人見進太 郎・白鳥百合子 冷湧水性群集 の内外でタマガイ類による捕食 の頻度に差はあるか ~北海道 の始新統幌内層における検証 ~	C16m前田晴良・重田康成・ 唐沢與希 米国ネバダ州T/J境 界直上から産する Psiloceras の保存と産状
Al7 m 蔡政修 (Tsai Cheng -Hsiu) • Boessenecker, Robert W. The oldest known fin whale <i>Balaenoptera physalus</i>	B17 w 加藤萌・大路樹生・白井 厚太朗・鵜沼辰哉・田中健太郎 海水および食物が棘皮動物の 骨格内炭素同位体比に及ぼす 影響度の比較	C17 w 野村律夫・瀬戸浩二 汽 水湖における石灰質殻の溶解 に関する実験検証
A18 w 北川博道 埼玉県狭山 市産出アケボノゾウ全身骨格の 再検討	B18 m 土屋正史・野牧秀隆 嫌気環境下における底生有孔 虫 Ammonia sp. の適応機構	C18 m 吉田英一・村宮悠介 球状炭酸塩コンクリーションの 形成条件

【10:30-10:45】休 憩

【10:45-12:00】一般講演 ロ頭発表 5 (A・B会場)

A 会場	B会場
古脊椎動物の部(4)	古環境の部(4)
座長∶江木直子	座長:黒柳あずみ
A19_小泉明裕・松岡広繁 東 京西部の下部更新統平山層か ら産出した最古のアホウドリ上 腕骨	B19_西田梢・石村豊穂 炭 素・酸素安定同位体比分析シス テムMICAL3cを活用した微量海 水・生物体液試料の分析手法の 開発—Metabolic effectの解 明に向けて—
A20 w 松岡廣繁・廣田連・丸山 啓志・吹抜清民 ナウマンゾウ における外傷性橈尺骨癒合病変 の1例	B20 w 前田歩・藤田和彦・鈴木 淳・吉村寿紘・川幡穂高 大型 底生有孔虫を用いた水温プロキ シに関する報告

古脊椎動物の部(4)	古環境の部(4)
座長∶江木直子	座長:黒柳あずみ
A21 w 河村愛・張鈞翔・河村善也 台湾の第四紀小型哺乳類化 石-研究の現状と展望-	B21 w 林広樹・岩男修太・瀬戸 浩二 島根県大田市の鳴り砂 海岸,琴ヶ浜における有孔虫群 集
A22 w 河村愛・河村善也・波木 基真 沖縄県宮古島市ツヅピ スキアブ洞窟の完新世前期哺乳 類化石群集とそれに含まる世界 最小クラスのイノシシの意義	B22 w 古澤明輝・間嶋隆一・加 瀬友喜・林広樹・Yolanda M. Aguilar・Allan Gil S. Fernando フィリピン,レイテ 島北西部に分布する新第三系 の浮遊性有孔虫群集と古海洋
A23 w 丸山啓志・森本直記・塩 湯一希・角川雅俊・和田晴太 郎・高谷真樹・松岡廣繁 糞石 研究のための現生食肉類糞形態 標本の内部構造比較	B23 w 長谷川卓・Jenkins, R. G. • Haggart, W. J. • 後藤(桜井) 晶子・岩瀬優也・中瀬千遥 白 亜紀最寒期のメタン冷湧水炭 酸塩岩の新発見:北東太平洋に おける寒冷中層水の証拠

【13:15~14:15】 普及講演会 (化石友の会共催イベント) (A 会場) 「シーラカンスの研究 化石から現生まで - 白亜紀の絶滅をどのようにして生き延びたのか-」

- ・講師:籔本美孝(北九州市立自然史・歴史博物館)
- ・会場:北九州市立自然史・歴史博物館A会場
- ・定員:250名(申し込み不要)

****3. 発表方法及び機器についての注意事項など *****

<口頭発表をされる方へ>

- ・データの受け渡しは6月9日(金)午後から受付でおこないます.時間により混雑いたしますので,時間に余裕を持ってお越しください.受付にはWindows (PowerPoint 2013)とMac (PowerPoint for Mac 2011)を準備していますので(講演機器も同様です),各自で動作確認をお願いします.なおファイル名は本プログラムの番号を利用し「A05m_Kitakyushu (筆頭演者)」のようにしてください.
 - * 発表データの締切:10日(土)午前の発表は当日9:30,午後の発表は13:00まで,11日 (日)発表は当日9:15までに提出してください.

<u><ポスター発表をされる方へ></u>

- ・ポスターのサイズはA0(841 mm×1189 mm)が基準です.一発表につき,横900 mm×縦2000 mm程度の区画を用意する予定です.
- ・ポスターは6月9日(金)の13:00から貼ることができます.ポスターは11日(日)の12: 00までに各自撤収して下さい.詳しくは会場受付または会場係員までお尋ね下さい.
- ・ポスターの掲示用画鋲は会場で用意します.

会場及び発表方法・機器に関する問い合わせ先

開催実行委員:太田泰弘(北九州市立自然史・歴史博物館) メール:psj2017@kmnh.jp 電 話:093-681-1011(代表)

行事係:遠藤一佳(東京大学) E-mail: endo@eps.s.u-tokyo.ac.jp

<u>その他</u>

● ご来場について:学会開催期間中,建物入口の自動ドアは9:00 までは開きません.学 会参加者は学会開催期間中,博物館を無料で観覧できます.展示室入口の受付で,黄色 い名札をご提示ください.展示室の観覧時間は9:00~17:00 です.普及講演会は,学会 参加者に限らずどなたでも無料で参加できます.

● 懇親会について:本プログラム iii ページを参照してください.

● 昼食に関する情報:館内にはレストランはありませんが、隣接する大型ショッピングセ

ンター内に飲食店やお弁当の販売コーナーがあるのをはじめ,周辺には土日でも開店している飲食店が多数ありますので,お弁当は用意いたしません.なお,ショッピングセンター内の飲食店は,土日は混雑が予想されます.

- 館内での飲食・喫煙:飲食は休憩所やA~C会場でお願いいたします.展示室やポスタ ー会場での飲食はご遠慮ください.また,館内は全館禁煙ですので,お煙草は所定の喫 煙所でお願いいたします.
- お車での来場:博物館の有料駐車場をご利用いただけます.23:00~8:00 は入庫ができませんのでご注意ください.なお,事故等については責任を負いかねます.料金は普通車30分/100円で4時間以上は一律800円です.硬貨もしくは1,000円紙幣のみ使用可能です.
- 託児所について:博物館や小倉駅周辺に以下の託児施設があります.
 博物館周辺:みー先生のおうち(電話:093-681-7244/090-8660-2533)
 小倉駅周辺:北九州市立子育てふれあい交流プラザ 元気のもり(電話:093-522-4150)
 詳細は各自お問い合わせください.他にも市内には託児施設がありますので,各自お調べください.
- 盗難対策:最近,本学会を含め,学会開催中の盗難が報告されています.貴重品は各自 の責任で管理をお願いいたします.
- 写真およびビデオ撮影について:発表者の許可なく講演およびポスター発表を撮影する ことを禁止します.

<u>JR をご利用の場合</u>

<小倉方面から>

JR 鹿児島本線下り快速または各駅停車に乗車,スペースワールド駅下車,徒歩約5分 小倉駅から快速で約10分,各駅停車で約15分

(快速は時間帯によってスペースワールド駅に停車しないことがあります)

<博多方面から>

JR 鹿児島本線上り快速または各駅停車に乗車,スペースワールド駅下車,徒歩約5分 博多駅から快速で約60分,各駅停車で約90分

(快速は時間帯によってスペースワールド駅に停車しないことがあります)

*特急は上下線ともにスペースワールド駅に停車しません.

*博物館へのアクセス詳細は博物館 HP(http://www.kmnh.jp/)をご覧ください.

<u>お車をご利用の場合</u>

北九州都市高速『東田出入口』より車で約2分 北九州都市高速『枝光出入口』より車で約3分 博物館隣接の有料駐車場がご利用いただけます. (普通車)30分/100円,4時間以上は一律800円

懇親会会場(千草ホテル)へのアクセス

総会後,博物館→千草ホテルのマイクロバスが3台随時出ます. 直接向かわれる方は、八幡駅から徒歩約10分・博物館から徒歩約20分が目安です。 詳細及びホテル駐車場等については千草ホテルHP(http://www.chigusa.co.jp/) でご確認ください。 懇親会後は千草ホテルから八幡駅までマイクロバス3台が随時出ます。

古生物学会会場図

1階

- *C 会場(会議室)とその他の会場の移動は3階通路~会場図左端の階段または エレベーターをご利用ください.
- *博物館内各展示室・飲食可能な休憩スペース・授乳室・喫煙所等は、博物館内 に設置している館内マップ、パンフレット等でご確認ください。
- *博物館内の一般来館者用トイレは6ヶ所あり、多目的トイレもそれぞれに併設 しています(多目的トイレのうち2ヶ所は簡易ベットがありません).

Palaeontological Society of Japan

日本古主物学令 established in 1935

シンポジウム

魚類化石研究の現状と可能性

コンビナー: 籔本美孝・高桒祐司

日本における軟骨魚類化石の研究 -現状と展望-1 高桒祐司(群馬県立自然史博物館)²

軟骨魚類は,現生種では板鰓類(亜綱;サメ・エイ類) と全頭類(亜綱;ギンザメ類)で構成される分類群であ る.最近公表された系統解析によると,棘魚類との近縁 性が指摘されている(例:Janvier and Pradel, 2016).既知 の軟骨魚類の化石記録の多くは歯であり,古生代デボン 紀の記録が最古とされる.軟骨魚類の中でもサメ類の化 石,特に歯化石は古くから人間に知られていた.日本で は縄文晩期の遺跡からの出土例(後藤, 1972)のほか,江 戸時代には「天狗の爪」として本草学の研究対象だった

(例: 雲根志; 国立国会図書館デジタルコレクション).

日本産の軟骨魚類化石に関する初の古生物学的報告は 1898年で、伊豆半島・下田付近の第三系産化石が報告さ れた(石原,1898).これ以降、国内ではこれまでに石炭 紀以降の各紀から産出した軟骨魚類化石が知られている

(Uyeno and Yabumoto, 1995; 後藤, 2007など).

古生代の軟骨魚類化石としては、複数グループに属す る板鰓類や全頭類が、主に付加体中の石灰岩から見つか っている(後藤,2007).近年の数例(山岸・藤本,2011;高 桒,2011bなど)を含め、これらは後期古生代の遠洋域に おける軟骨魚類の多様性に関する重要な記録である.

中生代の記録は、三畳紀(加藤, 1995; 後藤ほか, 2010 など)やジュラ紀(後藤ほか, 1991; 高桒, 2011aなど)を 除けば、大部分が白亜紀のものである.前期白亜紀の軟 骨魚類化石に関しては、山中層群瀬林層(Barremian)の ネズミザメ類を主とする群集(高桒ほか, 2008)など、近 年産地が増加した(谷本・田中, 1998; 小原・山田, 2005 など).これらの産地では当時のアジア地域に固有だと 考えられるヒボダス類*Heteroptychodus*属が産出している.

後期白亜紀の記録としては、熊本県の樋の島層 (Santonian)から深海性の種類を含む軟骨魚類群集が報 告された(北村, 1997; Kitamura, 2013など).類似の群集 は、北海道の蝦夷層群の複数地点でも確認されており、 研究が進められている(金子ほか, 2014など).他にも岩 手県の久慈層群などでも産出がある(梅津ほか, 2013).

新生代古第三紀については、従来散点的な報告のみで あった始新世の群集が岡山県の浪形層から報告された (田中ほか,2006).続く漸新世のものでは芦屋層群山鹿 層(上野ほか,1984)の群集に関する生息環境が復元され た(Tomita, 2010).また芦屋層群よりやや古い杵島層群 からも軟骨魚類群集が確認されている.

新第三紀では糸魚川ほか(1985)の時点では殆ど情報 が無かった中新世の深海性軟骨魚類を含む群集の記録が、 2000年代以降増えている(高来,2007;鈴木,2012など). また第四紀のものも渥美層群高松層(川瀬・西松,2016) などいくつかの産地が追加された.

こうした中・新生代の日本における軟骨魚類の化石記 録は、パンサラッサ海西部もしくは北西太平洋域におけ る軟骨魚類の化石記録を代表するものである.時代ごと に軟骨魚類群集を復元し、それを国内諸地域あるいは北 米太平洋岸、南米太平洋岸、オセアニア地域などの各時 代の軟骨魚類化石群集と比較することで、太平洋域もし くはパンサラッサ海域西部における軟骨魚類群集の変遷 や多様性、分類群単位の分布域の変遷、あるいは海洋環 境の変遷との関係などを検討していく必要があり、その ためには今後の継続的な化石記録の蓄積が重要である.

これらの軟骨魚類の化石は、時として一体分の歯がま とまって化石化した歯群として見つかり、軟骨である顎 弓の一部などを伴うこともある.日本は、この歯群が比 較的多く、ムカシホホジロザメやハスタリスザメ(上野 ほか、1983;上野ほか、1990)の復元事例がある.こうした 歯群を研究することで、歯の並び方(歯列)や体表の楯 鱗の形態など、その絶滅種の正確な復元が可能となり、 系統進化や古生態に関する様々な情報が期待される.

こうした国内産標本は勿論であるが、1990年代以降の 大学博物館の充実、地方での自然科学系博物館等の設置 により、ブラジルやレバノンの白亜紀軟骨魚類(例:城 西大学水田記念博物館大石化石ギャラリー、北九州市立 自然史・歴史博物館など)に代表される海外産の保存の 良い軟骨魚類化石標本が様々な研究機関に収蔵され、そ れらの研究も可能となっている.また、サメ類化石研究 の第一人者G.R.Case氏によって構築されたコレクション (神奈川県立生命の星・地球博物館)は、国内産標本を 研究する際に参照できるものとして重要である.

¹ Studies of chondrichthyan fish fossils in Japan - current status and future prospects -

²Yuji Takakuwa (Gunma Museum of Natural History)

「水族館古生物学」の展望1

冨田武照(沖縄美ら島財団総合研究センター)²

魚類の進化を解明するうえで現生種と化石種の研究は 車の両輪の関係にある.しかし,魚類をはじめとする水 棲生物を野外で観察するためには彼らの生息する水中に 赴くことが必要となり,データの収集には大変な時間と 労力が必要となる.そのなかで,水族館は,大学や一般 の研究所の設備では飼育ができない大型魚類を陸上で観 察できる稀有な施設であり,魚類研究においてきわめて 重要なフィールドとなりうる.

演者は学生時代から10年以上にわたって,沖縄美ら海 水族館で化石種を含む軟骨魚類の機能形態学的,進化学 的研究を行ってきた.今回,過去に行った研究を総括す るとともに,現在進行中の研究について紹介する.

化石軟骨魚類の食事法

魚類の摂食行動は、餌を水ごと吸い込んでとらえる「吸 引摂食」と、すばやく体を前方に移動させ餌を捕える「突 進摂食」に大きく分けられる.前者は、おもに底生性の 魚類に多くみられ、後者は遊泳性の魚類に多くみられる. 演者は、軟骨魚類の舌軟骨に着目することで化石軟骨魚 類の摂食行動が、どちらのタイプに属するのか復元を試 みた.

沖縄美ら海水族館で21種類のサメ類について頭部のC T撮影を行い,舌軟骨(角舌軟骨)の力学強度を計算し た.その結果,吸引摂食を行うサメ類の舌軟骨は,突進 摂食を行うサメ類に比べて圧倒的に曲げ応力に対して強 いことが明らかとなった.サメ類は舌軟骨を強く引き下 げて口腔内の空間を拡げることで,水を吸引する力を発 生させる.つまり,吸引摂食を行うサメ類は,強度の高 い舌軟骨を持つことで,強い吸引力を発生させていると 考えられる.

この指標を化石軟骨魚類に適用することで,現生板鰓 類の外群にあたるヒボダス類が吸引摂食を行うこと,ク ラドセラケやクテナカンタスに代表される古生代の軟骨 魚類の多くが突進摂食を行うことが明らかとなった.さ らに系統樹から軟骨魚類の摂食行動の進化を復元すると, 現生サメ類は吸引摂食を行う祖先から進化したこと,突 進摂食から吸引摂食への変化が少なくとも三回起こった ことなどが明らかとなった.近年,同様の指標が軟骨魚 類だけでなく,鯨類や海生爬虫類にも適用可能であるこ とが分かり,魚竜の摂食行動の推定に用いられた.

サメの胎仔は有顎類の進化を解き明かすか?

発生学的アプローチによりサメ類から有顎類の初期進 化を解明する試みが頻繁になされている.その一方で, サメの胎仔が有顎類の起源を知るうえで適切なモデルで あるのかという点については近年疑問視する声も多い.

例えば外鰓(鰓孔の外側に形成される繊維状の鰓)は、 軟骨魚類の胎仔やアミアなど一部の硬骨魚類の稚魚に見 られ、原始的な鰓構造である可能性が指摘されてきた. しかし、なぜ外鰓が発生初期にしか作られないのか、な ぜ外鰓の発達が一部の分類群に限られるのかなど不明な 点も多い.

演者は水族館で飼育されているトラザメの胎仔の呼吸 行動を観察し、口腔ポンプ(水を口から吸いこみ鰓孔か ら出す機構)の発達と、外鰓の発達が密接に関連するこ とを明らかにした.つまり、口腔ポンプが完成するまで は、鰓孔の内部に鰓を形成しても十分に機能しないため、 鰓孔の外に外鰓を形成すると考えられる.事実、外鰓は、 胎仔が口腔ポンプを開始すると速やかに退縮する.胎仔 の形態には卵殻や子宮内で生き抜くために二次的に獲得 されたものが含まれている可能性があり、胎仔の形態の 意味は機能形態学的な視点で精査される必要がある.

「水族館古生物学」のこれから

水族館の飼育技術は日々向上しており、例えば沖縄美 ら海水族館では、水中エコーによる胎生サメ類の妊娠診 断が日常的に行われるようになってきている.これらの 結果により、以前には観察できなかったサメ類胎仔の子 宮内での呼吸行動が明らかとなり、卵生から胎生への進 化過程の解明に役立っている.将来的には、水族館で明 らかとなった知見と化石からの知見を統合することで、 魚類進化の解明につなげたいと考えている.

 Aquarium: A new field for paleontological study
 ²Taketeru Tomita (Okinawa Churashima Research Center, Okinawa Churashima Foundation)

硬骨魚類化石の研究 – 日本の博物館所蔵の主な魚類化石と研究の可 能性について-¹

籔本美孝(北九州自然史博)²

学名が与えられた日本初の硬骨魚類化石は1919年にア メリカの魚類学者 D. S. Jordanが記載した長崎県壱岐の *Iquius nipponicus*で,ホロタイプはCalifornia Academy of Sciencesに保存されている.日本人によって初めて記載さ れた硬骨魚類の化石は鹿児島県種子島の更新統から産出 した*Clupea tanegashimaensisとPercichthys chibei*である (Saheki, 1929).前者のホロタイプは東京大学総合研究博 物館に収蔵されている.その後,日本各地から多くの硬 骨魚類の化石が報告され,新種として記載された化石硬 骨魚類は70種近くに及ぶ.さらに目や科,属まで同定さ れている魚類化石が多数報告されており,多くは国内の 博物館や大学博物館,資料館などに保存されている.

中生代では、北九州市の前期白亜紀の脇野亜層群産淡 水魚類化石群がある. 1979年に*Diplomystus kokuraensisと D. primotinus*の2種が記載され(Uyeno, 1979), これまで に18種に学名が与えられている. 3つの層から異なる魚類 化石群が産出しており、いずれも固有種であるが、中国 南部の魚類化石群に類似性が認められる(Yabumoto, 1994, 2006).

石川県と岐阜県の手取層群からも前期白亜紀の淡水魚 類化石が産出している.これまでに少なくとも5種が確認 されており, Tetoriichthys kuwajimaensis と Sinamia kukurihimeの2種が記載されている(Yabumoto, 2008, 2014).前者は世界最古のアロワナ類であり,このグル ープがアジア起源である可能性を窺わせる.後者に最も 近縁と考えられるのは熱河生物群のS.liaoningensisである. 海水魚類化石では北海道や九州から保存状態の良い化

石が産出している. 新生代では,硬骨魚類化石は日本各地の中新統から報

告されている. 壱岐からは前述のコイ科魚類 *I.nipponicus* の他に3種の淡水魚類が記載されており,この他に少なくとも15種の魚類化石が産出している(林,1975). 中国からも同時代の淡水魚類化石が産出しており,中新世の日本列島と大陸との関係を考える上でも、また東アジアの淡水魚類の進化を考える上でも重要である. 標本は国立科学博物館や福井県立恐竜博物館,北九州市立自然史・歴史博物館など国内のいくつかの博物館に収蔵されている.

海水魚類では、鳥取県鳥取市国府町の普含寺泥岩層産 魚類化石群がある. Spirinchus akagii Uyeno and Sakamoto 1999やEuleiognathus tottori (Yabumoto and Uyeno, 1994)な ど7種が記載されている.中新世の海水魚類化石でこれだ け多くの種が記載されているところは日本ではここだけ であり、太平洋西部の浅海性魚類相の起源を考える上で 重要である.標本は鳥取県立博物館や福井県立恐竜博物 館などに収蔵されている.この他に愛知県知多半島の師 崎層群から多数の深海性魚類化石が産出している.

更新世の淡水魚類は大分県玖珠盆地からサケ科1種,コ イ科3種,ハゼ科2種が産出している.現生種と同種と考 えられていたが,現生種とのわずかな違いが認められ(上 野ほか,1979,2000),現生種の直接の祖先である可能性 も指摘されている(宮田ほか,投稿中).今後,現生種と の詳細な比較研究によって日本の現生淡水魚類の起源と 変遷について多くの知見がえられるものと期待される.

更新世の海水魚類化石は種子島の西之表市から前述の 2種のほかに20種を越える魚類化石が確認されている(上 野・籔本,1999).新たに発掘された標本とC. tanegashimaensisのホロタイプを検討した結果,本種はニ シン属(Clupea)ではなくシナドロクイ属(Clupanodon) に属することが判明し,更新世の種子島は現在よりも温 暖な海洋環境にあったと考えられている(Yabumoto et al., 2005).本魚類化石群は現生の浅海性魚類の直接の祖先 を含むと考えられることからインド-太平洋の浅海性魚 類相の成り立ちを考える上で重要である.保存状態のよ い標本は種子島開発総合センター鉄砲館に展示されてい るほか,ほとんどの標本は北九州市立自然史・歴史博物 館に保管されている.

海外の標本では、国内の博物館に収蔵されているブラ ジルの魚類化石やインドネシア産化石シーラカンスの研 究など、海外の保存状態の良い多数の標本が国内の博物 館に収蔵されるようになり研究が行われている.

²Yoshitaka Yabumoto (Kitakyushu Mus. Hat. Hist. Hum. Hist.)

¹ Studies of osteichthyan fish fossils deposited in Japanese museums and their potential

第四紀淡水魚類化石の研究-玖珠盆地産淡水魚類化石を例に-1 宮田真也(城西大学 大石化石ギャラリー)²

純淡水魚は分散・種分化が陸水系に依存する.そのため自然分布域や魚類相,種分化は地質時代のイベントも密接に関連するものと予想される.近年,分子系統樹に分岐年代を当てはめることで淡水魚類の分散と地史イベントの関連性について議論が活発になってきた.それに伴い化石記録の重要性が注目され,現生種と化石種との系統関係に関する議論も行われつつある.また,化石は空間軸と時間軸の情報を持つことから現生魚類研究のみでは見えてこない進化史や魚類相の変遷を追うことが可能である.

近年では新第三紀の淡水魚類化石の系統分類学的研究 及び再検討がおこなわれ化石記録の情報が増えつつある. しかし,第四紀の淡水魚類化石は産出する化石が断片的 なものが多いこと,現生種と変わらないことから注目さ れにくかった.

しかしながら、東アジアにおける第四紀、特に更新世 では氷河性海水準変動による陸水系の分断及び接続があ ったと考えられるため、現在と全く同じ淡水魚類相を形 成していたとは考えにくい、そのため、第四紀の淡水魚 類化石は新第三紀と現在の淡水魚類相形成史や進化をつ なぐうえで無視できないものとなる、そこで、演者は現 在の日本の第四紀の淡水魚類化石の研究の現状と今後の 課題について紹介する.

日本における第四紀淡水魚類化石の研究

日本における主な淡水魚類化石産地は後述する玖珠盆 地のものを除くと以下の通りである.

 ・古琵琶湖層群:ナマズ属 Silurus, ウグイ亜科
 Leuciscinae,タナゴ亜科 Acheilognathinae, クルータ
 一亜科 Cultrinae,クセノキプリス亜科 Xenocypridinae, コイ亜科 Cyprininae, カマツカ亜科 Gobioninae.

・静岡県谷下:ディスティコドン属 Distoechodon, フ ナ属 Carassius, コイ属 Cyprinus, ナマズ属.

・大阪層群:ワタカ屬 Ischikauia, ディスティコドン
 属、ダニオ亜科 Danioninae,フナ属,コイ属,ニゴイ
 属 Hemibarbus, ギバチ Pseudobagrus tokiensis, ギギ
 P. nudiceps.

 ・栃木県塩原市塩原層群:ウグイ属Tribolodon,サケ科 Salmonidae. ほとんどの淡水魚類化石産地からはコイ科の咽頭歯や ナマズ科の背鰭棘のみなど断片的な化石が報告されてい る.特にクセノキプリス亜科,ディスティコドン属魚類 は日本列島には現在生息していないが,アジア大陸に広 く分布している.大阪層群から報告されたギバチは,現 在は神奈川県・富山県以北に自然分布していることが知 られている.以上のような断片的な化石記録からでも更 新世の日本列島は現在と異なった淡水魚類相であったこ とがわかる.

玖珠盆地產魚類化石

大分県玖珠盆地の野上層からはほぼ全身が保存された 淡水魚類化石が報告されており、現生種と種レベルでの 比較が可能である点で東アジアの淡水魚類化石産地とし て特に重要である.

野上層からはこれまでサケ科のビワマス類似種 (Oncorhynchus masou subsp.),コイ科のニゴイとコウ ライニゴイの中間型(Hemibarbus barbus x labeo),カ ワムツ類似種(Zacco cf. Z. temminckii),タナゴ属の 一種(Acheilognathus sp.),ハゼ科のヨシノボリ (Rhinogobius brunneus)とゴクラクハゼ(R. giurinus) の3科5属6種が報告がされており,更新世の状態の良 い淡水魚類化石がこれほど多くの種を伴って産出する例 はほかに見当たらない.先行研究からハゼ科に関しては 現生種に同定されるものと考えられている.一方,サケ 科やニゴイ属化石に関しては現生種と当てはまらないこ とが予察的な研究から示されている.また,カワムツ類 似種に関しても筆者の国内外の現生種の系統分類学的研 究により絶滅種である可能性を示唆している.

そのため、玖珠盆地で産出するような状態の良い第四 紀淡水魚類化石は東アジアにおける現生淡水魚類の進化 や起源を考察する上で鍵となる.これらの研究を進めて いくためには近縁な分類群の現生種の詳細な骨学的研究 が必要となる.

¹ The study of Quaternary freshwater fishes based on freshwater fish fossils from the Kusu Basin, Kyushu, Japan
²Shinya Miyata (Josai University)

魚類における分岐年代推定と多様化プロセス解析

昆 健志 (琉球大・研究企画室)²

約5億5千万年前に尾索動物(ホヤ類)と分岐して誕生 した脊椎動物のうち、いわゆる「魚類」はその脊椎動物 から四肢動物を除いたグループである。魚類は世界中の 水圏に約3万種がいるとされ、その種数は脊椎動物全体の 半数を占めることから、この魚類の多様化プロセスを理 解することは脊椎動物の進化を考える上での重要な問題 の一つである。本講演では、魚類における多様化プロセ ス解析についての概要と研究例を紹介する。

分子系統解析の発展

多様化プロセスを理解する上で,信頼度の高い系統関 係を推定することが重要である.20世紀末になり,DNA 塩基配列の解析技術が発展するにつれて,分子系統解析 が普及してきた.もちろん,古い化石などしか試料がな い場合はDNA情報を得ることが難しく,分子系統解析が 適用できないことも多い.しかしながら,近年,次世代 シーケンサーを用いることにより,ネアンデルタール人 などの化石人類を含む分子系統解析も可能となっている.

その分子系統解析も、以前はDNAのごく一部のみが用 いられてきたが、今ではゲノム全体を使った研究も増え てきた.これにより膨大なデータ量の系統情報が得られ ることになったが、強力な統計的方法やモデル開発の進 展、コンピューターの性能向上により、信頼度の高い系 統推定が日常的におこなうことができるようになった.

分子による分岐年代推定

いつ多様化が起きたかを推定するには、信頼度の高い 系統推定に引き続き、その系統樹を基にした分岐年代推 定が必要である.ただし、以前から化石より分子による 推定の方が古い値となる不一致があった.その一因とし て、化石データが不十分(種の形態的特徴獲得より遺伝 的な隔離の年代が先)であるということと、分子による 年代推定法に欠陥があることが考えられている(Yang, 2006: Computional Molecular Evolution, Oxford).しかしな がら、最新のベイズ年代推定では、様々な情報(特に分 子と化石データの両方)を解析に用いることができ、現 時点では、化石情報が不確実であることを解析に反映で きる唯一の方法とされている.さらに信頼度を高めるた めには、化石がどのように堆積・保存され、そしてサン プリングされるのかを示した確率モデルが必要であると 考えられている(Inoue *et al.*, 2010: *Syst. Biol.*, 59, 74-89). ベイズ法による多様化プロセス解析

多様化プロセスを明らかにする上で、著しく多様 化率(種分化率 - 絶滅率)が変化したタイミングを 知ることが重要でなる. Nee *et al.* (1992: *PNAS*, 89, 8322–8326) 以来, この分野の研究が発展したが、最 近ではベイズ法による解析もおこなわれている (Rabodsky, 2014: *PLoS ONE*, 9, e89543), この方法で

は、不完全な系統樹の補正(偏りの補正)ができる ようになり、系統樹上に信頼度の高い多様化率の変 化をマッピングすることができるようになった.こ の方法によって、胎生魚の形質獲得と多様化率の関 係を解析した研究例がある(Helmstetter *et al.*, 2016: Nat. Comm., 7).

ハゼ亜目魚類での実践研究例

魚類のなかでも非常に多様なグループ(2100 種以 上)であるハゼ亜目魚類について、以下のように解 析した: (1)主要な系統を網羅した 125 種における ミトコンドリア DNA の全長塩基配列(14,743bp)と 3 つの核遺伝子の部分塩基配列(計 3,297bp)を用い た系統解析, (2)さらにダウンロード配列を加えた 500 種近くの大規模な系統解析, (3)化石による制 約を用いた分岐年代推定, (4) ベイズ法と最尤法に よる多様化率とハビタットの変遷の推定,

これらの結果を総合すると、65Mya 前後(K/Pg 境 界付近)におけるツバサハゼ科+ドンコ科クレード とその他のハゼ亜目魚類の分岐が最も古く、初期の ハゼ亜目は汽水性であった可能性が示唆された.ゴ ビオネルス科とハゼ科+スナハゼ科は55Mya 前後に 分岐し、初期のハゼ科も汽水性であった可能性が高 かった.また、気候が温暖だった 50Mya 前後には、 ハゼ科において海を中心とした生活への移行と多様 化が始まったことが推定された。今回のデータセッ トでは、各系統における主要な多様化速度の加速が5 つの分類群で検出された。

¹Estimation of diversification time and process of the fishes ²Takeshi Kon (University of the Ryukyus)

Palaeontological Society of Japan

学術賞受賞記念

特別講演

太平洋域における厚歯二枚貝相の古生物地理学上・進化史上の意義¹ 佐野晋一(福井県立恐竜博物館)²

厚歯二枚貝(nudists)は異歯亜綱ヒップリテス目 (Hippuritida)を構成する二枚貝の1グループである.後 期ジュラ紀(Oxfordian中頃)から白亜紀末にかけて、テ チス海地域を中心に繁栄し、後期白亜紀には炭酸塩プラ ットフォームの主役となったことで知られる.非常に大 型になるものがあり、また、著しい不等殻で、蓋付きの 湯呑みや巻貝、哺乳類の角に似るものなど、二枚貝とし ては特異な形態を持つ点でも注目される.19世紀以降、 現在に至るまで、地中海地域やカリブ海地域を中心に、 厚歯二枚貝に関する数多くの研究が行われてきた.最近、 殻の鉸歯と閉殻筋板(myophore)の配列様式に注目する ことによって、従来一まとめにされていたグループ内に 幾つかの単系統群が認識されるようになり、厚歯二枚貝 の系統関係の再構築が進められつつある.この成果は、

Treatise on Invertebrate Paleontology Part Nの改訂版に反映 され、厚歯二枚貝に関連する章がオンライン出版され始 めている(例えば、Steuber et al., 2016; Skelton, 印刷中).

日本における厚歯二枚貝研究は、Yabe and Yehara (1913) による岩手県宮古地域からの産出への言及、Yehara (1920)による*Horiopleura yaegashii*の記載、Yabe and Nagao (1926)による、本種を模式種とする*Praecaprotina*の提唱 に始まり、100年以上の歴史が存在する.現在では、北海 道中央部、宮古層群、山中地溝帯、赤石山地、紀伊半島 西部、四国、九州など、各地の上部ジュラ系~下部白亜 系から厚歯二枚貝化石の産出が報告されている.しかし、 これらの化石記録は、一般に化石の保存が悪く、かつ属 や種の標徴がきちんと認識・記載されていなかったため、 同定や時代論などが疑問視され、古生物地理の議論でも 温帯域における例外的な産出例として扱われるなど、世 界的にはほとんど注目されていなかった.

演者は、共同研究者とともに、日本やフィリピン、カ リフォルニア、海山頂の石灰岩などから産する厚歯二枚 貝に関して、野外調査での採集標本や博物館収蔵標本の 観察を行い、後期ジュラ紀〜前期白亜紀の太平洋域の厚 歯二枚貝相の解明に努めてきた.この結果、太平洋域に は、厚歯二枚貝の古生物地理や進化史を考える上で重要 な記録が存在することがわかってきた.本講演では、研 究により明らかになってきた幾つかのトピックを紹介し、 太平洋域の厚歯二枚貝研究の今後の発展の一助としたい. 1) 進化史初期段階での汎世界的分布

後期ジュラ紀〜白亜紀最初期の鳥巣式石灰岩からの *Epidiceras や"Valletia" auris* form (最古の非巻貝型厚歯二 枚貝)の産出は、厚歯二枚貝が進化史のかなり初期の段 階から汎世界的に分布を広げていたことを示す. 2)太平洋を越える分布拡大ルート

カリブ海要素のカプリヌロイデア科の日本からの産出 は、前期白亜紀後半にも太平洋を越える分布拡大ルート が存在したことを示す.これは地中海地域に栄えたイク チオサルコリテス科のカリブ海地域起源説を支持する. 3)絶滅イベントの時期の避難所

カプリナ科のPachytraga は、地中海地域において、 Hauterivian と前期Aptian の産出記録はあるが、Barremian の記録が知られていなかった。日本からのPachytraga? tanakahitoshii の産出はこの空白を埋めるものとなる。同 科のCaprina も後期Aptian~中期Albian の化石記録を欠 くが、太平洋域からの、地中海地域の種と酷似する後期 Albian のCaprina の産出は、Aptian 中頃の絶滅イベント の際に太平洋が避難所の役割を果たしていたことを示唆 する。後期Aptian に、地中海地域に匹敵する、多様な厚 歯二枚貝が日本に産することもこの考えと整合的である。 4)独自の生物地理区「太平洋区」の成立

Albian のポリコニテス科は、地中海地域の2属に対し、 太平洋周辺域には、固有属だけでも少なくとも7属が認 識されており、太平洋域が多様性の中心地だった可能性 がある. ラディオリテス科にも、後期Aptian~Albianの西 南アジア~太平洋地域固有属(*Auroradiolites*)が存在し、 本地域に新たな生物地理区が成立していたと考えられる. 5)後期白亜紀に繁栄した「科」の「ゆりかご」

後期Albianのフィリピン・セブ島と拓洋第2海山から記 載されたポリコニテス科*Magallanesia* は左(上) 殻に単 純な溝状構造(canals)を有しており,後期白亜紀に栄え たプラギオプチクス科がポリコニテス科に由来したとい う考えを支持する.また,太平洋域の後期Albianのポリコ ニテス科には後期白亜紀に繁栄したヒップリテス科の特 徴が既にモザイク状に出現している点でも注目される.

¹Rudist bivalves in the Pacific : their palaeobiogeographical and evolutionary implications

²Shin-ichi Sano (Fukui Prefectural Dinosaur Museum)

Palaeontological Society of Japan

一般講演

口頭発表

A 会場	A01-A23
B 会場	B01-B23
C 会場	C01-C18

ポスター発表 P01-P43

高校生 ポスターセッション HP1-HP2

形態データの 3D 化と古生物学への応用¹

佐々木猛智²・前川 優²・竹田裕介²・厚芝真希³・Chong Chen⁴・野 下浩司 ^{5.6}・上杉健太郎 ⁷・星野真人 ⁷ (²東大·総博 ³東大·理 ⁴海洋 研究開発機構 ⁵JST さきがけ⁶東大·農 ⁷高輝度光科学研究センター)

近年、形態学の分野では断層撮影を通じた3D化の研究が進んで いる。本発表では、現在我々の研究グループが行なっている形態の 3D化の例を紹介する。(1) X線マイクロ CT を用いた撮影実験:CT 装置の撮影パラメータを変えながら、サンプルの設置方法等を試行 錯誤し、撮影を行なっている。その結果、貝殻は一部のアーティフ ァクトの出やすい形状を除いて、通常は十分な質の画像が得られる ようになってきた。ノイズを軽減するためには、金属球を用いた位 置補正と多数回撮影による平均化処理が有効である。(2)タイプ標本 3Dデータベース:佐々木が管理する化石貝類のタイプ標本のデータ 化を進めており、データベースに追加する作業が進行中である。 (3)SPring-8における撮影実験:通常型のCT では、小型標本は撮影 に時間がかかるため作業効率が悪い上に、発熱によるノイズが生じ やすい。そこで、放射光X線CT装置による撮影実験を試みたところ、 短時間で鮮明な像が得られることが確認された。シンクロトロンは

A02

海生貝形虫の精子形態の多様性と受精過程での精子変形¹ 神谷隆宏(金沢大・自然)²・西田翔(金沢大・自然)² ・スミスロビン(琵琶湖博・生態)³

動物界最長といわれる淡水生貝形虫 Cypris 上科の巨大精子に関 する研究が近年進むなか,海生貝形虫 Cythere 上科の精子研究は過 去 30 年間手付かずであった.本研究では Cythere 上科に属する *Xestoleberis* 属 7 種の精子を観察した結果,精子外形が属内に予想 される範囲を超え異様なほど多様であることが判明した.この事実 は精子形態が種の生殖的隔離に寄与している可能性を示す.さらに *X. hanaii* を例にとり,受精卵誕生までの過程における精子形態を 追跡した.貝形虫の精子はオスの精巣内で成熟し,交尾によりメスに 受け渡された精子はいったんメスの貯精嚢に貯蔵され,卵の成熟に 合わせてメスの殻内で受精し,受精卵の誕生に至ると考えられてい た.本研究では,各段階の精子形態を飼育実験を通して観察した.結 果,受精直後の卵を解剖してみつかったのは,頭部のみとなった精 子であった.またメスの貯精嚢内でみつかる精子の約 99%が頭部の みの精子であった.さらに精巣から取り出した精子を人工海水の中 で観察すると 28 時間以内に尾部が溶解し,頭部だけとなることが判 利用機会が限られている点に制約があるが、優れた結果が得られる。 (4)3D データを用いた定量化:3D 化が最も効果を発揮する課題のひ とつは形の定量化である。様々な部分の長さを容易に計測でき、さ らに、立体構築ソフトを用いて領域指定をすれば、個々の領域の体 積比を算出することができる。(5)今後の課題:今後はCT 装置の機 能向上による解像度改善だけでなく、撮影後のデータの処理を如何 に効率化するかという点が課題である。3D 化のためのソフトウェ アには様々なものがあり、それらを効率的に使い分けることが必要 である。

¹3D digitalization of morphological data and its application to Paleontology. ²Takenori Sasaki, ²Yu Maekawa, ²Yusuke Takeda, ³Maki Atsushiba, ⁴Chong Chen, ^{5,6}Koji Noshita, ⁷Kentaro Uesugi and Masato Hoshino (²Univ. Mus., Univ. Tokyo, ³ Fac. Sci., Univ. Tokyo, ⁴JAMSTEC, ⁵JST PRESTO, ⁶ Fac. Agric., Univ. Tokyo, ⁷JASRI)

明した.一般的に精子形成において精細胞から精子に成熟する際に 不要な細胞器官は切り離される(Fawsett et al., 1971)ことから, *X. hanaii*のオスの精巣内の精子は成熟途中のものであり,尾部と 勘違いされていた不要な部分が付着していたことになる.核とミト コンドリアは精子の頭部に集中して存在し,これらが卵に全入し吸 収され,卵が成長していく.これらの研究成果は,Cythere上科の精 子は頭部と尾部からなる(Wingstrand, 1988)という従来の解釈を 覆し,真の精子は従来の理解でいうところの頭部からなること,ミ トコンドリアの父性遺伝が*Xestoleberis*属を含むCythere上科で生 じている可能性を示した.貝形虫の解剖学的特徴,生活様式,多様 度は上科ごとに大きく異なるが,精子形態の多様性とその受精様式 もまた大きく異なる.Cythere 上科貝形虫の現生種は10,000種を超 え,その多様化度は他の上科と一線を画す.その要因の一端が精子 形態の多様性と特異な受精様式にあることが想定される.

¹Morphological diversity in marine ostracod sperms and the sperm metamorphosis in the process of fertilization ²Takahiro Kamiya (Kanazawa Univ.), ²Sho Nishida (Kanazawa Univ.), ³Robin Smith (Biwako Museum)

A03

四足歩行動物の肩甲骨の理論上の最適位置に体幹の加速度ベクトル と抗重力筋の収縮力が及ぼす影響¹ 藤原慎一(名大・博)²

四肢動物の体幹と肩甲骨は関節を介さず、主に筋肉を介してつな ぎとめられている.そのため、軟組織が残りにくい化石種の肩甲骨 の位置の復元は、大きな課題として残されている.

四足歩行性の種では、これらの抗重力筋が肩甲骨から体幹を吊り 下げて体重を支える.このことに注目して作られた三次元筋骨格モ デルと実際の肩甲骨の位置を比較すると、水平に保った体幹に鉛直 下方向への重力加速度がかかる場で前肢を片側だけ用いた場合での 体重支持では、抗重力筋の作用で体幹が回転して不安定にならない ような位置に肩甲骨が置かれていることが示されている.その条件 を満たす肩甲骨の位置は体幹の前位かつ正中寄り、そして股関節と 体幹の重心を通る直線よりも上であり、これは現生四足歩行動物で 普遍的である.しかし、四足歩行動物の肩甲骨の位置の普遍性を確 かめるためには、体幹の加速度ベクトル(向き、スカラー量)や、 抗重力筋の各筋束の収縮力の比といったパラメータが、姿勢維持に 適した肩甲骨の位置に与える影響についても検証する必要がある. 本研究では、ネコの筋骨格モデルを用いて、重心の加速度ベクト ルの体軸に対する傾きやスカラー量を変えた場合、そして、抗重力 筋の各筋束の収縮力の値を部位ごとに変えた場合で肩甲骨の最適位 置を見積もった.そして、これらの条件を変えた場合、体幹を水平 に保った場合で予想される肩甲骨の最適位置から大きくずれるかど うかを検証した.

検証の結果,上記パラメータを変えても,前肢で体幹を支える最 適な肩甲骨の位置に大きな影響を及ぼさないことが示された.この 位置は生体の肩甲骨の位置とも矛盾せず,四足歩行性の四肢動物の 肩甲骨の位置の普遍性をサポートする結果となった.このことから, 四足歩行性の絶滅四肢動物においても,体幹に対する肩甲骨の位置 は普遍的だったと考えられ,今後,より確からしい根拠に基づいて 化石種の復元を行っていくことができると期待される.

¹ The effects of the acceleration vector of the trunk and the contractile force of the anti-gravity muscles in estimating the scapular position of quadrupedal tetrapod ² Shin-ichi Fujiwara (Nagoya Univ. Mus.)

性選択は貝形虫殻の性的二型を発達させたか?¹ 山口龍彦(高知大)²・本田理恵(高知大)³・松井浩紀(東北大)⁴・ 西 弘嗣(東北大)⁵

化石標本を利用した性差の進化の研究例は限られている.微小甲 殻類の一種である貝形虫には成体の殻の外形に顕著な性的二型が認 められる. 殻長(L)と殻高(Ѩの比(H/L比)に顕著な性差があり,一 般にメスのH/L比はオスより大きい.Abe (1990, Global Events and Ostracoda, p. 175–185)は貝形虫の性的二型は、それぞれの性への選 択圧の強化によって発達するという仮説を立てた.この仮説が正し ければ、外形の性差は変化し選択圧と相関を示す.この仮説を検証 するため、北西大西洋の IODP Site U1407 から産出した 62~57 Ma の深海性貝形虫 Krithe dolichodeira Bold のオスとメスのH/L比お よび性比(個体群内のメスの比率)の時系列変化を評価した.性選択 は100 万世代に渡り影響すると考えられる(Lande, 1980, Evolution, 34, 292–350)ため、進化的時間スケールでの評価には化石群の分析 が適している.現生する貝形虫の成体の性比は最終脱皮後のオスの 死亡率を反映している(Kaniya, 1988, Senkenberg. Leth., 68, 337–345 など)ため、化石群の性比を長期的な時間スケールでのオス

A05

アンモノイドの体房部の体積比と外殻の比表面積の関係¹ 生形貴男(京大・理)²

アンモノイドが遊泳性ないしは遊泳底生の生活型であったなら, 浮力を大きく上回る重力が体に作用する状況は好ましくなかったは ずである.アンモノイドの個体全体の比重は, 殻物質と軟体部, カ メラル液, 及びガスの体積比で決まる. 殻物質の体積比は外殻や隔 壁の比表面積と殻の厚さで決まるが,中でも外殻の比表面積は,大 きな効果を持つ上に,実標本から近似的に見積もることが比較的容 易である.一方,軟体部の体積比は,直接計測できないものの,体 全体の比重に大きく影響する. 比表面積が大きくて体が重くなりや すい巻殻形状を持つ種も少なからず実在したが,軟体部を小さくす ることでそうした非効率な殻形状を実現したのかもしれない.

そこで本研究では、形状効果による殻の重くなりやすさと軟体部 の大きさの間にトレードオフの関係があったかどうかを検討するた めに、軟体部の相対サイズの代替指標として、巻殻全体に対する体 房部の体積比に着目し、これと外殻の比表面積との関係を調べた. 殻口まで保存されている個体の実標本や文献写真から、体房部の角 度長と Raup パラメータの値を計測し、これらの計測値に先行研究

A06

モロッコの上部白亜系より産出した Manemergus anguirostris (長頚竜亜目・ポリコティルス科)の新標本¹

中谷大輔(佐賀県立宇宙科学館)²

近年, 佐賀県は三重県在住の十津守弘氏から多くの海棲動 物化石の寄贈を受けている. その中に, とても保存状態の良い 長頚竜類化石(SSSMF-MT-033)が含まれていた.

本標本は、モロッコ王国エルラシディア県のグルミマに分 布する上部白亜系のAkrabou層より産出したとされ、頭骨と下 顎骨、頚椎、肩帯、腰帯、左右の前肢で構成される. Akrabou 層 より産出する脊椎動物化石は、石灰質ノジュールに含まれる ことが多く、頭骨内部に残された母岩の特徴が酷似すること から、本標本は石灰質ノジュールより産出したと考えられる. ただし、本標本の産状を示す客観的な証拠が得られていない ことから、全ての化石を同一個体として扱うことはできなか った. そこで本研究では、関節したまま母岩に残っている頭骨 と下顎骨について、分類学的検討を行った.

頭骨は頭頂部と右側頭部の一部を欠くが, 吻端から後頭部

への選択圧の指標とした. 80 堆積物試料から 126 標本を抽出し, デ ジタル光学顕微鏡でLおよびHを測定し, H/L比を算出した. 混合 ガウスモデルとベイズ情報量規準を使ってH/L比の二型を判別した. 一方の集団のH/L比の平均値と標準偏差(1g)は 0.423±0.0142 (n = 51)で, もう一方は 0.492±0.0164 (n = 75)だった. H/L比の平均値 はK. dolichodeiraのオスとメスの値と一致する(Coles et al., 1994, Palaeont., 37, 71–120). 62~57 Maを 11 の期間に分け,各期間の オスとメスのH/L比の平均値および性比の変動を計算した.オスと メスのH/L比の平均値はほぼ一定で,明瞭な変動は認められなかっ た.性比は 0.46~0.74 の間で変動し,59 Ma 以降 0.46 に低下した. 集団がメス偏重からオス偏重へと変化したことを示唆する.オスの H/L 比と性比およびメスの H/L 比と性比の決定係数は,それぞれ 0.032 (p = 0.59) および 0.096 (p = 0.36)であり,有意な相関は 認められなかった.以上の結果は Abe (1990)の仮説を支持しない.

¹Has sexual selection enhanced sexual shape dimorphism of ostracode valves?

²Tatsuhiko Yamaguchi (Kochi Univ.), ³Rie Honda (Kochi Univ.), ⁴Hiroki Matsui (Tohoku Univ.), ⁵Hiroshi Nishi (Tohoku Univ.)

の公表値も一部加えた. それらのデータから,成長を通じて形状が 一定に保たれる Raup モデルに基づいて,体房部の体積比と外殻の 比表面積を算出した. デボン紀から白亜紀までの 100 種以上(各種 1 個体) についてそれらの値を見積もった結果,両者の間に有意の 負の相関が検出された. つまり,体が重くなりやすい巻殻形状のも のほど,概して体房部が小さい傾向がみられた. ただし,体房部の 体積比の値が大きい種の比表面積が小さいという関係が特に顕著で, この関係を除けば全体としてはばらつきが大きかった.

体房部の大きさと比表面積の間の負の相関からは、殻を薄くする だけでなく、体房部を小さくすることも、アンモノイドの軽量化の 戦略として採用される場合があったと考えたくなる.しかし一方で、 比表面積が大きいものが体房部を小さくすると、より小さな軟体部 で多くの殻を作らなければならなくなり、殻形成コストの増大を招 くだろう.上述した本研究の結果は、重くなりやすい形状の種が軟 体部をあまり大きくできなかったと解釈するのが妥当であろう.

¹Relationship between body chamber size and specific surface area in animonoids

²Takao Ubukata (Kyoto Univ.)

まで概ね完全な状態で残っており、ほとんど変形していない. 下顎骨は右の角骨と上角骨、関節骨が失われているが、その他の部位はほぼ完全な状態で残っている.

本標本は吻部にくびれが無く、下顎骨の結合部がとても長い等,一般的なポリコティルス科と共通する特徴が認められた.また、吻部の前方が半円柱状であること、後眼窩部の背側 観が亜長方形であること、temporal bar が幅広いこと等から、 *Manemergus anguirostris* に分類した.ただし、本標本は同種の 亜成体とされるホロタイプよりもかなり大きく、頭骨長に対 する吻長の割合が大きいことから、成体だと考えられる.

これまで, Manemergus anguirostris の骨学的な特徴は亜成体 標本に基づいていたことから,成体と考えられる本標本は,同 種を理解する上で極めて重要な情報源であり,他のポリコテ ィルス科との系統関係の解明に寄与することが期待される.

¹A new specimen of *Manemergus anguirostris* (Plesiosauria: Polycotylidae) from the Upper Cretaceous of Morocco. ²Daisuke Nakatani (Saga Pref. Space and Science Museum)

上部白亜系久慈層群玉川層より産出した化石カメ類¹ 平山 廉(早大・国教)²・吉田将崇(東大・理)³・伊藤愛(東大・ 理)⁴・滝沢利夫(久慈琥珀博物館)⁵・佐々木和久(久慈市役所)⁶

岩手県久慈市に分布する上部白亜系久慈層群玉川層は,脊椎動物 化石を多産することが知られている。2012年3月から早稲田大学と 久慈琥珀博物館が主体となった共同調査が毎年2度にわたって実施 され,延べ58日の発掘を通じて1400点を超える脊椎動物化石を玉 川層上部のボーンベッド(約9000万年前)より採集した。軟骨魚 類(176点)や爬虫類(772点)などに含まれる20を超える分類群 を確認しており,当時の多様な脊椎動物相の一端がうかがえる。

カメ類(爬虫綱,カメ目)は最も点数が多く,514 点を数える。 Adocus 属(アドクス科)が最も優勢であり(210点),次いでスッ ポン科(45点),ナンシュンケリス科(8点),スッポンモドキ科 (3点),およびリンドホルメミス科(10点)などの陸生カメ類を 確認した。炭質泥岩から成るボーンベッドを覆う浅海性の砂層から はウミガメ上科のものと思われる甲板や四肢骨(4点)を産出した。 他に分類不明の断片的な甲板が234点に達する。大半のカメ化石は 遊離した甲板であるが,Adocus 属では甲板が部分的に関節でつが った産状が3例知られる。特に KAM 1 では、甲羅の約90%がま とまって発見された。玉川層産 Adocus には、著しく肋板上に拡大 した緑鱗や頚鱗の消失などこれまで報告された本属にはない派生形 質が認められる。背甲長は最大70 cm と推定されるが、これはアジ ア産の本属の種としては最大であり、北米産のタクサに匹敵する。

スッポン科は、遊離した背甲や腹甲の他に頭骨の一部(上顎骨) や胴椎が知られ、背甲長は最大30cmと推定される。スッポンモド キ科は、鱗板溝を欠く縁板や肋板が知られ、背甲長15cmほどと推 定される。ナンシュンケリス科は、縁板や上腕骨が知られ、背甲長 は最大約40cmと推定される。リンドホルメミス科は、線状の彫刻 を持つ縁板と肋板が知られ、背甲長は最大25cmと推定される。

これら玉川層の化石群集は、同一地点より産出する上部白亜系の 陸生カメ類として北米と並んで最も高い多様性を見せており、当時 の気候が年間を通して温暖で湿潤であったことを示唆している。

¹Fossil turtles from the Late Cretaceous Tamagawa Formation, Kuji Group of Iwate Prefecture, eastern Japan.

²Ren Hirayama (Waseda Univ.), ³Masataka Yoshida (Univ. of Tokyo), ⁴Ai Ito (Univ. of Tokyo), ⁵Toshio Takisawa (Kuji Amber Museum) and ⁶Kazuhisa Sasaki (Kuji City Office)

80A

骨組織から考察するマチカネワニの年齢と性別¹ 林昭次(岡山理大)²・小林快次(北大)³・飯島正也(北大)⁴・佐野祐介(天 王寺動物園)⁵・伊東隆臣(ニフレル)⁶・恩田紀代子(ニフレル)⁷・ 中野貴由(阪大)⁸・上田貴洋(阪大)⁹・江口太郎(阪大)¹⁰

マチカネワニは大阪府に分布する第四紀更新世の地層(約40万年 前)から発見された、体長約7~8メートルの大型ワニである。現在 の大型ワニ類の生息域は、ほぼ熱帯・亜熱帯地域に限定されるが、 マチカネワニは温帯域でも生息できたと先行研究によって示唆され ている。しかし、マチカネワニがどのような成長様式で大型化した かといったことはわかっていない。そこで本研究では、大阪大学所 蔵のタイプ標本の皮骨の骨組織切片を観察し、その年齢・性別・成 長様式を考察した。

マチカネワニの皮骨の骨組織には、43本の成長停止線が観察され た。内側から数えて7本目の成長停止線以降、成長停止線間の間隔 が著しく狭くなった。現生種では骨の成長速度が急激に落ちる時期 と性成熟を迎える時期が一致するため、本個体は7歳以上で性成熟 を迎え、43歳以上で死亡した可能性が高い。

さらに、骨組織には骨の再吸収、再形成の痕跡がほとんど確認で

きなかった。現生ワニ類のメスは、卵殻を形成する際にカルシウム を皮骨から供給するため、皮骨の骨組織が再吸収、再形成されるこ とが知られている。このことから、マチカネワニはオスの可能性が 高く、古病理学による先行研究を支持する。

また、成長停止線の間隔の変化に基づいて、マチカネワニと現生 種の成長様式を比較した結果、顕著な差異はなかった。この結果は、 マチカネワニが温帯域にうまく適応し、熱帯・亜熱帯の種と同様な 成長を成功させていたことを示唆している。

¹Age and gender estimation of a Japanese crocodilian tomistomine *Toyotamaphimeia machikanensis* from bone histology.
 ²Shoji Hayashi (Okayama University of Science), ³Yoshitsugu Kobayashi (Hokkaido University), ⁴Masaya Iijima (Hokkaido University), ⁵Yusuke Sano (Tennoji Zoo), ⁶Takaomi Ito (Nifrel), ⁷Kiyoko Onda (Nifrel), ⁸Takayoshi Nakano (Osaka University), ⁹Takahiro Ueda (Osaka University) and ¹⁰Taro Eguchi (Osaka University)

A09

白亜紀の潜水鳥類へスペロルニス目の体重進化¹ 田中公教(北大・理)²・小林快次(北大・博)³・Timothy Tokaryk (王立サスカチュワン博物館)⁴

脊椎動物の体重は、生理学、生物力学的制約、および生息域の制 限といった様々な生物学的要因と関係がある.特に潜水する動物で は、体重と潜水深度または潜水時間の間には相関関係があることが 知られている.ヘスペロルニス目は白亜紀の北半球に広く分布した 後肢推進性の潜水鳥類で、これまでに様々な体サイズの種が知られ ている.ここで、本研究ではヘスペロルニス目の体重を多変量解析 によって推定し、この鳥類の潜水能力の進化を議論する.

まず,絶滅種であるヘスペロルニス目の体重を推定するため,類 似な生態や形態を持っていると思われる現生種の後肢推進性潜水鳥 類(アビ科,ウ科,カイツブリ科)74個体の計測を行った.足根中 足骨の近位末端における横幅および前後幅の計測値を用いて,体重 値との相関を調べるため重回帰分析を行った.次に,推定された体 重値を用いて,系統樹上での祖先形質復元を行い,ヘスペロルニス 目の系統樹のなかでの体重の分布を推定した.

体重推定の結果、ヘスペロルニス目の体重の範囲は、0.70kg

(Pasquiaornis hardiei)から 41.13kg (Hesperornis rossicus) と 推定された.その差は60 倍近くあり,体重の範囲が幅広いことが分 かった.また,祖先形質復元の結果から,基盤的なヘスペロルニス 目は体重が比較的軽く,派生的なクレードのヘスペロルニス科では 体重に多様性があることが分かった.このような体重の分布は,同 じく高度な潜水能力をもつ汎ウミスズメ科の体重進化の傾向と類似 している.一方で,大型の潜水鳥類であるペンギン目では,進化の 初期段階で極端に大型の種が出現しており,派生的なクレードのペ ンギン科には比較的小型の種が含まれる.これは、ヘスペロルニス 目では、おそらくより長時間かつ深くまで潜ることのできる潜水能 力を進化の後期に獲得したことを意味し、ペンギン目の体重進化の パターンとは異なることが示唆された.

²Tomonori Tanaka (Hokkaido Univ.), ³Yoshitsugu Kobayashi (Hokkaido Univ. Museum), ⁴Timothy Tokaryk (Royal Saskatchewan Museum)

¹Evolution of Body Mass in the Cretaceous Diving Bird Hesperornithiformes

Nipponosaurus sachalinensis の成長段階の骨組織学的評価および 系統位置の再検討¹

高崎竜司 (北大・理)²・千葉謙太郎 (トロント大)³・小林快次 (北大・ 博)⁴・ Philip J. Currie (アルバータ大)⁵・ Anthony R. Fiorillo (ペロー博)⁶

Nipponosaurus は南部サハリン島の上部蝦夷層群の上部(上部サントニアン階〜下部カンパニアン階)から発見されたハドロサウルス科の恐竜であり、1936年に成体とされる骨格を完模式標本として記載された.しかし後の研究では、複数の骨学的特徴(椎体・神経弓間の縫合線や歯の形状など)から完模式標本は未成熟個体であるとされ、Nipponosaurusの種の有効性が疑問視されている.また、先行研究の多くは、Lambeosaurini(派生的ランベオサウルス亜科)に含まれるとする点では見解が一致するものの、系統位置については基盤的LambeosauriniまたはHypacrosaurusの姉妹群と合意が得られていない.そこで本研究では、骨組織学的手法を用いて完模式標本の成長段階を推定し、成長に伴う骨形質の変化を考慮した系統

解析を行った. 大腿骨の横断面薄片において,骨は主に線維性骨によって構築されており,血管の方向が外周に向かって網状からから周状へ遷移し

A11

獣脚類恐竜・オルニトミモサウルス類の走行能力適応 アークトメタターサルの力学的機能¹ 久保孝太(北大・理)²・小林快次(北大・総合博)³

走行能力は、獲物の捕獲、捕食者からの回避、長距離移動等 において重要な適応である。オルニトミムス科,ティラノサウ ルス科,トロオドン科などの獣脚類恐竜は,アークトメタター サルと呼ばれる特殊な中足骨の構造をもつ。この構造が走行能 力適応と関連して獲得されたという説があるが,今までその力 学的な機能については十分に検証されていない。そこで本研究 では、オルニトミモサウルス類に焦点を当て,基盤的なオルニ トミモサウルス類と最速と考えられている派生的なオルニトミ ムス科の中足骨を比較し、アークトメタターサルの力学的機能 を議論する.

モンゴル産の進化段階の異なるオルニトミモサウルス類の中 足骨の断面 2 次モーメントを CT 画像から計測した. さらにオ ルニトミムス科の第 3 中足骨の遠位部で薄片を作成し,組織学 的な観察を行った. 高い走行能力を持つオルニトミムス科はそ うではない基盤的なオルニトミモサウルス類に比べ,運動方向

A12

マンモスの復元の問題点¹ 犬塚則久(古脊椎動物研究所)²

マンモスは最初に認められた絶滅動物で、復元の歴史も長い.す でにそのイメージは定着していると思われている.しかしながらじ っさいの骨格と骨格復元図、生体復元図は必ずしもうまく重ならな い.『冷凍マンモス展 YUKA』の監修を機に現地の博物館で化石や復 元骨格を実見し、いくつかの問題点に気づいたので指摘しておく.

ロシア,サハ共和国には大量のマンモス動物群の化石が保存されているが、比較用の現生標本もないほど研究が遅れている.たとえば復元骨格では胸郭の幅、肘の角度、左右の接地点の間隔は現生種をモデルにして修正すべきである.

復元図には復元骨格に比べて体長のわりに肩が高く、脊柱が急傾 斜のものがある.この差がなぜなのかが問題である.まず骨格を構 成している骨が同一個体からなるものか、そして脊柱を組むさいに 椎間板の厚みを考慮しているかを確認する必要がある.

4m 級のトロゴンテリゾウはケマンモスに比べて体長のわりに 体高が高い.体重が増すほど前後肢の間隔は狭まらなくてはならな ている.また成長停止線が存在しないことや骨の再構築が主に骨の 内層に集中していることが判明した.これらの特徴は、*Maiasaura*の幼体後期の骨微細構造と類似しており、完模式標本は、骨学的に 成熟する以前の個体と考えられる.

成長に伴う骨形質の変化を考慮した系統解析の結果, NipponosaurusはLambeosauriniよりも基盤的であり、三つの共有 派生形質によってArenysaurusおよびBlasisaurusと単系統を作る ことが判明した.加えて、骨学的特徴の再検討から、歯骨の棚状構 造、歯骨体から垂直に伸びる筋突起、歯槽と筋突起の近位縁が同位 置に存在するという三点が、成長段階に依存しない N sachalinensisの表徴形質として追加され、独立した有効種である ことが確認された.

New phylogenetic analysis of *Nipponosaurus sachalinensis* with an ontogenetic assessment of the holotype based on bone histology

²Ryuji Takasaki (Hokkaido Univ.), ³Kentaro Chiba (Toronto Univ.),
⁴Yoshitsugu Kobayashi (Hokkaido Univ. Museum), ⁵Philip J. Currie (Albert Univ.), ⁶Anthony R. Fiorillo (Perot Museum)

の応力の耐性が優れていた.内部構造及び骨組織の観察からは アークトメタターサルにある機能的な動きが示唆され,他の骨 と接する領域に 2 次オステオンが集中して分布する特異な微細 構造が確認された.この機能的な動きは地面から受ける強い衝 撃を和らげる役割があったのではないかと考えられる.構造 上・機能的な動きから,アークトメタターサルには高速走行の 際にかかる強い応力に強い利点があったと考えられる.

¹Cursorial adaptation in theropod, Ornithomimosauria: Kinematic function of arctometatarsal

²Kota Kubo (Hokkaido Univ.), ³Yoshitsugu Kobayashi (Hokkaido Univ. Museum)

いので,理に叶っている.つまり体格の差がプロポーションの差と して表われる.また同じケマンモスでも間氷期の大腿骨は氷期のも のより大型であることが知られている.したがってトロゴンテリゾ ウとの種の区別,差異の程度,時代変異がどの程度かを調べる必要 がある.

洞窟壁画のマンモスは背中が急傾斜だが,正しい復元の証拠とされている.古代人の描く壁画は写実的とされるが,見る角度によってじっさいより短く見えた可能性が高い.

頭と肩の間に現生のゾウにはない深いくびれが見られ,頭や肩に ある脂肪のコブのためとされる.じっさい,子供マンモスの YUKA の頭の上には氷に置きかわった塊がある.マンモスの成体で肩のコ ブの大きさや形,位置がどの程度であったかが問題となる.

復元画のマンモスは茶褐色に塗られているものが多い. 化石の毛 の色が茶色なので生体のマンモスの色と思われている. しかしメラ ニン色素も時間とともに退色する. 現生ゾウの毛色は黒い. 化石の 中には黒色のものもあるので,元はみな黒だったらしい.

¹ Some problems on restoration of woolly mammoths ² Norihisa Inuzuka (Paleo-Vertebrate Institute)

椎骨・脊柱の形態から展開する束柱類の水生性¹ 澤村 寛・安藤達郎・新村龍也(足寄動物化石博物館)²

束柱類(Desmostylia) ついては,海生哺乳類の一グループとし て、また、「謎の」などと表現される一風変わった哺乳類として, さまざまな生体復元や生態復元が提案されてきた。近年は,特定の 部位の解析や組織学的検討,骨や歯に含まれる安定同位体の分析, タフォノミーの解析など,多方面の分析的研究によって水生の食性 や行動が報告されている。足寄動物化石博物館では,開館以来,地 面に立つ姿勢の束柱類骨格を重点に展示していたが,2014年の展示 更新から「水生」の説明に切り替えた。続いて,骨格復元において も「泳ぐ姿勢」の組み立てに取り組んでいる。

四足動物の骨形態は、まず陸上動物として、体軸骨格と体肢骨格 について、荷重を支える機能と動態を生みだす機能の2側面から分 析される。二次的水生適応の解析では、異なる媒質のなかで、荷重 と動態の二つの側面の変化が骨形態にどう反映するかを、共通性と 分類群毎の特異性を区別して読み取らなくてはならない。

束柱類の水生骨格復元組み立てに当たって、まず体軸骨格、脊柱 に注目した。哺乳類の脊柱は、頸椎から尾椎まで5つに区分される。 胸椎は便宜的に前位胸椎と後位胸椎に分けることがある。前位胸椎 は、その前位に位置する頭部を支えるという機能を果たすため形態 的分化がおこり長い棘突起が顕著である。ところが、束柱類におい ては、胸椎全体に棘突起は短く・細く、後方に傾く。脊柱全体で棘 突起と横突起がつくる空間は固有背筋が占めるので、束柱類の棘突 起の貧弱さは固有背筋が細いことを示し、前位胸椎棘突起の貧弱さ は、頭部を動かす・支える(後方に引く)背筋が華奢であることを 示す。すなわち、頭部を支えて歩行することに適していないと推定 され、水生性の生活が想定される。

束柱類における貧弱な脊柱の形態と頑丈な体肢骨格との共存は, 束柱類の特異性を顕著に表すものであり,従来提唱されてきた四足 動物の水生適応の様式に当てはまらない。

¹Aquatic habitat of Desmostylians based on vertebral morphologies.

²Hiroshi Sawamura, Tatsuro Ando, Tatsuya Shinmura (Ashoro Museum of Paleontology)

A14

頭骨形態を指標とした束柱類(哺乳類: ?アフリカ獣類)の 水棲適応の定量的解解析—Paleoparadoxia 梁川標本を例に—¹ 松井久美子(国立科学博物館,日本学術振興会)²・河部壮一郎 (福井県立恐竜博物館)³・遠藤秀紀(東京大学総合研究博物館)⁴・ 對比地孝亘(東大・理・地惑)⁵・甲能直樹(国立科学博物館,

筑波大・生命環境)

東柱類は目レベルで絶滅した海棲哺乳類の1クレードである.彼 らは漸新世から中新世にかけての環北太平洋北部沿岸域という限ら れた時代・地域だけに生息していたことが知られている.東柱類化 石は日本を含めて比較的多く見つかっているにも関わらず,その古 生態や水棲適応については多くの異なった見解があり,不明な点も また少なくない.そこで本研究では,東柱類の頭蓋の内部形態から 彼らの古生態,特に水棲適応の程度を明らかにすることを試みた.

本研究では、哺乳類の水棲適応を評価するため、現生の主なクレ ードを全てカバーする哺乳類の頭蓋標本の CT スキャンを実施し、 それを基に三次元構築を行って、化石種の水棲適応度の指標として 利用する形質の定量的評価を行った.その結果,複数の形質において,そのサイズが水棲適応度に応じて有意に異なっていた.

次に、これらの結果を福島県立博物館所蔵の梁川産 Paleoparadoxia の頭蓋標本の CT スキャンデータに適用し、現生哺乳類同様に三次 元データの計測を実施した。その結果を基に判別分析を行い、 Paleoparadoxia の水棲適応度を検討したところ、Paleoparadoxia は現 生の半水棲哺乳類と同程度の水生適応をしていたと判断された。

以上より, Paleoparadoxia は陸上で繁殖や休憩などで比較的長い 時間を過し、陸から遠くない浅海で索餌をしていたと考えられる.

¹Quantative analysis of aquatic adaptation of Desmostylia (Mammalia: ?Afrotheria) based on cranial characteristics, ²Kumiko Matsui (National Museum of Nature and Science, Tsukuba / JSPS Research Fellow), ³Soichiro Kawabe (Fukui Prefectural Dinosaur Museum), ³Hideki Endo (The University Museum, Univ. of Tokyo), ³Tarkanobu Tsuihiji (Univ. of Tokyo), ³Naoki Kohno (National Museum of Nature and Science, Tsukuba / Univ. of Tsukuba)

広島県庄原市の備北層群より広義のケトテリウム類化石の産出¹ 木村敏之・長谷川善和(群馬県立自然史博物館)² 山岡隆信・大澤 仁(庄原化石集談会)³

広島県の庄原地域には中新統備北層群が広く分布しており,特に 庄原市を流れる西城川河床からはヒゲクジラ類化石の集中的な産出 が知られている.今回報告する標本も西城川河床より産出した標本 で,2006年に著者の一人である山岡により発見された.標本が発見 された地点は備北層群是松累層が分布している.山本(1999)は西城 川河床における備北層群について Martini (1971)の NN4 帯最上部に 対比され,16.1-15.6Ma の間ないしはそれよりも短い期間に堆積し たことを示唆している.

本標本は吻部の多くを欠くものの保存良好な頭蓋からなる.本標本は機能歯を持たず,前頭骨の眼窩上突起は頭頂部から眼窩縁に向かって緩やかに傾斜し,基部付近での急激な傾斜の変化は見られない.また中央吻部要素の後端は眼窩前縁の位置付近にとどまる一方で上後頭骨前端は後眼窩突起のやや前方の位置であり頭頂部では左右の頭頂骨が広く接して露出する.さらに中央吻部要素は狭義のケトテリウム類でみられるような V 字型に強く後退する形態ではなく,

A16

札幌市南区の後期中新世から大型セミクジラ科化石の発見¹ 古沢 仁(札幌市博物館活動センター)²

札幌市南区小金湯を流れる豊平川河床には、新第三紀中新世の海 成層(小樽内川層)が露出しており、2003年には、最古の大型海牛 類 <u>Hydrodamalis</u> sp. が発掘されている(古沢、2013)。2008年、海 牛化石産出地点よりおよそ 500m 上流の同層から、大型の鯨類化石が 発見され、数次にわたる発掘作業を経たのち、札幌市博物館活動セ ンターにおいて市民ボランティアを中心にクリーニング作業を実施 してきた。このほど、ほぼ全体像が明らかになったことから産出報 告を行うこととした。

本標本は、上顎骨、前上顎骨、下顎骨等の前端を欠くものの、舌 骨を含む頭蓋骨、ほぼ完全な左上肢と右肩甲骨、後位の尾椎を欠く 脊椎、胸骨および左右の肋骨を産出した。細く長い前頭骨、側方へ 伸びる側頭鱗頬骨突起、退縮した下顎骨筋突起等の特徴から本標本 はセミクジラ科の属性を示す。

セミクジラ科の化石は世界各地から発見されているが、信頼性の 高い最古の化石は南アメリカ・パタゴニアの前期中新世から産出し た、体長 6m を超えないとされる Morenocetus parvus と北米カリフ 前上顎骨は鼻骨周辺でも著しく幅を減じることなく前上顎骨後端は 上顎骨及び鼻骨後端と同じ位置まで後退する.また鼻骨の外形は顕 著なくさび形ではない.これらから本標本は Kimura and Ozawa (2002)が便宜的に *Isanacetus*-group と呼称したグループに含まれ ると考えられる.

さらに本標本では上述の形質に加えて、以下の形質を持つ:鱗状 骨窩は狭く後方に伸びるため背面観で上後頭骨と鱗状骨との縫合は ほぼ前後方向である、鱗状骨頬骨突起では lateral zygomatic concavity が発達する、耳周骨の後突起は短い.このような形質の 組み合わせは Bisconti et al 2013 による Parietobalaena 属の表徴 形質とは矛盾せず、他の Isanacetus-group の各属とは区別される. 備北層群では Parietobalaena 属がこれまで複数報告されており、こ れらと詳細な比較を行うことで本標本の詳細な分類学的位置づけが 明確となるとともに個体変異等を含めた議論が可能となるであろう.

¹A fossil cetothere from the middle Miocene Bihoku Formation, Hiroshima, Japan.²Toshiyuki Kimura, Yoshikazu Hasegawa (Gunma Museum of Natural History), ³Takanobu Yamaoka and Hitoshi Ohzawa (Syobara-Kaseki-Syudankai)

オルニア州の中期中新世から産出した Peripolocetus vexillifer を除くと、現生種を含め、その多くは鮮新世以降に出現しており、 中新世の多くはセミクジラ科の進化を解明する上でブラックボック ス的な存在となっている(Marx et al., 2016)。また、セミクジラ科 は現生のものでは 17~20m まで成長するとされているが、化石でた どることのできる大型化の証拠は、長野県の後期中新世末~鮮新世 (6~4Ma)までである(木村ほか、2007)。

本標本は、同地域の後期中新世から産出した <u>Hydrodamalis</u>sp. (FT 年代:8.2±0.3Ma) よりも下位から産出していることから少なくと も 8Ma 以前のセミクジラ科の化石である。また、その頭骨の大きさ から推定し、体長は少なくとも 10m を超えると考えられることから、 セミクジラ科の進化と大型化を考える上で重要な標本である。今後、 産出部位のレプリカを作製した上で、復元、記載等を行い、詳細な 産出年代、生息環境を含め、各方面からの総合的な研究を進め、セ ミクジラ科の進化の解明を進めていく予定である。

¹Discovery of enlarged balaenids fossil from the Late Miocene of Minami-ku, Sapporo.

²Hitoshi Furusawa (Sapporo Museum Activity Center)

A17

The oldest known fin whale Balaenoptera physalus¹

Tsai, Cheng-Hsiu (Department of Geology and Paleontology, National Museum of Nature and Science, Japan)² · Boessenecker, Robert. W. (Department of Geology and Environmental Geosciences, College of Charleston, U.S.A.; University of California Museum of Paleontology, University of California, U.S.A.)³

Balaenoptera, including the world's largest animals - the blue whale Balaenoptera musculus, is the most diverse genus of baleen whales (Cetacea, Mysticeti). There are some fossils that have been described and named, for example, Balaenoptera siberi and B. bertae, but it remains unknown whether there are any ancestor-descendant relationships leading to the extant species or revealing the origin and evolution of modern taxa. Here we report a fossil tympanic bulla from the Rio Dell Formation of Northern California, USA. The morphology of tympanic bulla in baleen whales is highly diagnostic and this fossil is virtually identical to the extant fin whale Balaenoptera physalus. For example, the fossil has following morphological combination that closely matches the extant fin whale, including 1) large size (anteroposterior length approaching 125 mm), 2) prominent anterodorsal crest, 3) well developed and square-like outer lip, 4) virtually straight medial margin of the involucrum in dorsal view, 5) well developed conical process, 6) short posterior extension on the posterodorsal surface of the bulla, 7) broadly rounded and triangular posterior margin in dorsal view, and 8) transversely narrow main ridge posteriorly in ventral view. In addition, given its geological occurrence -1.3-0.95 million years ago (Early Pleistocene), this specimen currently represents the oldest known fossil record of the extant fin whale. Accordingly, this find provides insights into the early origin and evolution of the speciose *Balaenoptera*.

1最古のナガスクジラ

^{2.3} 蔡政修(科博・地学)・ロバート・ボーセネカー(チャールスト ン大学 ; カリフォルニア大学古生物学博物館)

埼玉県狭山市産出アケボノゾウ全身骨格の再検討¹ 北川博道(埼玉自博)²

1974年2月、埼玉県狭山市笹井の入間川左岸より、アケボノゾウ (Stegodon aurorae)の臼歯化石が発見された. その後の発掘によ り、ほぼ完全な右上顎第2大臼歯を含む6個の臼歯化石や、尺骨な どの骨化石が発掘された(以降,狭山標本と呼ぶ).この際に発掘 された標本は、埼玉大学が所蔵し、堀口ほか(1978)によって報告 された.しかしながら、報告は短報で、右第2大臼歯以外は図示等 されなかった.その後,1985年に同地点でゾウの肋骨化石が発見さ れ,その後もいくつかの部位が発見されたことから,1985年10月 から12月にかけて埼玉県立自然史博物館(現在の埼玉県立自然の博 物館)によって発掘が行われた. その結果, ほぼ全身の部位を含む 58 点が発掘され、坂本ほか(1988)によって報告され、同博物館に 収蔵された. 堀口ほか(1978)によって報告された標本も、坂本ほ か(1988)によって報告された標本も、同一地点からの産出であり、 重複する部位もみられないことから同一個体に由来するものと考え られる. その後, 堀口ほか(1978)によって報告された標本も同博 物館に寄贈され,現在では,狭山標本として一括管理されているが,

これらの標本が同一の報告で扱われる事は無く,狭山標本の全貌は 今まで明らかにされていない状況であった.また,これらの標本に 加え,狭山市立博物館にも右大腿骨を含む3点が所蔵されており, 埼玉県立自然の博物館に所蔵されている標本と共に,埼玉県指定天 然記念物に指定されている.しかしながら,狭山市立博物館所蔵標 本については,今まではっきりとした報告は無い.

本研究では今まで全貌が明らかでなかった狭山標本の全貌を明ら かにした.また,体軸・体肢骨の骨端部の観察を行い,骨の化骨状 態を明らかにした.その結果,アケボノゾウ狭山標本は,多くの骨 の骨端部が未化骨の状態であった.しかしながら,第2大臼歯なら びに未咬耗の第3大臼歯が産出している.ことから,現生ゾウの化 骨状態等と比較をすると,オスの同一歯の化骨状態と調和的であっ た.このことから,アケボノゾウ狭山標本はオスであると考えられ る.

¹The specimens of *Stegodon aurorae* from Sasai, Sayama City, Saitama Prefecture

²Hiromichi Kitagawa (Saitama Museum of Natural History)

A19

東京西部の下部更新統平山層から産出した最古のアホウドリ上腕骨¹ 小泉明裕(飯田市美術博物館)²・松岡廣繁(京都大学理学部)³

東京都西部の多摩丘陵・多摩川やその支流の浅川沿いに分布する 上総層群平山層(下部更新統、約1.7Ma)からは、浅海性貝類が多 産し、アケボノゾウやシフゾウなどの陸棲、ハクジラやアシカ類な どの海棲脊椎動物の産出が知られていた(樽・長谷川,2002)。

2017 年1月に演者の一人小泉は、東京都日野市平山の浅川河床に 露出する平山層の浅海性砂層から大型鳥類の上腕骨化石を発掘した。 随伴する合弁自生の産状を示す貝類で最も優勢なのはヒラヤマシラ トリ(絶滅種 Macoma hirayamaensis)で、ゴイサギ、ウバガイ、エゾ マテ、ナミガイも目立ち、ダンベイキサゴ、エゾキリガイダマシ、 合弁自生のシャミセンガイ類 Lingula sp. も少なからず産出する。

化石は保存長22cmの右上腕骨骨体。発見時に近位側の破断面が 露出し、遠位端も堆積前に破断されていた。堆積後の圧密変形はわ ずかと考えられる。遠位端から近位端へ骨体の太さがほとんど変わ らず背腹方向にもほぼ真っすぐで、全体が細長い短冊状を呈する特 徴から、大型の海鳥、アホウドリ科のものと思われた。実際に、他 の大型鳥類ではなく、アホウドリ科の化石であった。 そこでアホウドリの仲間の現生3属4種、(大きい方から)ワタ リアホウドリ(*Diomedea exulans*)、アホウドリ(*Phoebastria albatrus*)、クロアシアホウドリ(*Phoebastria nigripes*)、マユグロ アホウドリ(*Thalassarche melanophris*)と比較した。その結果、 Matsuoka & Hasegawa (2014)の判別点 Dp30 の特徴から *Diomedea* か *Phoebastria* であるが、中でも大きさと骨体の扁平度から *Phoebastria*に同定された。*Phoebastria*の中では、大きさと上腕筋 粗面の形態が完全に一致することから、*P. albatrus*に同定される。 なお全長約 30cm の現生種アホウドリの上腕骨と比べると近位側約 7cm・遠位側約1 cmほどの欠損が見積もられる。

これまで日本列島におけるアホウドリ化石(遺体)の報告は、完新 世の人類遺跡からは、サハリンから沖縄までの100か所以上で得ら れていた(Eda & Higuchi, 2004)が、本報告が、種アホウドリと特定 できた化石記録として最古となる。

¹The oldest fossil record of Short-tailed Albatross (*Phoebastria albatrus*) from the Lower Pleistocene Hirayama Formation, western Tokyo, Japan.

²Akihiro Koizumi(Iida City Mus.), ³Hiroshige Matsuoka(Kyoto Univ.)

A20

ナウマンゾウにおける外傷性橈尺骨癒合病変の1例¹ 松岡廣繁(京大・理)²・廣田 連(名古屋市)³・ 丸山啓志(千葉中央博)⁴・吹抜清民(八重山郡竹富町)⁵

香川県大槌島南の瀬戸内海海底から、橈尺骨が癒合したナウマン ゾウの化石骨が得られた。尺骨肘頭の先端部と橈骨尺骨両骨の遠位 端を欠くほかは、おおむね全体がよく保存されている。尺骨肘頭は 破損するが骨端線の癒合が認められ、成獣であったことを示す。本 標本は京都大学理学部地質学鉱物学教室標本室に所蔵される。

本標本は橈骨の骨体遠位部分前面に深い外傷痕が認められる。CT 観察の結果、その近傍で橈骨・尺骨に異常な骨増殖が生じ、お互い が入り組むように接着していることが分かった。ここから読み取れ ることは、はじめ手首前面の橈骨部分に何らかの鋭利な物体が刺さ り、橈骨の一部を切り割ってしまうほどの大怪我となった。しかし これが原因で死亡することはなく、治癒しその後も長く生存した。 ただし一時は損傷個所を中心に重篤な感染症を起こし、傷を負った 橈骨だけでなく尺骨にも異常な骨増殖が生じて、両骨が嚙み合うよ うに癒合してしまった。これにより、手首の横方向への運動性(橈 屈・尺屈)は失われていた。 本橈尺骨癒合標本は、癒合箇所だけでなく、骨の各所に異常な形 態的特徴を示す。第一に、肘頭が低い。側面観で、正常個体のナウ マンゾウ尺骨では肘頭は骨体の伸長方向に対し斜め上方に向くもの であるが、本橈尺骨癒合標本では肘頭上縁は骨体軸に対しほぼ垂直 となっており、上腕骨との関節面の最近位地点よりも低くなってい る。前面観では肘頭は狭くて、ずいぶんスリムである。第二に、上 腕骨との関節面が深い。本標本の関節面最近位地点は骨体軸に対し 覆いかぶさるようにオーバーハングしている。すなわち肘関節の可 動域が狭い。第三に、前面観で明瞭な特徴として、尺骨近位端の関 節外側周縁部の発達が悪い。正常個体では当該部分は厚みがあり骨 体軸と平行になる面を有するが、本標本では厚みがなく、骨体側面 と上腕骨との関節面は鋭角で接するのみとなっている。これらの骨 学的異常は、ケガに起因する前腕の運動性低下(筋・靭帯系の退縮) を反映していると考えられる。

¹An example of the traumatic radioulnar synostosis in Naumann's Elephant (*Palaeoloxodon naumanni*). ²Hiroshige Matsuoka, ³Ren Hirota, ⁴Satoshi Maruyama and ⁵Kiyotami Fukinuki.

台湾の第四紀小型哺乳類化石-研究の現状と展望-1 河村 愛 (大阪市立大学大学院)²・張鈞翔 (中華民国・国立自然科 学博物館)³・河村善也 (愛知教育大学)⁴

台湾から第四紀哺乳類化石が産出することは古くから知られてい たが、それは中・大型哺乳類に限られていて、小型哺乳類の化石は われわれが日台共同での研究を始めるまではほとんど知られていな かった.これまでの台湾での中・大型化石の産状には1)海成の更 新統から産出する場合(台南市菜寮周辺の崎頂層など),2)海底か ら引き上げられる場合(台南市沖の澎湖水道),3)完新世の遺跡か ら出土する場合がある.しかし、小型哺乳類が一般に多産する洞窟 や裂罅の堆積物とその化石についての研究は、それまでほとんど行 われていなかった.台湾に現在分布する哺乳類の大部分は小型哺乳 類であり、その動物相には高山と低地で大きな違いがあり、それら の起源をさぐる上でも、また台湾の第四紀哺乳動物相の変遷史を小 型のものから大型のものまで含めて復元するためにも、小型哺乳類 の化石をさがして研究することは、不可欠と考えられる.また、台 湾に隣接する琉球列島では第四紀後期の小型哺乳類が多産している ので、それらの意味を考える上でも台湾の化石は重要である.

台湾では琉球石灰岩のような更新世の石灰岩の分布は、南部の一

A22

沖縄県宮古島市ツゾピスキアブ洞窟の完新世前期哺乳類化石群集と それに含まれる世界最小クラスのイノシシの意義¹ 河村 愛(大阪市立大学大学院)²・河村善也(愛知教育大学)³・波 木基真(うるま市教育委員会)⁴

ツヅピスキアブ洞窟は宮古島市平良にある横穴型の洞窟で,そこ から採取された大量の堆積物は、目の細かい篩で水洗処理され、1000 点を越える哺乳類化石が得られた.その研究成果は、本学会の2015 年の例会で報告した.その後,それらの化石とは別に、発掘調査時 に堆積物から直接採取された大型哺乳類化石約700点の研究結果が まとまって、この洞窟の堆積物に含まれる哺乳類化石群集の全貌が より明確になった.また2015年の報告の際には、この洞窟の堆積物 から得られた試料のAMS法による¹⁴C年代測定値は3件にすぎなか ったが、その後11件に増えて、この洞窟の堆積物の年代がより明確 になった.このようなことから、この洞窟の化石群集は、宮古島で 以前から知られていた後期更新世の豊富な内容をもつ動物相と、ほ とんど野生哺乳類がいない現在の動物相をつなぐ時期の化石群集と しての重要性がさらに増した.特に、この島における哺乳類の絶滅 現象を解明する上のデータとしての重要性は高い.本講演では、そ

A23

糞石研究のための現生食肉類糞形態標本の内部構造比較¹ 丸山啓志(千葉中央博)²・森本直記(京大・理)³・塩湯一希 (京都水族館)⁴・角川雅俊(小樽水族館)⁵・和田晴太郎(京都市動 物園)⁶・高谷真樹(京大・理)⁷・松岡廣繁(京大・理)⁸

糞石(コプロライト)など消化物の化石は、古生態系を考える上 で重要な標本となる.しかし、こうした化石は由来生物が何者であ るのか特定しがたいという根本的な問題がある.従来の研究手法に おいては、化石ではマクロレベルでは外部形態観察、ミクロレベル では薄片観察を主体に行われていた.一方、現生種の糞ではCT 撮像 や薄片観察が可能である安定な形態標本が作成困難であったため、 マクロ・ミクロレベルでの内部形態の観察が行われてこなかった.

本研究では、糞の化石化ポテンシャルが高いと考えられる現生食 肉類の糞形態標本を作成し、X線CTスキャンによる撮像や薄片観察 を行い、化石との比較可能なデータの収集を行うことを目的とした.

糞標本作成は、松岡ら(2015)のエタノール・アセトンによる消 毒・脱水・脱脂と樹脂浸透による方法を用いた.作成種は、海中で 塊状の糞を排泄し、糞石として地層中に保存されやすいと想定され る鰭脚類(ミナミアメリカオットセイ、ゴマフアザラシなど)を中 部地域に限られていて、そこに形成された洞窟もさほど多くないが、 そのような洞窟を調査した結果、台湾最南端の墾丁にある洞窟で哺 乳類化石を豊富に含む堆積物が見つかり、その発掘調査を継続して 行っている.発掘調査で採取した堆積物は目の細かい篩で水洗処理 した結果、その中に小型哺乳類化石がかなり含まれていることが明 らかになった.一方、上記の菜寮周辺の海成更新統からも小型哺乳 類化石がいくつか産出していることがわかった.これらのうち、墾 丁の化石は後期更新世、菜寮の化石は主に中期更新世のものと考え られる.また遺跡産の動物骨の中にも一部で研究可能な小型哺乳類 化石が含まれていることもわかった.これまでに見つかっている化 石の種類と産地をまとめると、モグラ類(菜寮と墾丁)、ヤマアラシ 属(菜寮と墾丁)、ハタネズミ属(墾丁)、シロハラネズミ属(墾丁)、 オニネズミ(菜寮と遺跡)である.ここではそれらの化石を紹介し、 台湾の小型哺乳類化石研究の展望についても述べたい.

- ¹ Small mammal fossils from the Quaternary of Taiwan: Present state and perspective of research
- ² Ai Kawamura (Graduate School of Science, Osaka City University), ³ Chun-Hsiang Chang (National Museum of Natural Science, ROC), ⁴ Yoshinari Kawamura (Aichi University of Education)

の後の成果も含めてこの洞窟の化石群集の特徴をまとめるとともに、 この島での哺乳類の絶滅現象についても考えたい.

さらに、新たに追加された大型哺乳類化石は、ほとんどがイノシシ類の歯の化石であった.2015年に報告したものも合わせるとその数は1000点近くになり、歯種ごとに分けても十分な標本数が確保できたので、歯種ごとに形態や大きさの変異を検討した。その結果、この洞窟のイノシシ類は大型のもの(Sus sp. A)と小型のもの(Sus sp. B)に分けられるという2015年の報告の結論がより確実になるとともに、小型のものは現生のイノシシ(Sus scrofa)の中で世界最小クラスとされるリュウキュウイノシシ(S. s. riukiuanus)よりさらに小さいものであることかわかった。ここでは、この超小型イノシシの意義や宮古島でのイノシシ類の変遷についても考えてみたい。

- Significance of the early Holocene mammal assemblage from Tsudupisuki-abu Cave on Miyako Island, Okinawa Prefecture, and one of the world's smallest boars contained in.
- ² Ai Kawamura (Graduate School of Science, Osaka City University), ³ Yoshinari Kawamura (Aichi University of Education), ⁴ Motomasa Namiki (Uruma City Board of Education)

心に行った. 一方, 鰭脚類糞と比較にするため, 陸棲食肉類(トラ・ キツネなど)の糞標本も作成した. そして, CT 撮像による内部構造 観察と一部の種では薄片観察も行った.

その結果, 鰭脚類・陸棲食肉類共に, 糞内に未消化物が残存して いることが確認できた.マクロレベルでは, 鰭脚類の糞内部には魚 類の骨片・耳石が広く分布することが明らかとなった.また, ネコ 科の糞でも骨片が含まれるが,これは1回の排便のはじめに出てく る部分に限られ, 糞の主体は毛づくろいによる毛が充満するもので あった.また,薄片観察の結果,ミナミアメリカオットセイ糞では, この種もよく毛づくろいをするが,糞中に毛は確認できなかった.

これにより,陸棲食肉類と異なる鰭脚類糞固有の内部構造が確認 され,消化物の化石(特に糞石)との比較可能性が示唆された.

¹Comparisons with inner structure of recent Carnivora feces specimens for coprolite research

²Satoshi Maruyama (Nat. His. Mus. Ins., Chiba), ³Naoki Morimoto (Kyoto Univ.), ⁴Shioyu Kazuki (Kyoto Aquarium), ⁵Masatoshi Tsunokawa (Otaru Auarium), ⁶Seitarou Wada (Kyoto City Zoo), ⁷Masaki Takaya (Kyoto Univ.), ⁸Hiroshige Matsuoka (Kyoto Univ.)

貝形虫の幼体殻の酸素同位体比を用いた冬季古気候指標¹ 山田 桂(信大・理)²・黒木健太郎(信大・院)³・瀬戸浩二(島大・ エスチュアリー)⁴・池原 実(高知大・コア)⁵

【はじめに】 2 枚の低 Mg 方解石の殻をもつ貝形虫は,数回の脱 皮を経て成体に至る. 脱皮の際の貝形虫殻の形成速度は数時間から 数日であり(Turpen and Angell, 1971; Chivas et al., 1983),特定の季 節の環境指標となる.本研究では,冬季に殻を形成する *Bicornucythere bisanensis*のA-1幼体(成体の一段階前の幼体)を用 いて,その酸素同位体比から冬季の古環境指標としての有用性を検 討した.

【試料と方法】 西南日本の日本海側に位置する中海の湖心部で採取された X コアは "C 年代によって 300 年以降の連続した堆積物であることが分かっている(Yamada et al., 2016). この試料からコアを通して最も優占する B. bisanensis の A-1 幼体殻 10 個を 1 試料として、同位体比質量分析計を用いて炭素・酸素同位体比を分析した.

【結果と考察】 120 試料から δ^{13} C および δ^{18} O が得られた. δ^{13} C は -6.1~4.6‰の範囲で変化し、X コア全体として大きな変化は見られ なかった. δ^{18} O はコア深度 344–249 cm (324–988 年) で最も高い値

B02

日本の寒冷地域における最寒期での世界最古級の土器 と石鏃の出現例¹ 川幡穂高(東大・大気海洋研)²・石崎 維(東北大)³・ 黒柳あずみ(東北大)⁴・鈴木 淳(産総研)⁵・大串健一 (神戸大・人間発達環境)⁶

世界最古級の土器と矢尻 (15.5–16.5 cal. kyr BP, 大平山元 I 遺跡, 青森県) は, ホモ・サピエンスが日本に移住後, 最寒地域で最寒期に出現した. 陸の気温の精密復元は難しかったが, 今回, 新方法で復元した. Core MD01-2409 was collected off the coast of northern Japan. The benthic δ^{18} O values of *U. akitaensis* had a maximum (mean 4.50‰) in the LGM and a minimum (mean 3.14‰) in the Holocene. The glacial-interglacial amplitude (1.36‰) was comparable to previously reported values. for the North Pacific. The remaining change (0.31‰) may be attributed to intermediate water temperature changes (~1.3±0.9°C), consistent with previously reported value (1.1°C). This assignment is possible because the oceanic δ^{18} O value change of 1.05 ±0.20‰ was purportedly due to changes in global ice volume. The maximum δ^{18} O value is observed in the LGM.

(-2.4~0.8‰)を示し、コア深度 247-36 cm (1000-1897 年)では緩やかな低下傾向を示し、コア深度 72-36 cm (1800-1897 年)で1.0‰前後の特に低い値を示した。全データの δ^{13} C と δ^{18} O には相関が認められず、中海において B. bisanensis 殻の δ^{13} C および δ^{18} O に対するKinetic isotope effect は小さいと考えられる.得られたA-1 幼体の δ^{18} O と貝形虫化石群集に基づく古環境変遷、成体殻の δ^{18} O および堆積物中の TOC/TS 変動と比較すると、1200 年以降 A-1 幼体の δ^{18} O のみ他と異なる変動を示し、中世温暖期から小氷期にかけて低下し続けた.冬季の中海底層塩分は湖心の西風が強い時期に低下していたことから、1200 年以降のA-1 幼体殻の δ^{18} O 低下は冬季モンスーンの強化による底層塩分の低下を示していると推察される。中世温暖期 以降の中海と日本周辺の冬季モンスーン変動は調和的であり、貝形虫 B. bisanensis の δ^{18} O が冬季モンスーンの指標となる可能性が示された。

¹Past winter climate indicator for δ¹⁸O of juvenile shells of ostracode ²Katsura Yamada (Shinshu Univ.), ³Kentaro Kuroki (Shinshu Univ.), ⁴Koji Seto (Shimane Univ.), ⁵Minoru Ikehara (Kochi Univ.)

In contract to the seafloor, based upon the alkenone SST, Japan experienced its coldest summer (SST of 8.7° C; AT of 5.2° C) in 15.68 cal. kyr BP; these summer ATs were approximately 7–11°C lower than current T (~15.7°C and ~16.7°C), respectively. The minimum corresponded to the East Asian Summer Monsoon minimum at Heinrich event I, not the LGM. This was the coldest since *Homo sapiens* immigrated to the southern Japan 38 cal. kyr ago.

The earliest pottery found in Japan was excavated at the Odai–Yamamoto I site. At this time the summer environment was a little colder than those experienced in the present-day cities of Nemuro and/or Nosappu in Hokkaido. Subsistence in a terrestrial environment would have been difficult for the Jōmon people. They should enjoy cooking marine and freshwater resources and increased diversification in the range of aquatic products by using the earliest Jōmon pottery.

¹The appearance of the world's OLDest pottery in the cOLDest period in cOLD area of Japan

²Hodaka Kawahata (Univ.Tokyo), ³Yui Ishizaki (Tohoku Univ.), ⁴Azumi Kuroyanagi (Tohoku Univ.), ⁵Atsushi Suzuki (AIST), ⁶Ken-ichi Ohkushi (Kobe Univ.)

B03

珪藻群集に基づく東シナ海男女海盆における 最終氷期以降の表層水塊変動¹ 岡崎裕典(九州大・理)²・代田恵子(九州大・理)³・今野進(マリ ンワークジャパン)⁴・久保田好美(国立科学博物館)⁵

東シナ海は広大な大陸棚を有し、その表層水塊は長江の影響を受けた低塩分・低温・高栄養塩の大陸系沿岸水と高塩分・高温・低栄 養塩の黒潮系水に大別される。海水準が約120m低下した最終氷期 には大陸棚が陸化し閉鎖的な環境となった。珪藻は有光層に生息し ており、水温・塩分・栄養塩などの水質の違いによって群集組成を 変えるため表層水塊復元に適している。現在の大陸系沿岸水には珪 藻種 Paralia sulcata が多く産出する (Furuya et al., 1996, J. Oceanogr. 52, 323-333)。谷村ら(2002, 第四紀研究 41, 85-93)は海底堆積物コア 試料中の P. sulcata の増減に基づき,退氷期に男女海盆上に大陸系沿 岸水が卓越していたことを明らかにした。しかし、これまで東シナ 海において最終氷期以降の連続堆積物中の全珪藻群集解析は行われ ていない.本研究では、東シナ海男女海盆で採取された海底堆積物 コア試料中 KY0704-PC01(31°38.35'N, 128°56.64'E,水深 758 m, コ ア全長 14.1 m)の珪藻群集解析に基づき、最終氷期以降の表層水塊 変遷を明らかとすることを目的とした. KY0704-PC01 コアは最終 氷期最寒期 (LGM) から完新世までの連続堆積物試料である (Kubota et al., 2010, Paleoceanography 25, PA4205) . 走査型電子顕微鏡及び光 学顕微鏡による種レベルの珪藻群集解析を行い、59 種 3 変種を同定 し、各試料 200 殻の珪藻殻を計数した. LGM 以降継続して、大陸系 沿岸水と黒潮系水に生息する珪藻種がどちらも産出した. また,最 終退氷期初期には大陸系沿岸水に優占する P. sulcata が全珪藻群集 の 40%以上を占めた. その後、前期完新世にかけて西太平洋暖水塊 の代表的な珪藻種である Nitzschia bicapitata の産出が増加した。こ れらの結果は、男女海盆は LGM 以降,継続して大陸系沿岸水およ び黒潮系水の混合域であったこと,そして最終退氷期初期には大陸 系沿岸水の影響が強く、その後の海水準上昇に伴い黒潮系水の勢力 が強くなったことを示した。

¹Change in surface water masses in the northern East China Sea since the last glacial maximum based on diatom assemblages

²Yusuke Okazaki (Kyushu Univ.), ³ Keiko Shirota (Kyushu Univ.), ⁴ Susumu Konno (MWJ), ⁵Yoshimi Kubota (NMNS),

宇部港のボーリングコア中の完新世貝形虫群集と 相対的海水準変動¹ 佐々木聡史(島根大・総理)²,入月俊明(島根大・総理)³, 瀬戸浩二(島根大・エスチュアリー研究センター)⁴, 松浦康隆(宇部興産コンサルタント(株))⁵

瀬戸内海では、主に大阪湾、播磨灘、広島湾などにおいてボーリ ングコアから産出する貝形虫群集や相対的海水準変動に関する研究 が行われてきた.しかしながら、瀬戸内海西部における詳しい研究 は行われていない. そこで、本研究の目的は、周防灘における完新 世の貝形虫群集と相対的海水準の変遷を明らかにすることである.

ボーリングコアは、山口県宇部市の宇部港において掘削されたコ アのうち、シルトから構成されているコア深度 28-15 m の層準を分 析に使用した.コアは半割、記載、土色測定が行われた後、厚さ 2 cm の51 試料がコアから採取された.試料は貝形虫分析、粒度分析、CNS 元素分析に使用した.また、7 層準から得られた貝殻及び木片を用 いて、AMS 法による ¹⁴C 年代測定を行った.

結果として,調査層準の年代は,約7400-4700 cal BC であった. 貝形虫について特筆すべき点は,*Bicornucythere* 属の3種(*B.*

B05

How do the radiolarian species respond to the Milankovitch cycle during the late Miocene in the Japan Sea?

Kenji M. Matsuzaki (Univ. of Tokyo), Takuya Itaki, (GSJ, AIST), Ryuji Tada (Univ. of Tokyo), Shunsuke Kurokawa (Univ. of Tokyo)

The Northwestern Pacific oceanographic setting is characterized by subtropical and subarctic gyres. In this area, numerous analysis from Pleistocene sequences have shown that radiolarians are sensitive to the glacial/interglacial climatic variations. This is highly due because shallow water radiolarians can be roughly divided into three categories: Tropical-Subtropical assemblage, Temperate assemblage and Subarctic-Arctic Assemblage.

However, for Mio-Pliocene they are still numerous researchers thinking that radiolarians are more likely related to tectonic-scale climate changes. Indeed, until now poor number of studies aims to show how radiolarians respond to the shifts in orbital parameters for time interval older than the Mid bisanensis, B. sp. M, B. sp. P) が産出したこと、中国沿岸の広 大な干潟に優占し、現在の日本では有明海以外でほとんど見られな い Sinocytheridea impressa が極めて多産したことである. 種々の 分析結果に基づくと、相対的海水準変動は以下のように復元された. 少なくとも約7000 cal BC (コア深度約26 m) には海水の影響を受 ける環境であった.約6500 cal BC (コア深度約24 m) に海水準が 急上昇し、約5700 cal BC (コア深度約18 m) まで、水深5 m 程度 の低塩分な泥干潟環境と潮流の影響が強い内湾環境が繰り返した. 約5700-4700 cal BC (コア深度約15 m) で最も古水深が深くなり、 B. bisanensis, Spinileberis quadriaculeataの多産により特徴づ けられる水深約5-10 m の内湾中央部の環境になった.得られた相対 的海水準変動曲線は、瀬戸内海のうちで、広島湾における変動曲線 (Yasuhara and Seto, 2006) と類似した.

¹Holocene ostracode assemblage from a boring core in Port of Ube, southwestern Japan and relative sea-level change ²Satoshi Sasaki (Shimane Univ.), ³Toshiaki Irizuki (Shimane Univ.), ⁴Koji Seto (Shimane Univ.), ⁵Yasutaka Matsuura (UIC)

Pleistocene period, which considerable weaken their reliability as a suitable paleoceanographic proxy for non-paleontologists. On the other hand, the Milankovtich cycles can be divided in the obliquity long cycle (ca. 1.2 Ma), eccentricity long cycle (ca. 0.4 Ma), eccentricity (ca. 100 kyr), obliquity (ca. 41 kyr) and precession (ca. 23 kyr). Try to study directly the impact of cycle as the precession cycle in a long Mio-Pliocene sequence is a consequent labor, and likely not the most suitable way to proceed. We believed that first try to determine impact of long obliquity/precession cycle in a long-term dataset and then conduct more accurate analysis in intervals showing encouraging signs is a better way to proceed.

In such context, we propose to discuss the impact of the long obliquity/eccentricity cycle on radiolarian absolute abundances and some selected species from IODP Expedition 346 Site U1425 sediment cores collected in the Japan Sea (Yamato Bank, ca. 2000 m of water depth). This site was selected because it is one of the rare site in the Northwest Pacific, which recover past 10 Myr continuously without major hiatuses.

B06

モンゴル西部ザブハン盆地に分布するエディアカラ紀/カンブリア紀境 界付近に特異なストロマトライト

足立奈津子 (鳴門教育大)²・江崎洋一 (大阪市大)³・刘 建波 (北京 大)⁴・園田ひとみ (大阪市大)⁵・渡部真人 (早稲田大)⁶・Gundsambuu ALTANSHAGAI⁷・Batkhuyag ENKHBAATAR⁸・Dorj DORJNAMJAA (モンゴル科学アカデミー古生物地質研究所)⁶

モンゴル西部ザブハン盆地に分布するエディアカラ紀/カンブリ ア紀境界付近には、柱状ストロマトライト "Boxonia"とリン酸塩質 頁岩の累重が広範囲に認められる.その組合せは、Tsagaan Oloom 層中での対比の有用な鍵層になっている.本発表では、これら境界 付近に特異なストロマトライトの特徴を明らかにし、その形成様式 を検討する.

ストロマトライト層は、下位の柱状ストロマトライト"Boxonia" (約6m) と上位のドーム状ストロマトライト(約4.5m) から構成される.ストロマトライトの上位には、リン酸塩質頁岩が累重する. 柱状ストロマトライトと直下の黒褐色塊状石灰岩との関係は、不整 合である.柱状ストロマトライトは、凸状ラミナが累積する柱状構 造(直径 2-6 cm)で特徴付けられ、柱状構造を側方に連結するラミ ナが間欠的に発達する.一方、ドーム状ストロマトライト(直径 30-60 cm)は、低い凸状ラミナの累積により形成される。両ストロ マトライトのラミナの特徴は共通している。すなわち、暗色ラミナ 部は、ペロイド状粒子(40-60 µm)、ミクライト質クロッツ (100-200 µm)、均一なミクライトの濃集によって構成される。明色 ラミナ部はスパーで充填され、側方に伸びる窓状構造が顕著である。 ストロマトライト中には、微生物類の化石自体は認められない。 しかし、暗色ラミナの形成には、微生物類の化謝や分解活動に関係 した炭酸カルシウムの沈殿が関係している。暗色ラミナ内での組織 の多様性は、関与した微生物群集の違い、微生物類の代謝や分解活 動に伴う石灰化のタイミングの相違を反映している。一方、明色ラ ミナは、微生物マットの腐敗と空隙へのセメントの充填に起因して いる。今後、柱状からドーム状ストロマトライト、リン酸塩質真岩 への累重が示す、堆積・生息環境の変遷を、エディアカラ紀カンブ リア紀境界という時代特性の観点から検討していく必要がある。

¹Stromatolites unique to the Ediacaran/Cambrian boundary in the Dzabkhan Basin, western Mongolia

²Natsuko ADACHI (Naruto Univ. of Edu.), ³Yoichi EZAKI (Osaka City Univ.), ⁴Jianbo LIU (Peking Univ.), ⁵Hitomi SONODA (Osaka City Univ.), ⁶Mahito WATABE (Waseda Univ.), ⁷Gundsambuu ALTANSHAGAI, ⁸Batkhuyag ENKHBAATAR, ⁹Dorj DORJNAMJAA (Inst. of Paleontol. and Geol., Mongolian Acad. of Sci.)

北中国山東省のカンブリア系第三統微生物類礁に認められる 時代特異性¹

江崎洋一 (大阪市大・院)²・刘 建波 (北京大学)³・足立奈津子 (鳴門教育大学)⁴・闫 振 (北京大学)⁵

カンブリア紀は, 礁の主要な構築者が「微生物優勢型」から「骨 格生物優勢型」に変化した「レジーム転換期」以前に相当する. 中 国山東省には, カンブリア系第二統から Furongian にかけての微生 物類礁が発達する. 本発表では, 第三統に相当する張夏層中の微生 物類礁の時代特異性と, その地球微生物学的な意義を述べる.

張夏層下部 (Crepicephalina 帯: Drumian)に, 深部潮下帯で形成さ れた"サンゴ類"-イシ海綿類-微生物類礁が発達する.本礁は,生 砕性ワッケストン中に,厚さ数十cmで,側方に広く形成される.礁 の基底では,厚さ数cmのストロマトライトが認められ,下部層の上 面を安定化(下地を形成)している.ストロマトライトの上位に, "サンゴ類"(Cambroctoconus)とイシ海綿類(Rankenella)を豊富に含 む斑点状スロンボライトが形成される.斑状組織が,"サンゴ類"や

B08

オルドビス紀末と Guada lupian (ペルム紀中期)末の絶滅事件比較¹

磯崎行雄(東大・総合文化)²

顕生代に起きた5大絶滅事件の中ではペルム紀末のものが最大規 模で、ついでオルドビス紀末事件が2番目とされている。ペルム紀 末事件は実際には2段階でおきたが、ペルム紀の海成動物の多様性 が最初に大きく滅じたのはペルム紀中期(Guadalupian)末の事件で あった。オルドビス紀末におきた Hirnantian 事件と Guadalupian 末事件との間には、動物多様性の急減以外にも海水準の低下、炭素 同位体比の正異常、Sr 同位体の低下、古地磁気反転パタンの変化な ど、グローバルな規模で起きた現象に複数の共通点がある。これら の事柄は、生物活動に直接関係することと、非生物的な過程に関わ ることを含んでいる。これらのグローバル現象相互には明確な直接 的因果関係が存在しないにもかかわらず、それらがほぼ同時に起き て、かつその時期に大規模な絶滅が起きたことは、両事件に共通の 原因が存在した可能性を示唆する。中でも両絶滅事件がおきた時期 に、海水準が約100 m 大幅低下した。このような変化を短期間にお こすためには、大量の海水を氷の形で陸上に固定する必要があり、

B09

白亜紀無酸素事変時の環境が浮遊性有孔虫へ及ぼす影響¹ 黒柳あずみ(東北大・博)²・豊福高志(JAMSTEC)³・長井裕季子 (JAMSTEC・横国大)⁴・木元克典(JAMSTEC)⁵・西 弘嗣(東北大・ 博)⁶・高嶋礼詩(東北大・博)⁷・川幡穂高(東大・大海研)⁸

浮遊性有孔虫は熱帯から極域まで分布し,生息時の海洋表層環境 を殻の化学組成や群集組成に記録しているため,過去の海洋環境を 復元する際に有用である.海洋の酸化還元環境は生物にとって重要 な因子の1つであり,白亜紀中期には,海洋無酸素事変(Oceanic Anoxic Event, OAE)が数回起きた.しかし,無酸素環境が浮遊性有 孔虫へもたらす直接的な影響については,これまで明らかになって いない.本研究では,硫化水素存在下での浮遊性有孔虫の飼育実験 結果に基づき,白亜紀の無酸素環境が浮遊性有孔虫にもたらす生物 的影響について考察した.

本研究では、プランクトンネットで採取した浮遊性有孔虫5種31 個体を用いて、約2 mg H₂S L⁻¹・約9 mg H₂S L⁻¹の硫化水素濃度下お よび control 環境にて飼育を行った.その結果、本実験で検証した 浮遊性有孔虫5種全てにおいて、48 時間以上の生存個体を確認する ことができなかった.一方、溶存酸素濃度が dysoxic と言われる0.7 海綿類の表面を被覆・結束している.当該礁部の周縁で、しばしば ストロマトライトの薄層が側方に向かって形成されている.本スロ ンボライトは、上方で、樹状スロンボライトに漸移する.その枝状 部中には、海綿類の他に石灰質微生物類(*Epiphyton*)が認められる. スロンボライトは、柱状・層状ストロマトライトへと移行する.柱 状ストロマトライト内では、*Epiphyton*の集合体が顕著である.スロ ンボライトの枝状部間とストロマトライトの柱状部間は、同時堆積 性の生砕性ワッケストンで充填される.

斑点状スロンボライトは、海綿類の分解に起因する.一方、樹状 スロンボライトと柱状ストロマトライトでは、*Epiphyton* で代表され る独立栄養生物が主要な枠組み構築者である.当該礁の先駆相と極 相は、ともにストロマトライトで特徴づけられる.とりわけ、極相 が主として石灰質微生物類から成る点に、微生物類礁の変遷様式に おける時代特異性が現れている.

¹Microbial reefs unique to the Cambrian Series 3 in Shandong Province, North China

²Yoichi EZAKI (Osaka City Univ.), ³LIU Jianbo (Peking Univ.), ⁴Natsuko ADACHI (Naruto Univ. of Edu.), and ⁵YAN Zhen (Peking Univ.)

おそらくグローバルな寒冷化がおきたと推定される。Hirnantianの 南半球高緯度では従来から氷河堆積物が発達したことが知られてい たが、ペルム紀中期の例は最近になって識別され始めた。2回の絶 滅事件が寒冷化と関係したことは明白であるが、寒冷化の原因は自 明ではない。

古生代中頃になって地球史上初めて大規模な森林が地表を覆った 結果、大気組成はその前後で大きく変化し、特に二酸化炭素は大幅 に減少した。比較した Hirnantian 事件と Guadalupian 末事件は、そ の陸上森林形成の直前と直後に起きた事件であるが、同規模の海水 準低下/グローバル寒冷化の原因を大気の温室効果の変化に求める ことは困難である。共通の寒冷化-絶滅原因は、おそらく別のグロー バル過程と関連していた。一見、関係のなさそうな古地磁気転換パ タンの変化や Sr 同位体の経年変化は、固体地球内部、あるいは地球 外のプロセスを考慮しないと説明不能である。可能なシナリオを提 案する。

¹ End-Ordovician and end-Guadalupian (Permian) extinction events compared

² Yukio Isozaki (Univ. Tokyo Komaba)

mg 0₂L⁻¹程度の貧酸素環境であったとしても、浮遊性有孔虫は殻付 加成長,配偶子形成をすることが過去の研究から示されている.こ のことから、過去の貧酸素環境において、硫化水素の存在が、浮遊 性有孔虫にとって非常にクリティカルな分布規制要因となることが 示唆された.つまり、0AE 時に浮遊性有孔虫の産出しない地域では、 海洋表層まで硫化水素が存在する環境であったことが推測される. 本研究結果は、テチスから報告された野外調査および 0AE 時のモデ リング結果とも整合的であり、また現在の黒海からの観測結果とも 一致した.以上より、浮遊性有孔虫の化石記録から、当時の有光層 における酸化還元環境を推測できる可能性が示唆され、これは今後 の 0AE 時の海洋モデル研究においての境界条件にもなり得ることが 期待される.

¹Effect of Cretaceous oceanic anoxic conditions on planktonic foraminifera.

²Azumi Kuroyanagi (Tohoku Univ.), ³Takashi Toyofuku (JAMSTEC) ⁴Yukiko Nagai (JAMSTEC, Yokohama National Univ.), ⁵Katsunori Kimoto (JAMSTEC), ⁶Hiroshi Nishi (Tohoku Univ.), ⁷Reishi Takashima (Tohoku Univ.), ⁶Hodaka Kawahata(Univ. of Tokyo)

熊本県上部白亜系御船層群の古植生・古環境の解明¹ ルグラン ジュリアン(中大・理工)²・山田敏弘(金沢大・理工)³・ 池上直樹(御船町恐竜博物館)⁴・西田治文(中大・理工,東大・院)⁵

御船層群は後期白亜紀(セノマニアン〜カンパニアン期)の浅い 海や河口から湖沼や河川のような淡水環境で堆積し,その層厚は 2,000 mを超える.また,本層群は下位より,基底層,下部層,上部 層に区分される.近年,日本国内で後期白亜紀の陸生脊椎動物化石 の発見が相次いでおり,御船層群は西南日本の上部白亜系を代表す る恐竜化石産地である.本研究では,恐竜を含む生物相を支えた植 生を包括的に理解するために,御船層群の各層について,花粉分析 を行った.御船層群の植物化石研究はほとんど進んでおらず,これ まで,上部層からわずかの植物化石が報告されているに過ぎない. また,日本の後期白亜紀のパリノフローラ報告は少なく,特に西南

また,日本の後期日亜紀のパリノフローフ報告は少なく,特に四部 日本においては研究が進んでいない.今回の報告は,既報の長崎県 の三ツ瀬層(中期カンパニアン期;2014年年会)と兵庫県の篠山層 群(後期アルビアン期;2013年年会,第165回例会)の間をつなぐ ものである.

その結果、パリノモルフとしては胞子、裸子植物花粉、被子植物

B11

新潟県上部鮮新統四十日層の貝形虫分析に基づく古環境の復元' 堀内由衣(島根大・総理)²・入月俊明(島根大・総理)³・ 山田 桂(信州大・理)⁴

新潟県南魚沼市の鎌倉沢川上流域には、海成上部鮮新統の四十日 層が広く分布しており、軟体動物化石に基づく古環境の復元が行われ、暖流の影響などが指摘された(天野ほか、2009). その後、増井 ほか(2013)は貝形虫化石を初めて報告し、群集解析に基づき古環 境を復元した.そこで、本研究の目的は、さらに細かい間隔で試料採 取を行い、貝形虫化石の群集解析結果と貝形虫化石殻の微量元素分 析に基づき、堆積環境の変化、特に古水温を復元することである.

調査層準の四十日層は,層厚約20mで,全体的に貝化石が散在し, 4 つの岩相に区分された(下位より,下部砂質シルト岩層,中部青 灰色シルト岩層,上部砂質シルト岩層,最上部極細粒砂岩シルト岩 互層).採取した 36 試料を処理し,抽出・同定を行った結果,26 試料から少なくとも 150 種の貝形虫が認められた.多産した分類群 は Acanthocythere is aff. dune Imensis, Cornucoquimba spp., Cytheropteron sawanense s.1., Pai jenborchella hanaii 等であ った.また, Cytheropteron subuchioi, Legitimocythere hanaii 花粉, 菌類, 淡水生緑藻類, 渦鞭毛藻類, 有孔虫が得られた. 裸子 植物花粉は特に多く, 被子植物花粉は少なかったが, センリョウ科, ヤシ目, ヤナギ科またはヤマグルマ科に類縁するものが見られた. また, 花粉群集の組成から, 上部層の地質年代はコニアシアンーサ ントニアン期であると推定された.

この結果を既報の結果とあわせると、西南日本においては、前期 白亜紀アルビアン期~中部カンパニアン期まで、基本的に温暖な気 候が続いたと推定された.しかし、サントニアン期以降は、湿度が 増加する傾向が見られた.後期白亜紀において、西南日本は北日本 より乾燥していた地域と考えられている.御船層群においては、北 海道の蝦夷層群に比べ、被子植物の多様性が著しく低かった.これ は、乾燥気候により被子植物の多様化のペースが遅くなった可能性 を示唆するのかもしれない.

¹Clarification of the paleovegetation and paleoenvironment of the Upper Cretaceous Mifune Group, Kumamoto Prefecture ²Julien Legrand (Chuo Univ.), ³Toshihiro Yamada (Kanazawa Univ.), ⁴Naoki Ikegami (Mifune Dinosaur Museum), ⁵Harufumi Nishida (Chuo Univ.; Graduate School, Univ. Tokyo)

などの暖流系種も,主として上部砂質シルト岩層から産出した. これらの貝形虫化石群集に基づき,種々の多変量解析を行った結 果,大きく3つの貝形虫化石相に分けられ,詳細な堆積環境の変化 も復元された.また,保存良好な浅海性のCytheropteron miurense と C. sawanense の貝形虫化石殻を用いて,微量元素分析を行い, Mg/Ca 比を算出した.その結果をもとにYamada et al. (2014)によ る古水温換算式を用いて,年間平均水温を求めた.結果として,冷 温性貝形虫種の多産によって特徴づけられる下部砂質シルト岩層か ら得られた試料では,年間平均水温は7.4℃と見積もられた.一方, 暖流系貝形虫種の産出によって特徴づけられる上部砂質シルト岩層 から得られた試料では,年間平均水温は13.0℃と推定された.これ らの値を現在の日本海の浅海帯の値と比較すると,前者は北海道西 部沖(冷温帯),後者は東北北部沖(中間温帯)に相当した.

¹Reconstruction of paleoenvironment based on analyses of fossil ostracodes from the upper Pliocene Shitoka Formation, Niigata Prefecture, central Japan

²Yui Horiuchi (Shimane Univ.), ³Toshiaki Irizuki (Shimane Univ.), ⁴Katsura Yamada (Shinshu Univ.)

B12

2011 年東北地方太平洋沖地震の, 三陸沖深海底生有孔虫群集への影響¹ 辻本 彰・野村律夫(島根大・教育)² 野牧秀隆・藤倉克則(海洋研究開発機構)³

2011年3月11日に発生した東北地方太平洋沖地震による津波や 海底擾乱によって、海洋生態系は大きな影響を受けた.沿岸域にお いては、津波発生前後の環境変化や生物相の変化に関する研究が多 く行われてきたが、深海域における環境擾乱に関する研究はあまり 多くない(たとえばKitahashi et al. 2014; Nomaki et al., 2016 など).そこで本研究では、地震発生以降に三陸沖の大陸斜面下部 において採取されたコア試料を用い、堆積物の放射性核種・底生有 孔虫の分析結果などに基づいて、地震による環境擾乱が深海生態系 に与える影響を明らかにすることを目的としている.

2012 年 8 月に水深 3585m の地点で採取されたコア長約 20cm の試料の含泥率(63µm 以下の粒子の重量%)の変化を見ると、コア深度14~9cm付近において値が急激に減少していた.²¹⁰Pb(ex)の濃度分布からは、含泥率が急激に減少する深度14cm付近に堆積物の不連続が推察された.また、コア深度14~9cm付近では²¹⁰Pb(ex)の濃度が

大きく変動しており、イベント堆積物の可能性が示唆された. 福島 原発由来と考えられる人工核種の¹³⁴Cs は、コア深度 9cm 付近より上 位で検出されたため、これより上位は地震発生以降の新生堆積物と 考えられる.

底生有孔虫の層位分布をみると、コア深度 14cm、10cm、7cm 付近 で群集組成が変化しており、含泥率や放射性核種が示す堆積物の特 徴と一致していた.とくに、イベント堆積物と考えられるコア深度 14~10cm 付近では、遺骸殻の個体数と多様度が増加しており、地震 発生の影響による集積の可能性が示唆された.深度 7cm 以浅では多 様度が低下し、下位の層準ではあまり産出しなかった Stainforthia や Nonionella などの生体が多産するようになった.堆積物は diatom ooze より構成されており、これが地震発生以降堆積したものだとす ると、地震による堆積物の擾乱以降これらの種類が先駆的に繁栄し たものと考えられる.

¹Effect of the 2011 off the Pacific coast of Tohoku Earthquake on deep-sea benthic foraminifera

²Akira Tsujimoto, Ritsuo Nomura (Shimane Univ.), ³Hidetaka Nomaki, Katsunori Fujikura (JAMSTEC)

東京都三宅島における離水した海洋固着生物化石の発見¹ 北村晃寿・今井啓文(静大・理)²・ 宮入陽介・横山祐典(東大・大気海洋研)³・井龍康文(東北大・理)⁴

東北地方太平洋沖地震に伴う巨大津波による激甚災害を教訓に, 国は南海トラフで起こる巨大地震に伴う「あらゆる可能性を考慮し た最大クラスの津波の高さ(レベル 2)」を公表した.それによると, 本調査地域の三宅島の最大波高は 18m と想定されている. だが,こ の想定は限られた科学的知見に基づくため,国は地質学的調査の促 進を図り,巨大地震の全容を解明するための努力が必要であると述 べている.本研究では,三宅島における地殻変動と津波の痕跡を調 査し,隆起貝層と「生物遺骸の固着した巨礫」を発見した.それら の生物遺骸の ¹⁴C 年代測定を行ない,以下の知見を得た.

(1)隆起貝層は標高2.31-3.06mに位置し, Favia?sp., Septifer exvisus, Serpulidae sp., Lithophaga sp.を同定した.それらの較 正¹⁴C年代は約3900-3500年前を示すことから、その産状は汎世界的 海水準の高位期と三宅島の噴火活動による隆起で説明される.

(2) 高さ 7m の急崖の溶岩平坦地にある巨礫(海岸線から 1.5m, 4.90m × 2.64m × 1.80m, 33 トン)から保存状態の悪いフジツボ

B14

海底地すべり堆積物の形成様式と岩体の起源との関係 — 石灰質ナノ化石を用いた検討例 —¹ 宇都宮正志(産総研・地質調査総合センター)²

造構作用や海底地すべりなどで形成されたいわゆる混在岩の起源 を知る上で,化石は重要な手がかりを与える.海底地すべりの場合, 化石から地すべり岩体の起源が明らかになれば,斜面崩壊の規模や 進行過程の復元に繋がると期待できる.後期新生代の石灰質ナノ化 石帯は,海洋酸素同位体ステージとの関係が詳しく明らかにされて いる.そのため,地すべり岩体の堆積年代を決定し,由来した地質 体を特定する上で有効である.本研究では陸上に露出した海底地す べり堆積物を対象に石灰質ナノ化石群集の組成を検討した.その結 果,海底地すべりの形成様式と岩体の起源に関する知見が得られた ので報告する.

房総半島には更新世の前弧海盆堆積物である上総層群黄和田層が 露出する. 黄和田層は砂岩の薄層と凝灰岩層が挟在する塊状泥岩から 主になり,その最上部には海底地すべり堆積物(水平距離>20 km,層 厚>30 m)が複数層準に挟在する. 地すべり岩体の配列様式が異なる 2 つの海底地すべり堆積物(下位から MTD1, 2)を検討した. MTD1 遺骸を発見した.その¹⁴C年代は1950年以降であったことから,巨 礫は近年の高潮によって打ち上がったものである.

本研究地域では、レベル2の津波による津波石を発見できなかった.このことは、東京都、神奈川県、静岡県沿岸で過去4000年間にレベル2の津波が発生しなかったとする Kitamura (2016; Progress in Earth and Planetary Science. 3:12 DOI:10.1186/s40645-016-0092-7)の解釈を支持する.

¹Discovery of fossils of emerged marine sessile organisms from Miyake Islands, Tokyo Metropolitan

²Akihisa Kitamura, Takafumi Imai (Shizuoka Univ.), ³Yosuke Miyairi, Yusuke Yokoyama (Univ. Tokyo), ⁴Yasufumi Iryu (Tohoku Univ.)

は最大層厚 100 m に達し、大きさ 10 m 以上の褶曲した泥岩ブロック から主に成り、ブロックの姿勢に一定の傾向は認められない. MTD2 は層厚約 40 m で覆瓦スラストによって規則的に繰り返す泥岩ブロッ クから主に成る. 石灰質ナノ化石の群集組成を検討した結果, MTD1 の下位の正常層 (層厚 250 m) では Gephyrocapsa 属が上位に向かって 徐々に大きくなり (ca. 3.5~5.5 µm), Calcidiscus macintyrei の終産出 層準も認められた. 5.5 µm 以上の Gephyrocapsa 属は MTD1 と MTD2 の間の正常層まで産出し, MTD2 を構成する地すべり岩体の中で消滅 する. この傾向は、鉛直方向の岩体の移動はほとんどないことを示し ている. 一方, MTD1 の一部の岩体では 4 µm 以下の Gephyrocapsa 属 と Calcidiscus macintyrei を含むことから、少なくとも層厚 250 m の地 層が浸食され、海底面上に堆積したと推定される. したがって, MTD1 と MTD2 を形成した海底地すべりの様式の差異が、岩体の配列様式 と起源の違いに反映されていると考えられる.

¹Relation between origins and internal structure of mass-transport deposits — case studies using calcareous nannofossil assemblages —

²Masayuki Utsunomiya (Geological Survey of Japan, AIST)

北部ベトナムのドンバン地域に分布する上部デボン系の フラスニアン・ファメニアン境界とケルワッサー事変¹ 小松俊文(熊大・院・先)²・浦川良太(サンコーコンサルタント株式 会社)³・前川 匠(熊大・院・先)⁴・高嶋礼詩(東北大・博)⁵・田中 源吾(金沢大・基幹教育)⁶・山口龍彦(高知大・コア)⁷・グエン・ ダック・フォン(VIGMR)⁸

北部ベトナムのハーザン(Ha Giang)省には、上部デボン系~石 炭系を主体とするトクタット(Toc Tat)層が分布し、大量絶滅など で知られているフラスニアン・ファメニアン境界(F-F境界)が挟 まれている.本研究では、ドンバン地域(Dong Van area)の下部ト クタット層で地質調査を行い、堆積相解析を用いた堆積環境の復元 や、コノドント生層序の確立、2度にわたって大量絶滅を引き起こ したとされる下部・上部ケルワッサー事変を含む層準を安定炭素同 位体比の変動パターンから特定することを研究の目的とした.

調査は2つの露頭で実施した(S11, S12). これらの露頭における トクタット層は、やや厚めの層状石灰岩やマールと石灰岩の互層を 主体とし、石灰角礫岩や珪質泥岩を伴う. 産出化石は、コノドント が多く、層準によっては介形虫やテンタキュライト、スコレコドン

B16

冷湧水性群集の内外でタマガイ類による捕食の頻度に差はあるか ~北海道の始新統幌内層における検証~¹ 延原尊美・人見進太郎・白鳥百合子(静岡大・教育)²

捕食者と被食者は、攻撃と防御をめぐって形態・行動の進化を互 いにエスカレートさせる関係にあり、特に中生代以降、その攻防は 浅海域において激しくなったことが指摘されてきた.一方、深海底 は一般的に被食者・捕食者ともにその存在密度が小さく、捕食圧は 進化の原動力としてはあまり重視されていない.しかしながら近年、 一部の冷湧水性群集において浅海域に匹敵するほどの捕食頻度があ ったとする証拠が示されている.餌資源の乏しい深海底において豊 富な生物量を有する冷湧水場は、捕食者にとって魅力的な餌場なの か、それとも従来言われてきたように硫化水素等の毒性化学物質に 守られた近寄りがたい場所なのか? 演者らは今回、北海道の始新 統幌内層の漸深海帯性貝化石群集を対象に、冷湧水サイト内外でタ マガイ類による二枚貝の捕食頻度に差が生じているかを検討した.

三笠市弥生藤枝町の塊状シルト岩の露頭には、不規則な形状の湧 水性石灰岩体が層理面に垂直に高さ3m以上にわたって断続的に累 重するが、その水平方向の分布範囲は幅1.5mの範囲に限られる.

B17

海水および食物が棘皮動物の骨格内炭素同位体比に及ぼす 影響度の比較*

加藤萌¹, 大路樹生¹, 白井厚太朗², 鵜沼辰哉³, 田中健太郎²** (¹名古屋大学博物館,²東京大学大気海洋研,³北海道区水産研究所)

棘皮動物類は、炭酸塩(高 Mg 方解石)の内骨格を持ち、古生代 初期から現代まで世界中で化石が産出することが知られている海棲 無脊椎動物である. 棘皮動物の炭酸塩骨格の安定炭素同位体比 δ^{13} C 値は海水と同位体平衡にならず、分類群ごとに最大 10‰近い差があ ることが知られている(e.g. Weber, 1968; Gorzelak et al., 2012). その 原因の一つとして、演者らは前報で食物の δ^{13} C 値が骨格の δ^{13} C 値 に影響を及ぼすことを報告した. 今回は、海水中の溶存無機炭素 (DIC) および食物中の有機炭素が殻の δ^{13} C 値に及ぼす影響を比較 することを目的に、飼育実験を行った.

試薬を添加し δ^{13} C値を調整した海水中(約+400~+600‰)で現生 正形ウニであるエゾバフンウニ(*Strongylocentrotus intermedius*)を飼 育し, 殻の δ^{13} C値を測定した.また,成長段階と殻の同位体比の関 係を調べるため,体サイズの異なるエゾバフンウニを用意し,同一 の餌および環境条件下で飼育した後,殻の δ^{13} C値を測定した. トなどを伴い、石灰角礫岩中にはサンゴ片なども含まれている. 堆 積相解析の結果、本層の下部は、5 つの堆積相に区分され、海盆か ら海盆縁辺〜大陸斜面で堆積した上方浅海化のシーケンスであるこ とが明らかになった. コノドント化石は、少なくとも5属21種が産 出し、P. nasuta, P. linguiformis, P. triangularis 帯の3 帯を 識別した. F-F 境界は、一般的に P. triangularis の初産出層準で 定められており、F-F 境界を確認することができた. 安定炭素同位 体比については、S11 (層厚 40m)の76 試料で分析を進めた. その 結果, P. nasuta 帯の中部と P. triangularis 帯の基底部付近で顕 著な正のシフトが認められた. これらの正のシフトは、世界各地か ら報告されている下部・上部ケルワッサー事変に相当すると考えら れる. なお上部ケルワッサー事変は、F-F 境界と概ね一致している.

¹Frasnian-Famennian boundary and Kellwasser Events of the Upper Devonian in Dong Van area, Northern Vietnam

²Toshifumi Komatsu (Kumamoto Univ.), ³Ryota Urakawa (Suncoh Consultant Co., Ltd.), ⁴Takumi Maekawa (Kumamoto Univ.), ⁵Reishi Takashima (Tohoku Univ.), ⁶Gengo Tanaka (Kanazawa Univ.), ⁷Tatsuhiko Yamaguchi (Kochi Univ.), ⁸Nguyen D. Phong (VIGMR)

石灰岩体およびその直近のシルト岩には、シロウリガイ類 Hubertschenckia ezoensis およびオウナガイ Conchocele bisecta が多数 自生的に産出するが、そこから離れると Acila や Malletia, Cyclocardia などの非化学合成二枚貝のみからなる群集に変化する.本研究では これらの湧水サイトおよび非湧水サイトから保存良好な二枚貝類化 石を 500 個体以上採集し、種ごとに捕食穿孔率 DI を求めた.

その結果, 湧水サイトの化学合成二枚貝類の捕食穿孔率 DI は 0.070-0.080 で, 他の二枚貝類の DI 0.000-0.059 よりも高い値となっ た. このことから少なくとも, タマガイ類にとって幌内層の湧水サ イトは侵入し難い環境ではなかったといえる. ただしカイ二乗検定 (有意水準 0.05)では, タマガイ類が化学合成二枚貝類を他の分類群 よりも好んで捕食したことも, 湧水サイトを周囲よりも餌場として 積極的に利用したことも支持されなかった.

¹ Does naticid predatory drill intensity differ between inside and outside of cold-seep communities? - Case study in the Eocene Poronai Formation in Hokkdaido-.

²Takamai Nobuhara, Shintaro Hitomi and Yuriko Shirotori (Shizuoka Univ.)

測定の結果,約+400~+600%に調整した海水中で育ったウニの δ^{13} C値は+471~+875%を示し,海水 DICの δ^{13} C値の影響を強く受 けることが明らかになった.また,体サイズの異なるウニの δ^{13} C値 を比較したところ,小さい個体ほど海水 DICの δ^{13} C値の影響を強く 受け,餌の δ^{13} C値の影響が小さいことがわかった.サイズの違いに よる海水と食物の影響の差は,殻形成時に代謝効果による同位体分 別が働いているためと推察され,ウニの殻内の炭素が海水 DIC と食 物のみに由来する仮定すると,本実験に用いたサイズのウニにおけ る食物の寄与率は10~30%程度と考えられた.以上の結果から,棘 皮動物類の骨格(殻)の δ^{13} C値は,海水と食物の両方の影響を受け, 各々の寄与率は成長に伴って変化することが明らかになった.

*Contribution of seawater and foods to the δ $^{\rm 13}\!C$ values of echinoderm skeletons

**Moe Kato¹, Tatsuo Oji¹, Kotaro Shirai², Tatsuya Unuma³, Kentaro Tanaka²

(¹Nagoya Univ. Mus., ²Atmosphere and Ocean Research Inst., The Univ. of Tokyo, ³Hokkaido National Fisheries Research Inst.)

嫌気環境下における底生有孔虫 Ammonia sp. の適応機構¹ 土屋正史・野牧秀隆(海洋研究開発機構)²

底生有孔虫類は、広範囲の環境勾配に対して柔軟に応答し、溶存 酸素量や硫化水素濃度,pH,栄養塩濃度,有機物量といった物理化 学環境や捕食者などの生物学的要因などによって規制され,堆積物 内部の異なる環境に適応している。底生有孔虫類は環境変化に対し て素早く応答するため、その群集組成や殻に残る環境のシグナルが 古生物学や古海洋学で広く用いられる。このような適応過程が有孔 虫自身によるものか,細胞内の微生物による影響なのか,あるいは、 それらの相互作用なのかが議論されつつある。例えば、低溶存酸素 濃度環境において底生有孔虫類は、微生物による硝酸呼吸や硫黄酸 化細菌の共生に依存していたり、宿主自身が硝酸塩呼吸を行ってい るという証拠も示唆されているが、明確な回答は得られていない。 本研究では、浅海性底生有孔虫 Ammonia sp.を用い、細胞内の微生物 多様性解析から低溶存酸素環境への適応機構を推測した。

試料は横浜市金沢区平潟湾から採集し、嫌気環境と微好気環境下 で飼育した個体を用いた。解析では、SSU rRNA 遺伝子領域を用い て解析した有孔虫試料が同じ遺伝型であることを確認した上で、バ

B19

炭素・酸素安定同位体比分析システム MICAL3c を 活用した微量海水・生物体液試料の分析手法の開発 —Metabolic effect の解明に向けて—¹ 西田 梢(茨城高専)²・石村豊穂(茨城高専)³

生物源炭酸塩の炭素・酸素安定同位体比は、生息環境の水温や炭 酸組成、速度論的同位体効果(kinetic effect)、代謝効果(metabolic effect)などに影響されることが知られている。多くの石灰化生物は 同位体非平衡で骨格形成を行っており、生物種によって同位体平衡 値からのずれの程度は異なる。

殻形成が行われている石灰化母液中の炭素源は、海水由来の溶存 無機炭素(DIC)と体内の代謝(呼吸)由来のDICの混合であり、そ の炭素同位体比は海水よりも低い同位体組成を持つことが知られて いる(Gillikin et al., 2007; Solomon et al., 2005)。海水の DICと呼吸由来のDICそれぞれの同位体組成と、石灰化母液中にお けるこれらの比率を明らかにすることで、2つの炭素源のどちらが/ どの程度、生物源炭酸塩の炭素・酸素同位体比に寄与しているか、 評価することができる(生物の代謝活動の指標など)。しかしなが ら、石灰化母液や血液(呼吸由来のDIC)の同位体組成の報告例は

クテリア 16S rRNA 遺伝子領域から微生物多様性を明らかにした。 細胞内の微生物多様性は、両環境で大きく異なっていた。微好気 環境では Pseudomonas 属(y プロテオバクテリア) が優占したのに対 して,嫌気環境では珪藻由来の葉緑体が優占し,次いで硫酸還元菌(δ プロテオバクテリア)が優占した。これまでに窒素同位体ラベルした 硝酸ナトリウムを添加した飼育実験が行われ、嫌気環境下の Ammonia sp.細胞内でのみ硝酸塩が利用されることが明らかになっ ている。これは、細胞内の微生物が硝酸塩プールを利用して脱窒を 行い、残った硝酸塩からアミノ酸が合成された結果、宿主細胞内に は重い窒素同位体が濃縮することから推察された。本研究の微生物 多様性の解析結果は、基本的にはこの研究結果を支持した。一方、 嫌気環境下では盗葉緑体が優占しており、これが嫌気環境下で利用 されているか、単に宿主の代謝が下がるために、分解が進まなかっ たかは現時点では確定できる証拠は得られなかった。本研究で用い た有孔虫種は、環境勾配にあわせ利用しやすい微生物を日和見的に 共生させ、巧みに利用している可能性が示唆される。

¹ Adaptive ecology of benthic foraminifer *Ammonia* sp. under oxygen-depleted environment.

² Masashi Tsuchiya, Hidetaka Nomaki (JAMSTEC)

極めて少なく(貝類:Gillikin et al., 2007;魚類:Solomon et al., 2005)、その理由として、採取できる試料の量が極めて微量であることが挙げられる。例えば、本研究で取り扱った二枚貝類(殻長3 cm 程度)では、血液は0.1-0.2ml採取することができたが、平衡法による同位体分析の場合、通常は2-3ml 程度の水試料を必要とする。そこで本研究では、茨城高専の保有する微量同位体比分析システム(MICAL3c)を活用し、微量な海水・生物体液試料に応用できる微量試料の分析手法の開発を試みた。

今回は、水試料の量が酸素・炭素同位体比に及ぼす影響評価の結 果、および沖縄で採取した二枚貝類の血液の同位体組成の測定結果 を紹介する。本研究の分析手法により、従来法の5-10分の1の量で 分析が実現できる可能性があり、さまざまな生物の体液試料、ある いは微量な水試料の同位体組成の分析に対応できる分析手法の確立 を目指し、現在、開発を進めている。

¹A method for determination of stable carbon and oxygen isotopes of blood and calcification fluid DIC of animals. ²Kozue Nishida (NIT, Ibaraki College), ³Toyoho Ishimura (NIT, Ibaraki College)

B20

大型底生有孔虫を用いた水温プロキシに関する報告₁ 前田歩(東大・理)₂・藤田和彦(琉大・理)₃・鈴木淳(産総研)₄ ・吉村寿紘(大気海洋研)₅・川幡穂高(東大・理)₆

これまで、海洋生物由来の炭酸カルシウム(方解石、アラレ石) の酸素同位体比(δ^{18} O)とMg/Caは古水温計として広く用いられてき た。しかし、大型底生有孔虫や深海サンゴなどがつくる、高マグネ シウム方解石の δ^{18} OやMg/Caと水温の関係についての研究は少な い。第166回例会では、サンゴ礁に生息する二種類の大型底生有孔 虫、*Calcarina gaudichaudiiと Amphisorus kudaka jimensis* につい て、飼育した無性生殖個体のMg/Caと δ^{18} Oについて報告した。結 果、両種ともMg/Caと δ^{18} Oそれぞれに水温との相関がみられ、Mg/Ca については種ごとのキャリブレーションは不必要だが、両種の石灰 化機構の違いを反映する δ^{18} Oについてはキャリブレーションが必 要だと考えられるにいたった。

今回、*C. gaudichaudii と A. kudaka jimensis* の2種に加え、同様にサンゴ礁に生息する有孔虫 *Baculogypsina sphaerulata, Calcarina calcar*の無性生殖個体を飼育し、成長した個体の酸素・炭素同位体比(δ^{13} C)を測定した。

 δ^{18} O については、*B. sphaerulata* と*C. calcar*の両種ともに、 -0.6‰から-2.2‰と、前年度の*C. gaudichaudii*の δ^{18} O (-0.7‰か ら-2.2‰) に近い測定結果が得られ、水温とも高い相関を示した。 δ^{13} C についても、*B. sphaerulata* は-0.7‰から-1.4‰と*C. gaudichaudii* (-0.9‰から-1.5‰) に近い値を示したが、一方で*C. calcar* は-0.5‰から-1.1‰と高い値を示した。

今後とも、より広範に見られる種の飼育を続けていく方針である。

Report of evaluation of high-magnesium calcite a proxy for temperature using large benthic foraminifera
 Ayumi Maeda (Univ. Tokyo), 3Kazuhiko Fujita (Univ. Ryukyus),
 Atsushi Suzuki (AIST), 5Toshihiro Yoshimura (AORI), 6Hodaka Kawahata (Univ. Tokyo)

島根県大田市の鳴り砂海岸,琴ヶ浜における有孔虫群集¹ 林 広樹(島根大・総合理工)²・岩男修太(島根大・総合理工)³・ 瀬戸浩二(島根大・エスチュアリー研究センター)³

大田市仁摩町馬路の琴ヶ浜は、日本3大鳴り砂の海岸として知られている.鳴り砂は円磨された石英細粒砂により主に構成され、海浜の汚濁にとても敏感であることから、近年の沿岸域における開発や環境汚染によって急速にその数を減らしつつある.山陰地方における鳴り砂海岸の有孔虫遺骸群集は、大型有孔虫 Amphistegina 属をほとんど排他的に多く含んでいるという特徴をもつ(京丹後市,2006;宮田ほか,2010;幸村・林,2013,2014など).林ほか(2014)は、2013年9月に琴ヶ浜湾内で底質調査を実施し、水深約7m以浅の砕波帯に鳴り砂が分布していることを示した.また、中央部の沖~浜方向の測線に沿って底質中の有孔虫群集を予察的に検討し、Amphistegina 属の相対頻度が砕波帯で急増していることを示した.

本研究では、2013年9月に琴ヶ浜湾内で採取された29地点の底 質試料、および2016年10月に採取された10地点の底質試料につい て詳細な有孔虫分析を行った.採取地点の水深範囲は約0.9~25m である.その結果、26属54種・亜種の底生有孔虫および2属2種

B22

フィリピン,レイテ島北西部に分布する新第三系の 浮遊性有孔虫群集と古海洋¹ 古澤明輝(島根大)²・間嶋隆一(横国大)³・加瀬友喜(神奈川大) ⁴・林 広樹(島根大)⁵・Yolanda M. Aguilar(フィリピン鉱山地質 局)⁶・Allan Gil S. Fernando(フィリピン大)⁷

フィリピン,レイテ島北西部の新第三系からは、冷湧水性の化学合 成貝類化石群集が報告されている(Kase et al., 2005;間嶋ほか, 2007).一方,浮遊性有孔虫の種多様性にも富んでおり,保存良い試 料を大量に得ることができる.この多様性は群集解析を行なう上で有 利と考えられる.古澤ほか(2016,日本地質学会講演)は、化学合成 貝類を産出した地点を含む約280mの層序区間から84層準について浮 遊性有孔虫生層序を検討し、年代指標種23種の層位分布に基づいて 下部鮮新統~更新統に対比した.本研究では、この豊富な試料を元に 群集解析を実施し、群集変遷から古海洋の復元を試みた.

上記 84 試料に2 試料を加えた 86 試料を検討し,85 種の浮遊性有 孔虫を検出した.浮遊性有孔虫の産出頻度,保存状況はともに良好だ が,区間の上部ではやや保存不良な層準も認められた.群集は下位層 準で Globoturborotalita obliquus および Neogloboquadrina の浮遊性有孔虫が検出された. 各種の相対頻度では *Pararotalia nipponica* が 20~40%と卓越し, 20%前後の *Quinqueloculina* spp. や 5~40%の *Amphistegina* 属, 5~15%の *Elphidium crispum* などを伴う. なお, 2013 年試料と 2016 年試料の間に群集の経時的な変化傾向は 認められなかった.

R モードクラスター分析の結果,砕波帯で急増する種群(砕波帯 種群)とそれ以外の種群とに明瞭に区分された.砕波帯種群には Eponides cribrorepandus, Amphistegina lobifera, Amphistegina radiata, Miliolinella circularisが含まれ,いずれも頑丈な殻を 持つことから,砕波帯の分級作用でも破壊・除去されずに選択的に 残されたものと考えられる.

¹Foraminiferal assemblages at Kotogahama Beach, a singing-sand beach of Oda City, Shimane Prefecture

²Hiroki Hayashi (Shimane Univ.), ³Shuta Iwao (Shimane Univ.), and ⁴Koji Seto (Shimane Univ.)

dutertrei Group の各種が、上位層準で Globigerinoides ruber が卓 越し、Globigerinoides sacculifer、Globigerinita glutinataなど を優占種として伴う. G. obliquus の急減とそれに伴う G. ruber の 急増は、Hirsutella margaritae の終産出層準(3.85 Ma)の直上から 開始し、Liogliog セクションの化学合成群集の産出層準直下で完了 する. 一方、N. dutertrei Group の急減は、化学合成群集の産出層 準より約40m 下位で認められる. こうした群集変化は、隣接する DSDP Site 292 で報告されている群集変化とほぼ対応しており (Sato et al., 2008)、西部太平洋暖水塊の成立過程との関連が示唆される.

¹Planktonic foraminiferal assemblages and paleoceanographic reconstruction of Neogene sequences distributed in the northwestern part of Leyte Island, Philippines. ²Akira Furusawa (Shimane Univ.), ³Ryuichi Majima (Yokohama National Univ.), ⁴Tomoki Kase (Kanagawa Univ.), ⁵Hiroki Hayashi (Shimane Univ.), ⁶Yolanda M. Aguilar (Mines and Geoscience Bureau, Philippines) and ⁷Allan Gil S. Fernando (Univ. of Philippines)

B23

白亜紀最寒期のメタン冷湧水炭酸塩岩の新発見 : 北東太平洋における寒冷中層水の証拠¹ 長谷川卓・Jenkins, R.G. (金沢大・自然)²・Haggart, W. J. (カナダ 地質調査所)³・後藤(桜井)晶子・岩瀬優也・中瀬千遥(金沢大・自然)⁴

クレーター型の炭酸塩岩が北米大陸太平洋岸のナナイモ層群ノー スアンバーランド層(NU層)の最上部付近に新たに発見された.これ は白亜紀最寒期にあたるカンパニアン/マーストリヒシアン(C/M) 期境界における海底メタン冷湧水起源と判断され,酸素同位体比古 水温により形成場の水温が10℃以下であったことがわかった.

カナダ・ブリティッシュコロンビア州ホーンビー島で発見された 岩体は約2mの長径を持ち,中央に凹部を持つ楕円状マウンドである. 地層は広大な海食台上にほぼ水平に露出し,過去の海底面がそのま ま水平に観察できる.切片と薄片を用いた微細構造観察により,こ の炭酸塩岩がほぼ海底面付近で形成されたことが解った.

このクレーター型炭酸塩岩の炭素同位体比(ð^{is}C)は、-45.5%から 4.9%までの非常に広い範囲をとり、微生物由来メタンの嫌気的酸化 が同炭酸塩岩沈殿に関する主要プロセスであることを示している. 酸素同位体比(ð^{is}0)も-9.8%から 0.7%までの非常に幅広い範囲に 分布している.特に微細構造の観察から最も初期に沈積したと考えられる部分では、δ¹⁸0値は0.6‰付近に集中していた.

NU 層の古水深は 200-400m 程度と推定され,中層水の発達する水 深に相当する.メタンハイドレートに由来する水は海水より正に偏 った δ^{18} 0 値を持つため,それが寄与すると δ^{18} 0 古水温は見かけ上低 い温度となるが,この古水深でメタンハイドレートが安定に維持で きるとは考えられない.従って得られた δ^{18} 0 は古水温を反映してい ると考えられる. δ^{18} 0 値 0.6%に対する古水温換算 (Erez and Luz, 1983, Geochim. Cosmochim. Acta, 47) 値は約9.7℃である.

C/M 境界は温室期にあった白亜紀の地球が最も寒冷化した時代で あり、本研究はこの時代の太平洋の中層水温が10℃を下回るまで寒 冷化していたことを初めて示した.

¹A cold methane seep-carbonate from the Nanaimo Group, British Columbia: record of cool intermediate water at mid-latitude Northeastern Pacific near the Campanian/Maastrichtian boundary ²Takashi Hasegawa, Robert G. Jenkins (Kanazawa Univ.), ³James W. Haggart (Geological Survey of Canada), ⁴Akiko S. Goto, Yuya Iwase and Chiharu Nakase (Kanazawa Univ.).

C01

南中国雲南省小濫田セクションにおける下部カンブリア系の 岩相および SSF 生層序¹

河野聖那・磯崎行雄(東大・総合)²・佐藤友彦(東工大 ELSI)³ 張 興亮・劉 偉(中国・西北大)⁴

SSF(small shelly fossil)はカンブリア紀の中でも最も初期の後 生動物多様化を記録しており、三葉虫出現前の生層序区分の基準 として用いられている.南中国雲南省には層序学的連続性の高い下 部カンブリア系が露出し、世界で最も詳しい下部カンブリア系生層 序が明らかにされている.これまで5つのSSF 群集帯が識別されて いるが、SSF 産出層の局所的な岩相多様性を反映して、群集帯境界の 正確な年代は未解明である.

雲南省東部の澄江地域の下部カンブリア系は、陸棚相の浅海成層 からなり、下位から順にリン酸塩岩主体の中誼村(Zhonyicun)部層、 ドロマイト主体の大海(Dahai)部層、黒色頁岩からなる石岩頭 (Shiyantou)層、そして泥岩からなる玉案山(Yu'anshan)層が累 重する.本研究では澄江地域の中でも中誼村部層下部がよく露出す る小濫田セクションにおいて、露頭および掘削試料の観察を行い、

C02

岐阜県舟伏山東部、美濃帯のペルム系円原石灰岩

佐野弘好(九大·理)²·太田泰弘(北九州市立自然史·歴史 博)³·杦山哲男(福岡大·理)⁴

岐阜県西部舟伏山地区には美濃帯のペルム系石灰岩(舟伏山層) が分布する.舟伏山層は、大型二枚貝(Shikamaia類)を含む高有 機質黒色層状石灰岩で特徴づけられる下部層(Pseudofusulina ambigua 帯),紡錘虫、ウミユリ、Tubiphytes類に富む灰白色塊状 石灰岩で構成される中部層(Parafusulina kaerimizensis帯),フ ズリナ、ウミユリを含む暗灰色塊状~厚層状石灰岩を主とする上部 層(Neoschwagerina margaritae-Yabeina globosa帯)に区分され ていた(Sano, 1988).今回、下部層・中部層の漸移相と考えられ るペルム系石灰岩層を見出した(円原石灰岩と仮称).

円原石灰岩は舟伏山地区東部,円原川左岸側山塊中腹に幅約0.3 km,延長約4kmで帯状分布する.層厚は200m前後と見積もられる. 連続関係は未確認であるが,本石灰岩は舟伏山層下部層,舟伏山層 中部層に挟まれて分布する.

本石灰岩は厚層~塊状の灰~暗灰色石灰岩からなり、やや有機質 である.この点では舟伏山層下部層に似るが、高有機質黒色石灰質 詳細な岩相記載および生層序学的研究を進めてきた結果,以下の事 柄が明らかになった.1)中誼村部層は中位に挟まれる約1.2 mの 黒色泥岩のユニットによって上部と下部に区分される.下部の層厚 は約30 mである.2)中誼村部層の最下部からは Anabalites 属な どの棒状個体を主体とする第一群集が産し,一方,上部からはカッ プ型の個体を含む第二群集が産する.3)両群集の要素が共産する 層準が下部の中位にある.

以上のことから,第一群集帯と第二群集帯との境界は,下部の中 位,約20 cmの区間に限定されることが判明した.従来,両群集帯 間の境界は必ずしも明示されていなかった.SSF が多産する小濫田 セクションにおいてさらに詳細な層序を解明することによって,群 集帯の区分自体についても再定義が可能となる可能性がある.

¹Litho- and SSF stratigraphy of the lowermost Cambrian of the Xiaolantian section in Yunnan, South China, ²Sena Kono, Yukio Isozaki (Tokyo Univ.), ³Tomohiko Sato (Tokyo Institute of Technology), ⁴Xingliang Zhang, Liu Wei(Northwest Univ., China)

頁岩薄層を挟まない点で異なる.本石灰岩の多くは石灰泥基質をも つpackstone および wackestone で,数層準で grainstone が挟まれ る.本石灰岩は多様な浅海生生物遺骸を含む. Shikamaia 類,緑藻 類,紡錘虫,ウミユリ,Tubiphytes 類に富み,サンゴ(本予稿集: 杦山・佐野・太田),石灰海綿などを少量含む.前2者が多産する 点では本石灰岩と舟伏山層下部層は共通する.しかし紡錘虫,ウミ ユリ,Tubiphytes 類は舟伏山層下部層にはほとんど含まれず,むし ろ中部層を特徴づける.また本石灰岩は Maklaya 属紡錘虫に富み, 舟伏山層中部層の下部とほぼ同年代(Kungurian~Roadian)と考え られる(本予稿集:太田・佐野・杦山).

以上の岩相・生相の特徴から円原石灰岩は静穏なラグーン内のや や滞水的・還元的な局所的凹地での堆積物と解釈できる,その凹地 の側方延長の mud flat~sand shoal では海水循環が良好で,舟伏山 層中部層の灰白色石灰岩が堆積したと考えられる.

¹Permian Enbara Limestone of Mino Belt in eastern Funabuseyama area, Gifu.

²Hiroyoshi Sano (Kyushu Univ.), ³Yasuhiro Ota (Kitakyushu Mus. Nat. Hist. Human Hist.), ⁴Tetsuo Sugiyama (Fukuoka Univ.)

C03

岐阜県山県市円原地域で発見された Parafusulina 属と Cancellina 属が共産する灰白色石灰岩の地質年代について¹ 太田泰弘(北九州市立自然史・歴史博物館)², 佐野弘好(九大・理)³, 杦山哲男(福岡大・理)⁴

岐阜県山県市を流れる円原川流域には、美濃帯に帰属するペルム 系の石灰岩が分布する. 演者らは、これまで円原川に至る谷(本流 EB1 セクション,南支流 EB2, EB3 セクション)を調査し、黒色石灰岩 と灰白色石灰岩の薄層を挟む暗灰色石灰岩から巻きの解けた殻 ("uncoiled shell")を持つ微小フズリナ類を発見し、その古生物 学的特徴を報告、その生息環境に関する考察を行ってきた. これまで これら暗灰色石灰岩からは、*Maklaya*属などの原始的な Neoschwagerinidaeを産出することから Cancellina(以後 C.)帯と認 定し、また Parafusulina(以後, Paraf.)属を産出することなどか らこれら暗灰色石灰岩の年代は Cisuralian – Guadalupian 境界付近 と考えられることを報告してきた. 今回、円原谷本流に沿う石灰岩を 再調査し、新たな追加試料(NF1425 から NF1435)を採集した. その結 果、谷の本流に沿い標高の高い地点から低い地点に向かい順次、堆積 が行われており、暗灰色を呈する石灰岩から灰白色を呈する石灰岩

に移行することが分かってきた.また鏡下観察から灰白色石灰岩 (NF1425からNF1427)はC. 属を伴うParaf. 属を優勢種とする石 灰岩であり,暗灰色石灰岩(NF1428~NF1435)は, Maklaya 属を優勢種 とする石灰岩であることが明らかになった. 暗灰色石灰岩は, これま での調査でも明らかな通り C. 帯に比較されると考えられる.一方, 西に隣接する舟伏山地域では灰白色石灰岩は、Paraf. kaerimizensis 帯に相当すると考えられている (Sano, 1988).また Paraf. 属と C. 属の出現順や年代論は、国際的にも異論があり、Paraf.属の出現は Artinskian まで遡るとする考えがある(A Concise Geological Time Scale2016, Elsevier). この度, 灰白色石灰岩に Paraf. 属に加えて C. 属の共産が確認されたことから円原谷本流の下流側に分布する灰白 色石灰岩 (NF1425 から NF1427)は、C. 属と Paraf. 属を産する Tethyan scaleのKubergandian(Global scaleのRoadianあるいはKungurian) の石灰岩とすることが、現状では妥当であると考えた. [引用文献] Sano, H. (1988) Permian oceanic-rocks of Mino Terrace, central Japan, Part II. Limestone facies. Jour. Geol. Soc. Japan, 94(12), p.963-976

¹The age of the grey-white limestones bearing the genera *Parafusulina* and *Cancellina* in Enbara, Yamagata City, Gifu Prefecture.²Yasuhiro Ota (KMNH), ³Hiroyoshi Sano (Kyushu University), ⁴Tetsuo Sugiyama (Fukuoka University)

美濃帯のペルム系円原石灰岩からイシサンゴ化石を発見

杦山哲男(福岡大・理)²・佐野弘好(九大・理)³・太田泰弘(北 九州市立自然史・歴史博)⁴

岐阜県舟伏山地区東部に分布する円原石灰岩(本予稿集:佐野・ 太田・杦山)から、イシサンゴと思われる枝状のサンゴ化石を発見 した.これまでチュニジアおよび南部中国の中部ペルム系陸棚相石 灰岩から、2種類のイシサンゴ先駆化石が報告されている(Ezaki, 1997;2000).今回、本邦付加体のパンサラッサ海起源礁石灰岩から、 より古いイシサンゴ化石が新たに発見された意義は大きい.

発見されたイシサンゴ化石は、最大直径 15mm, 長さ 50mm 以上の円 筒状サンゴ個体からなる枝状群体で、内部構造は外周を囲む壁 (septotheca),放射状に配列し縦方向に伸長する隔壁(septa), 外側に傾斜して隔壁間で泡状に重なり合う泡板(dissepiments)か らなり、刺胞動物門のサンゴ類としての基本構造を備えている.放 射状の隔壁は個体中心方向への長さの差から4から5のシリーズに 分類され、最も長い第1シリーズの6本(protosepta)を基本とし、 やや短い第2シリーズの隔壁がその間に現れ、更に前シリーズの間 により短い隔壁が分布する.推定されるこの隔壁挿入様式は、明ら

C05

カナダ, ブリティッシュコロンビア州南部 Cache Creek 村近郊の Marble Canyon 石灰岩から産出した *Neoschwager ina* 属について (予報)¹ 太田泰弘(北九州市立自然史・歴史博物館)²,

太田家弘(北九州市立百派史·歴史博物館), 佐野弘好(九大・理)³,牧野帆乃香(九大・理・院)⁴

北米西岸には、テチス型のフズリナ類を産する石灰岩が広域に露 出することが古くから知られている.今回、演者らは Cache Creek 村(カナダ、ブリテッシュコロンビア州)の中心部から西約20km のHat Creek地域に分布する Marble Canyon 石灰岩を調査する機会 を得た.本地域の石灰岩はパンサラッサ海の大洋性堆積物が付加し てできた Cache Creek コンプレックスの一部とされ、中部ペルム系 上部に比較されている(佐野ほか、2002).今回の調査で SCC7-Y0-013 地点および SCC8-Y0-015 地点から新たな試料を採集し、フズリナ類 を検鏡した.その結果 Y0-013 からは、Dawson(1879)によって Loftusia columbiana として新種記載された種が密集していること が確認された.本種の属の帰属に関しては Lepidolina(以後、L) 属、Yabeina(以後、Y.)属、Colania 属、Neoschwagerina (以後、N.) 属など、さまざまな取扱いがなされている.またこの種を含む石灰 かに古生代の四放サンゴのそれとは異なり、中生代以後のイシサン ゴ類と一致する. 枝状のサンゴ群体には所々にやや膨れたこぶ状部 が形成され、その内部では隔壁の放射配列がノウサンゴ状に伸長し、 その両端がそれぞれ別個体に分岐している.

岩相・生相の特徴から、円原石灰岩は静穏なラグーン内のやや滞 水的・還元的な局所的凹地での堆積物と解釈できる.円原石灰岩は、 ペルム系下部・中部境界付近(Kungurian~Roadian)に対比される (本予稿集:太田・佐野・杦山).分子生物学的には、イシサンゴ 類はホネナシサンゴ目(Corallimorpharia)から、共生藻を持たな い単体サンゴとして、オルドビス紀には分岐していたと考えられる. ペルム紀古世末のパンサラッサ海の深海域で、隠棲的に生き延びて きたイシサンゴが、礁斜面沿いに湧昇流に乗ってラグーン内へ流入 出現し群体化したとすると、イシサンゴの歴史をさかのぼる新たな 証拠の存在が明らかになったと言える.

¹ Discovery of a scleractinian coral from Permian Enbara Limestone in the Mino Belt.

²Tetsuo Sugiyama (Fukuoka Univ.), ³Hiroyoshi Sano (Kyushu Univ.), ⁴Yasuhiro Ota (Kitakyushu Mus. Nat. Hist. Human Hist.)

岩の堆積年代については、Capitanian あるいは Wordian に比較され ている. Y0-015 からは、サンゴ化石を産するほか、Dawson(1879)の columbiana 種の種内変異中の形態に類似するフズリナ種に加えて、 *Chusenel1a* 属の種、*N. minoensis* Deprat, 1914 に比較しうる種が 確認された. これらのことから、SCC8-Y0-015 は *N.* 属を伴う *Y.-L.* 帯の下部に、また SCC7-Y0-013 はその上位の *N.* 属を伴う *Y.-L.* 帯に比較されると考えられ、前者は Guadalupian の Capitanian と Wordian の境界付近を、また後者はその上位の Capitanian を見てい る可能性が出てきた. [引用文献] Dawson, G. M. (1879) On a new species of Loftusia from British Columbia. Quarterly Journal of the Geological Society of London, Extract, v. **35**-1, 69-75; 佐野弘好・井川敏恵・尾上哲治 (2002) カナダ, BC州南部Cache Creek テレーンの中部ペルム系 Marble Canyon 石炭岩の岩相(予報). 日本 地質学会第 109 年学術大会講演要旨, p. 88.

¹ Neoschwagerina from Marble Canyon limestone near Cache Creek, southern British Columbia, Canada: a preliminary study. ²Yasuhiro Ota (KMNH), ³Hiroyoshi Sano (Kyushu University), ⁴Honoka Makino (Kyushu University)

C06

異なる年代を示す放散虫共存の謎に挑む―美濃帯ペルム系 チャートでの事例¹ 桑原希世子(芦屋大・臨床教育)²・佐野弘好(九州大・理)³

微化石群集には、異なる年代の化石が混在して産することがある. このような混在群集の場合,古い年代を示す化石種の産出レンジの 上限が伸びたとみなすか,新しい年代の地層中に混入したとみなす かは化石層序学の大きな問題である. 滋賀県彦根市東部の美濃帯の ペルム系上部統チャート(霊仙セクション)の放散虫はその一例で ある. ここでは Lopingian を示す Neoalbaillella 属を含む群集(例え ば Ishiga et al., 1982)が産するいっぽう,Guadalupian を特徴づける Pseudoalbaillella 属や Follicucullus 属も産する(桑原, 1997).

今回,霊仙セクションのチャートの研磨片観察を行った結果,未 ~半固結変形と思われる構造を数多く見出した.本研究ではそれら が混在群集の成因を解く鍵になると考え,概要を予察的に報告する.

霊仙セクションのチャートは珪質頁岩薄層をほとんど含まず,ほ ぼ塊状・無層理である.チャートの多くは暗灰色であるが,研磨面 には灰色,明灰色,黒色部のほか,赤色化した部分も認められる. 未~半固結変形と思われる構造は石英脈や剪断面で切られており, 明らかに内部変形構造である.

変形には液状化した珪質堆積物の注入やそれに伴う角礫化, チャート薄層の分断がみられた. チャート角礫のサイズは数 cm~0.5 mm である. チャート角礫を含む基質状部はやや泥質・暗灰色で, 不均 質である. チャート角礫と基質状部の境界は明瞭である場合と漸移 する場合がある. このような産状は, 異なる年代の珪質堆積物の混 合の可能性を示す. またフッ酸腐食面の観察では, N. optima 帯の基 質状部に A. triangularis が, 分断された薄層には Follicucullus sp.が含 まれることを確認した.

層序的下位の未固結〜半固結珪質堆積物がなんらかの原因で移動 し、上位層に混入した.そのため、放散虫個体または角礫化した珪 質堆積物が上位層と混合して、異なる年代を示す放散虫の混在を招 いたとする作業仮説を提案する.今後は事例を蓄積するとともに変 形場や珪質堆積物の物性をふまえた変形機構の観点からの検討も必 要である.

¹Challenging the enigmatic co-occurrence of radiolarians of different ages—an example from the Mino Belt chert.

²K. Kuwahara (Ashiya Univ.), ³H. Sano (Kyushu Univ.)

C07

大分県津久見市網代島のチャートから産する前期および中期三畳紀 の前期を示す放散虫化石¹

指田勝男(筑波大生命環境)²・佐野弘好(九州大地球惑星)³・ 堀田千二海(九州大地球惑星)⁴・上松佐知子(筑波大生命環境)⁵

大分県津久見市の網代島周辺には多様な色調を示す層状チャート が分布する。このチャートの一部からはすでに Takahashi et al. (1998) により中期三畳紀 Anisian~Ladinian を示す比較的保存良好な放散虫 化石が報告されている。今回演者らは網代島対岸西側に分布する黒 色~灰色の層状チャートを採取・検討した結果、保存良好な前期お よび中期三畳紀の前期を示す放散虫化石を得ることが出来た。本報 告では、これら放散虫群集の内容とその年代について述べる。

前期三畳紀放散虫化石は網代島対岸の護岸壁周辺に分布する黒色 チャートより得られた。このチャートには暗緑色の珪質粘土岩が頻 繁に挟在される。得られた放散虫には Parentactinia nakatsugawaensis, P. okuchichibuensis, P. ramose, Archaeosemantis sp.等の針状骨格をもつ のもが主体をなし、Spongostephanidium longispinosum, Pantanellium? virgeum 等が含まれ、Hozmadia 属に比較される小型の Nassellaria や 五十川他 (1998) により葛生箕輪地域から報告された、先の尖った 棒状の複数の放射棘と多角形の殻を持つ放散虫(Spumellaria?)が特 徴的に含まれる。Hozmadia ozawai の産出が確認できないこと等から、 この放散虫群集は従来知られている Parentactinia nakatsugawaensis 帯の下部を示す可能性がある。一方、中期三畳紀の前期を示す放散 虫は前期三畳紀放散虫を含むチャートの東北東約 100 m に露出する 灰色層状チャートである。このチャートからは Eptingium nakasekoi, Parentactinia nakatsugawaensisis, Archaeosemantis cristianensis, Hozmadia ozawai, Tirassocamape eruca, Zevius yaoi, Poulpus nishimurae, Muelleritortis? antiquum, Pseudostylosphaera sp. A of Sugiyama (1992) 等の豊富な放散虫が得られた。これらの放散虫は Sugiyama (1997) の Ansian 前期を示す Eptingium nakasekoi (TR2A) 帯に比較できる群 集である。今回検討したチャートについてコノドントの産出は確認 出来てはいないが、コノドントの検討と、放散虫に関する既存の報 告との比較から、これらチャートのより詳細な年代の検討を試みる。

¹ Early and early Middle Triassic radiolarians from Ajirojima Island, Tsukumi City, Ooita Prefecture, Kyushu.

²Katsuo Sashida (Tsukuba Univ.),
 ³Hiroyoshi Sano (Kyushu Univ.),
 ⁴Chifumi Hotta (Kyushu Univ.),
 ⁵Sachiko Agematsu (Tsukuba Univ.)

C08

手取層群における手取型植物群のはじまり¹ 山田敏弘(金沢大・理工・自然システム)²

日本のジュラ紀後期~白亜紀前期の植物群は、手取型と領石型に 大別される.手取型植物群は手取層群のみから報告され、イチョウ 類、葉の大きな針葉樹類、豊富なシダ類などを含む.この組成は、 本植物群がシベリア型の植物群であり、湿潤な環境に生育したこと を示唆する.一方、領石型植物群は葉の小さな針葉樹類や葉の厚い ベネチテス類のほか、多様なシダ類も含む.そのため、乾季を伴う 気候下に生育したと考えられている.また、領石型植物群は西南日 本外帯や東北日本太平洋側の堆積物から報告されている.

従来,手取層群(広義)では、ジュラ紀中期〜白亜紀前期を通じ て、手取型植物群が生育したと考えられてきた.しかし最近、ジュ ラ紀カロビアン期にはテチス沿岸型の植物群が生育していたことが わかった.また、白亜紀前期でもバレミアン期以降になると、領石 型の指標種が混じるようになることがわかってきた.つまり、手取 層群においても、時代とともに植物相が変化していたと考えるのが 自然である.

それでは、手取層群において、いつから手取型植物群が生育しは

C09

北海道北東部網走地域、能取湖周辺の新第三系から産出した 渦鞭毛藻シスト化石群集

林 圭一²·川上源太郎³·廣瀬 亘⁴(道総研・地質研究所)⁵ 渡辺真人⁶(産業技術総合研究所)⁷

北海道北東部網走地域の能取湖周辺には、広く新第三系の海成層 が分布している. 能取湖東岸地域の新第三系は、珪藻化石層序によ り、中新世〜鮮新世とされる(沢村・山口,1961;秋葉,1979;小泉, 1988;嶋田,1993 など).一方,能取湖西岸に分布する能取層から は珪藻化石の産出が乏しく,詳細な地質年代が不明であった.

本研究では、能取湖周辺に分布する新第三系能取層、呼人層の渦 鞭毛藻シスト化石を検討し、層序・年代対比を試みた.

本地域から産出した渦鞭毛藻シスト化石群集は, Lejeunecysta spp., Operculodinium spp., Spiniferites spp. を主体とし, Achomosphaera spp., Bitectatodinium spp., Selenopemphix spp. などを伴う.この群集は,道 内だけではなく,秋田,新潟,北太平洋(ベーリング)の新第三系 との共通種が多い(Matsuoka, 1983; Matsuoka et al., 1987; 小布施・栗 田, 1999; 栗田ほか, 2000 など).

能取湖西岸地域の"能取層"から産出する渦鞭毛藻シスト化石群

じめたのだろうか.これまでに報告されている最古の手取型植物群 は、石徹白亜層群の葦谷層ないし山原層(ジュラ紀チトニアン期? 〜白亜紀ベリアシアン期)と思われる堆積物から報告された化石群 集(Kimura, 1958)である.しかし、手取型植物群が"九頭竜亜層群" 最上位に及ぶのかは不明だった.そこで、私は、"九頭竜亜層群" 有峰層から植物化石を得ることにより、この問題の解決を試みた. 有峰層は、アンモナイト群集により、ジュラ紀オックスフォーディ アン期中期の堆積物と考えられている.

有峰層からはソテツ類の Ctenis sp. や Ptilophyllum sp. が産出し, これらの植物は葉が厚いという特徴があった. これまでに得られた 植物化石は多くはないものの,有峰層の植物化石群集は手取型植物 群と全く異なる. すると,手取層群はキンメリッジアン期の堆積物 を欠くため,手取層群における手取型植物群の出現は,早くともチ トニアン期ということになる. すなわち,石徹白亜層群の堆積開始 後に手取型植物群が生育しはじめたと考えられる.

¹When Tetori-type flora was started to grow in land of the Tetori Group?

²Toshihiro Yamada (Kanazawa Univ.)

集は、Cleistosphaeridium ancyreum, Lejeunecysta hyalina など漸新世から産出する生存期間の長い種からなり、能取湖東岸の能取層(後期中新世)の群集とは明らかに異なる. さらに、能取湖西岸の"能取層"に挟在する凝灰岩中のジルコンから U-Pb 年代:20.1±0.3 Ma, FT 年代:15.5±1.2 Ma (同一のジルコン粒子を測定)が得られている

(産総研,未公表資料).このことから,能取湖西岸の"能取層" の堆積年代は少なくとも中期中新世以前であり,従来対比されてい た能取湖東岸の能取層よりも古い地層と考えられる.

一方,能取湖の湖口西側の海岸沿いに分布する呼人層からは, Bitectatodinium tepikiense, Spiniferites spp., Operculodinium spp. を主体 とする群集が産出する.これと共通の群集は能取湖東岸に分布する 上部中新統の能取層から産出するため,能取湖西岸の呼人層は,東 岸の能取層と同時期に堆積したと考えられる.

¹Dinocyst assemblages from the Neogene sequence around the Notoro Lake in Abashiri, Northeastern Hokkaido, Japan.

²Keiichi Hayashi, ³Gentaro Kawakami, ⁴Wataru Hirose ⁵(Geol. Serv. Hokkaido, HRO), ⁶Mahito Watanabe ⁷(AIST)

C10

 手取層群有峰層から見つかったジュラ紀アンモナイト
 Perisphinctes (Kranaosphinctes) matsushimaiのミクロコンクと みられる新標本¹
 蜂矢喜一郎(東海化石研究会)²・佐藤 正(筑波大学名誉教授)³・ 山田敏弘(金沢大・理工)⁴・水野吉昭(東海化石研究会)⁵

Perisphinctes(Kranaosphinctes)matsushimai は本邦で初めて 記載されたジュラ紀アンモナイトの一つで(横山,1904),本邦に おける Oxfordian の指標種である(Sato & Westerman, 1991). 私たち は富山市有峰の手取層群有峰層で本種を多数含む化石群集を発見, 一部を既に報告した(Sato & Yamada, 2014). その後,採集標本のク リーニングを進めた結果, P. (K.) matsushimai 群集中にラペットを 持つ標本 2 点が得られた.これらの標本は Otosphinctes の一種では ないかと考えられる. 多数の標本について Kranaosphinctes 属と Otosphinctes 属を調べた Glowniak(2002)は、Kranaosphinctes 属 は大型で単純な殻口をもつ macroconch であり,これに対応する microconch は Otosphinctes 属であると考えた.

今回有峰層から発見されたラペットを持つ標本は、ラペットを伴うことを除き、以下の特徴から P.(K.) matsushimai に同定される:

C11

北西太平洋地域における Hyphantoceras(アンモナイト目: ノストセラス科)の系統分類学的研究¹ 相場大佑(三笠市立博物館)²

Hyphantoceras 属は中生代白亜紀後期チューロニアン期からカン パニアン期まで生存した,いわゆる異常巻アンモナイトの1属であ る.肋の発達した殻表面には,周期的に 2~4 列の突起が現れる. 日本を含む北西太平洋地域からはこれまで 5 種が記載されたが,こ れらの種間系統関係は不明であった.本研究では,北海道古丹別地 域・小平地域の露頭から新たに採取した Hyphantoceras 属に同定さ れる標本の層序的な分布を調べ,殻形態および殻表面装飾の詳細な 観察・比較を行った.その結果,Hyphantoceras orientale は H transitorium よりも上位の層準から産出することが明らかとなっ た.また,2種の中間的な特徴を持つ個体(Hyphantoceras sp.)が両 種の産出層準の間から産出した.これらの層序的な分布,殻表面装 飾の類似および殻形態の遷移的な変化から,H transitorium から Hyphantoceras sp.を経由し,H.orientaleが生じたと推測される. 続いて,本研究で新たに得られた標本に加え,これまで記載され た 5 種のタイプ標本の殻表面装飾を観察した結果,これまで ゆる巻きの螺管断面は楕円,1巻きあたり3-4本の斜め方向の深い くびれを持つ.くびれは肋と斜交,臍の辺縁において2本が結合し た肋を伴う.肋は明瞭かつ直線的で,密に並び(40本/一巻),たい ていは腹-側面縁で2分岐するが,肋間にはしばしば単肋が挿入.

一方,これらの2標本の直径は平均で75mm なのに対し,ラペット を持たない個体には直径が130mm に達するものがある (e.g., NMNS PM23908). つまり,ラペットを持つ個体は、ラペットを持たない個 体に比べて,殻サイズが小さい.

以上の特徴から、ラペットを持つ個体は、Otosphinctes 属に分類 され得る.従って、単一群集中にKranaosphinctes型とOtosphinctes 型が存在することになり、有峰層のP.(K.) matsushimai 群集は Glowniak (2002)の推論を支持する.

¹Possible microconchs of *Perisphinctes* (*Kranaosphinctes*) *matsushimai* from the Upper Jurassic Arimine Formation, Tetori Group.

²Kiichiro Hachiya (Tokai Fossil Society), ³Tadashi Sato (Prof. Emer., Tsukuba Univ.), ⁴Toshihiro Yamada (Kanazawa Univ.), ⁵Yoshiaki Mizuno (Tokai Fossil Society)

Hyphantoceras 属と呼ばれていたものは、異なる殻表面装飾によっ て特徴付けられる2つのグループ(以下,グループ1およびグルー プ2)に分類されることが明らかになった.グループ1は比較的高 頻度な突起肋により特徴付けられ、H transitorium、H orientale、 H oshimai, Hyphantoceras sp. がこの特徴をもつ.化石記録より判 断すると、このグループはおそらく北西太平洋地域のみに生息して いたものと考えられる.続いて、グループ2はヘラ状の突起肋と、 その間に発達する突起のない細肋で特徴付けられ、北西太平洋から 産出する種ではH venustumとH heteromorphumがこの特徴を有す る.また、本属のタイプ種であるH reussianumはグループ2の特 徴を持つ.したがって、Hyphantoceras 属はグループ2に限定すべき で、これとは異なる特徴をもつグループ1は別属として扱うのが適 切であると思われる.グループ1の特徴は、ヨーロッパと北アメリ カで産出する Tridenticeras 属の特徴と共通する点が多く、両者が 関連している可能性がある.

¹Phylogenetic and taxonomic study of the genus *Hyphantoceras* (Ammonoidea: Nostoceratidae) in the northwestern Pacific realm ²Daisuke Aiba (Mikasa City Museum)

C12

放散虫をもちいた地質多様性の評価指標(RADIX)の提案¹ 松岡 篤(新潟大・理)²

地質の多様性はある地域の地質特性のひとつとしてとらえられる. 多様性を構成する要素は、地層・岩石の起源や成因、形成年代、変 形様式などいくつかが考えられる. これまでに、地質多様性を評価 する簡便な指標は示されていない. ここでは地層形成年代の多様性 を表現する方法のひとつとして、放散虫をもちいた指標を提案する. カンブリア紀に最古の化石記録をもつ放散虫は進化を遂げながら 存続し,現在もあらゆる海域に浮遊性生物として生息している.放 散虫は、顕生累代全般にわたり化石記録をもつ数少ない分類群であ るといえる、多様度指標は放散虫のこの特質を活かしたものである. 顕生累代はカンブリア紀から第四紀までの 12 の紀に区分されて いる.この12を分母とし、化石記録がある紀の合計数を分子に示す. この表現形式を多様度指標として定義する. 放散虫を使った年代多 様度なので、放散虫年代多様度指標(Radiolarian Age Diversity Index: RADIX)とよぶことにする. 放散虫化石は地層そのものの堆積 年代を示す場合と、堆積年代よりも古い年代を示す場合とがある. 地層中の礫やより細粒の砕屑粒子が放散虫化石を含んでいたり、化

石自体が再堆積粒子であったりするケースが後者の例であり,後背 地の多様性を示しているといえる.

RADIX 適用の一例として,新潟県のジオパークを取り上げる.糸 魚川ユネスコ世界ジオパークにおける RADIX は 4/12 である.ペルム 紀の放散虫化石が地層そのものと礫から得られているのに対して, シルル紀,トリアス紀,ジュラ紀の放散虫化石は、すべて礫岩中の 珪質岩礫から産出している.佐渡ジオパークにおける RADIX は,5/12 である.地層からペルム紀,トリアス紀,ジュラ紀,新第三紀,第 四紀の放散虫化石が得られている.

RADIX のような指標を提案した背景には、学術研究の成果として 蓄積される化石産出情報を、古生物の普及に活用しようという狙い がある.新潟で開催される第15回国際放散虫研究集会(InterRad 15) の際(2017/10/22-27)には、こういった指標の提案に対する世界の 研究者からのコメントを期待している.

¹ Proposal of an index indicating geological diversity using radiolarians—Radiolarian Age Diversity Index (RADIX).
² Atsushi MATSUOKA (Niigata University)

熱帯指標の現生放散虫 *Tetrapy/e* とその近縁分類群との区別¹ 鈴木紀毅(東北大・理)²・张兰兰(南海海洋研究所)³

幅広いリボンのような構造が直交交叉した特徴を持つスプメラリ ア目 Pylonioidea 超科の放散虫には、*Tetrapyle* 属など熱帯〜亜熱 帯の透光層で多産する分類群を含む。日本近海では*Tetrapyle octacantha* Group として複数種・属を一括して古海洋研究に用いて いるが、そのようにまとめると南シナ海やインド洋では9割の個体 が「1種」になってしまい、広域のメタ分析が出来ない問題が生じ ている。このように group と一括する理由は、中国で使われている Pylonioidea の種区分を適用することが困難なことも一因である。 その提唱者から直接指導を受けた张と、一括してきた鈴木とが多角 的に議論を重ね、一定のコンセンサスが得られたので報告する。

最初に設定した制約は透過式顕微鏡で多数の個体を区分できることであり、そのために必要な形質を整理した. Tetrapyle 類は同じ 個体でも観察方向によって大きく姿を変える. RC GEAR が作成した テトラピレ模型とその未公表データ(おもにミクロワールドサービ ス社提供)を使って、「見掛け」と「骨格構造から規定される絶対 方向」の二つ形態認識空間を明確に区別して骨格を見なければなら

C14

Two new species from the family Pontocyprididae (Ostracoda) from turtle bones in Tsukumo Bay, Noto, Japan Prerna CHAND (Kanazawa University), Takahiro KAMIYA (Kanazawa University), Robert JENKINS (Kanazawa University)

In December 2013 the carcass of a loggerhead turtle was deployed in the Tsukumo Bay, Sea of Japan waters to study colonization processes associated with the introduced habitat. After 19 months portions of the turtle bones were retrieved. Among other scavengers (such as ciliates, gastropods and polychaete worms) two species of ostracods belonging to the family Pontocyprididae were extracted from the bones: *Pontocypris* sp. and *Schedopontocypris* sp. Although species of this family has been reported from special habitats before (such as being commensal on starfish and deep-sea vent communities), this is the first time it has been found to inhabit the cancellous bones of a sea turtle carcass. *Pontocypris* sp. is characterized by: sub-ovate carapaces, slight posterior dorsal angle and rounded anterior ends, tapered posterior ends with prominent postero-dorsal slopes. Adductor muscle scars consists of five scars clustered together (3 anterior, 2 posterior rows). Fifth limbs of males are asymmetrical with

ないことを突き止め,空間座標を2種類定義した.絶対座標の特定 に必要な骨格の中心構造は,補正環付き対物レンズを駆使すること で識別できることが明らかとなった.

ここで述べた空間座標と対物レンズの設定に注意をはらってイン ド洋の表層堆積物の全部の Pylonioidea 個体を種レベルで区分した ところ、10 属 36 種(うち、2 属 21 種が新分類群)を識別できた. 演者らはこの区分方法で全文献をあたり完全なシノニムリストを作 成した. 厳密な意味で T. octacanthaは太平洋やインド洋では稀で、 Tetrapyle stenozona はインド洋には生息しない、などの地理分布 の違いを見いだすことが出来た.

現在は、いくつか区分が曖昧な分類群について、種区分が適切で あるかを検証しているところで、若干種数は減る見込みである.し かし地域差が検出できたことで、熱帯~亜熱帯の透過層のなかでさ らに一段と精度が高い環境指標としての役割が Pylonoidea に期待 される.

¹ Practical classification of tropical indicated radiolarians *Tetrapyle* and related taxa

²Noritoshi Suzuki (Tohoku Univ.), ³Lanlan ZHANG (CAS, China)

terminating hooks on a short quadrate segment and conspicuous endites near its base comprising of 6-8 setae. Female fifth limbs are symmetrical, consisting of three endopodite segments and at least 5 endite setae. Hemipenes elongated, ejaculatory ducts forming a loop near the distal ends. Males equipped with a pair of ejaculatory organs shaped like an up-side-down bottle - t-shaped bases that connect to a narrow passage that widens in the middle and tapers into a tube. Characteristic features of Schedopontocypris sp. include: ovate carapaces with rounded posterior and anterior ends and convex dorsal edges. Five adductor muscle scars arranged in a cluster (3 anterior, 2 posterior rows). Asymmetrical fifth limbs of males consisting of stout terminating hooks supported on short quadrate segments with blade-like setae at proximal ends and at least 7-8 endite setae. Female fifth limbs symmetrical, with at least 7 endite setae and 3 endopodite segments. Hemipenes are irregularly shaped with slender distal projections, ejaculatory ducts U-shaped near distal ends and forming a single loop near proximal end. Male ejaculatory organs are sac-like with pinched mid regions.

C15

中新統師崎層群産ハダカイワシ科魚類化石の保存状態 根之木久美子(九州大・理)・前田晴良(九州大・総博)・田中源 吾(金沢大・教養)・岩井秀夫(物質・材料研究機構)・遠藤広光 (高知大・理工)

愛知県知多半島南部に分布する中新統師崎層群からは、発光器や 皮膚などの軟体部の痕跡が保存された深海魚の化石や、茎や腕がつ ながったままのウミユリ化石など、例外的な保存状態の動物化石群 が多く産出しており、深海生動物の化石鉱脈として注目されている. その中で演者らは、軟体部保存を示すハダカイワシ科魚類化石: Protomyctophum sp.の発光器に着目し、現生ハダカイワシ標本と比 較観察を行って化石に残された発光器の構造や保存状態を調べた.

師崎層群は、下位より日間賀層・豊浜層・山海層・内海層よりな り、凝灰質の砂岩と泥岩の互層を主体とする漸深海相である.この うち泥岩は、棘のついた Brissopsis sp.等の原地性の化石を含む. 一方、砂岩は、多量の木片とともに離弁の二枚貝やハダカイワシ等 の異地性の化石を含む重力流堆積物である.発光器や筋肉等の軟体 部の痕跡が残ったハダカイワシ科の Protomyctophum sp.は、山海層 中にはさまれる凝灰質砂岩中より植物片とともに産出する.魚化石

C16

米国ネバダ州 T/J 境界直上から産する Psiloceras の保存と産状¹ 前田晴良(九大総博)²・重田康成(国立科博)³・ 唐沢與希(三笠市博)⁴

米合衆国ネバダ州ミネラル郡東部の Muller Canyon には、上部三 畳系ガブ層(石灰岩,砂岩泥岩互層)と下部ジュラ系サンライズ層 (砂岩泥岩互層)よりなる T/J境界連続セクションが露出する.こ のうちサンライズ層の基底より約8m上位にはさまれる層厚約15 cm のシルト質細粒砂岩層から、北米コーディレラの最下部ジュラ系を 特徴づける Psiloceras pacificum が多産する.この砂岩単層の主部 には級化層理,最上部には平行葉理が発達し、全体が炭酸塩で固結 されている.P. pacificumは, Caloceras crassicostatumや, Chlamys, Nucula の離弁殻とともに砂岩単層の中部に層理面と平行な姿勢で 埋没している.殻サイズは直径 60-120 nm の中~亜成年殻が多く, 直径 20 nm 以下の幼年殻は稀である.殻口は壊れて顎器は見つかっ ておらず,植物片は少ない.一方,周囲の泥岩には平行葉理が発達 し,自生の底生動物化石や生物撹拌は見られない.よってこれらは、 低密度の重力流によって、細粒砂と一緒に貧酸素水塊が発達した泥 底に流れ込んだ異地性の化石群であると考えられる. は砂岩上部の平行葉理が発達したユニットに層理面と並行な姿勢で 含まれる. 圧密を受けて扁平に潰れているが,皮膚の輪郭が茶色い 印象として残され,眼・発光器は黒色の物質として保存されている. 母岩の XRD 分析を行った結果,多量の火山ガラスに混じって斜プチ ロル沸石 (clinoptilolite) が含まれることが明らかになった.

現生ハダカイワシの発光器は、1)発光器の表面を覆う鱗、2) 発光器内部の反射板(reflector)、3)色素(pigment)の3構造 に大別できる.SEMによる比較観察の結果、師崎層群産の魚類化石 にもこの3構造が明瞭に保存されていることが分かった.また、 TOF-SIMS分析から、反射板、色素ともに元の有機物が保存されて いることが明らかになった.死後、速やかに腐敗・分解される発光 器が、明瞭に化石として保存された例は、これまで知られていなか った.一方、SEM-EDSの結果、反射板やメラニンの一部の表面は沸 石で覆われている可能性がある.今後、火山ガラスやそれが変質し た斜プチロル沸石が、遺骸の軟体部保存にどのように関わったのか を解明する必要がある.

P. pacificumの螺環は、住房が圧密で潰れているほか目立った破 損が少なく、気房部は 3D で保存されている。また殻表面の成長線ま で観察できるなど、表面的な保存状態は良好である。しかし殻内部 を観察すると、体管や隔壁の大半が消失し、二次的に晶出した方解 石スパーが気房内全体を埋める特異な保存(=hollow phragmocone) を示すことがわかった。埋没後、気室内で間隙水にさらされた隔壁 が、続成初期の段階で溶解し去ったものと考えられる。

Psiloceras 属は、ジュラ系最下部のヘッタンギアン階を特徴づけ、 しかもジュラ紀以降に放散したアンモナイト亜目のルーツと見なさ れており、P. pacificumが T/J境界連続層序から多産する本セクシ ョンは非常に重要な意味を持つ.他方、T/J境界付近では岩相が漸 移し、上部三畳系を特徴づける Choristoceras や Cochloceras (異 常巻)に混じって、ジュラ紀型のアンモノイドも共存している可能 性があることがわかった.よって、今後の精査が必要である.

¹Taphonomy of *Psiloceras* shells occurring just above the T/J boundary in the Muller Canyon Section, Nevada, USA. ²Haruyoshi Maeda (Kyushu Univ. Mus.), ³Yasunari Shigeta (Natn. Sci. Mus.), ⁴Tomoki Karasawa (Mikasa City Mus.)

C17

汽水湖における石灰質殻の溶解に関する実験検証¹ 野村律夫(島根大・教育)・瀬戸浩二(島根大・汽水セ)²

【背景】演者は、汽水域における石灰質有孔虫の殻の溶解現象に 注目している。殻の溶解がみられる有孔虫の産出は、地球温暖化の ようなグローバルな環境変動を反映しているようにもみられるが、 汽水域に特有な地域的影響についても考慮する必要があり、複雑な プロセスが関係していると考えられる。水域の酸性化は、将来の生 態系に深刻な影響を及ぼすものと考えられ、海洋酸性化はすでに社 会的な問題となっていることはよく知られている。しかし、閉鎖性 汽水域で起こっている問題にも注目する必要があり、その原因究明 と対策が必要とされる。

これまでの堆積物コアに基づく研究から、汽水域の有孔虫からの 溶解は、堆積速度が堆積物中の間隙水の酸性化の程度に影響してい ると考えられる。有機物の堆積速度と明確な相関がみられ、有機物 の負荷が高いほど溶解個体の産出が多いことをすでに指摘した。一 方で、堆積速度のみによって比較した宍道湖の有孔虫遺骸の例では、 極めて遅い堆積速度のコアにも、溶解を示す個体を含むとともに、 多くの有孔虫個体を産出している。 今回, 殻の溶解の主要な過程を解明するために, 堆積物と有機物 の酸化過程に注目して,以下のような実験を行って確認した。 【研究方法】

(1) 宍道湖および中海のそれぞれの湖心部から,不攪乱柱状採泥 器を用いて表層下 20m までの堆積物とその直上水を採取した。シジ ミの貝殻片を堆積物表面の上,約 10cm につるし,直上水を約3ヶ月 間,室内の空気で曝気した。また,堆積表面に炭酸カルシウムを散 布した場合としない場合の比較も行った。

(2) 宍道湖と中海に貝殻片を1ヶ月間,水中に垂下し,その溶解 量の月別変化を求めた。

【現在得られている結果】

(1) 堆積物を用いた溶解実験では、宍道湖から採取した水中の貝 殻片は、中海のそれに比較して溶解が明瞭であった。

(2)湖水中における垂下実験においても, 貝殻片の溶解の程度は, 宍道湖水で顕著であった。

 $^{1}\!\mathrm{Experiments}$ of carbonate-mineral dissolution in brackish water.

²Ritsuo Nomura (Shimane Univ.) •Kouji Seto (Shimane Univ., Kisui)

C18

球状炭酸塩コンクリーションの形成条件¹ 吉田英一(名大・博物館)²・村宮悠介(名大・環境学研究科)³

海成堆積岩には、球状の炭酸塩コンクリーション (主に CaCO₃を 成分とする)が普遍的に産出する. その形状は、多くの場合、球状を 成しかつ非常に緻密で風化にも強く、またその内部から保存良好の 化石を産する. しかし、なぜ球体なのか、なぜ保存良好な化石を内 蔵するのかなど、その形成プロセスも含めて具体的な事例を基に議 論されてきた研究例は非常に少ない.

それら炭酸塩球状コンクリーションの成因や形成速度を明らかに することを目的に、国内外の試料を用いて、産状や形態、化学成分 などのバリエーション解析や形成プロセスのモデル化を行っている. それらの研究試料のうち、これまで富山県八尾地域の海成層(約 15Ma)から産出したツノガイ(*Fissidentalium* spp.)を核とするコン クリーションや、知多半島の師崎層群(約 16Ma)より産出するス ナモグリ(*Callianassa* spp.)のツメを核とするコンクリーション, 北海道天塩川流域の中川層群(白亜紀後期)中から産出するコンク リーション(unknown fossil を内包)の解析を進めてきた.それらの 球状コンクリーションに共通する性質は、コンクリーション内部の CaCO₃ 濃度がほぼ一定で、またδ¹³C が低く有機物を起源とするこ とである.このようなほぼ均一の元素プロファイルは、中心からの HCO₃の拡散と周辺の Ca²⁺との単純反応・沈殿モデルで説明するこ とはできない.これは、コンクリーション内の均一な元素濃集・沈 殿が、コンクリーションの縁(反応縁)においてのみ生じつつ、コ ンクリーションが成長したことを示す.このことから、この反応縁 の幅(L cm)と、堆積物中の拡散係数(D cm²s)及び反応速度(V cm/s) との関係(D=LV)で表され、海成堆積岩中に見られる球状炭酸塩 コンクリーションの成長速度及び形成条件を表す「拡散成長速度ダ イアグラム (Diffusion and growth rate cross plot diagram)」を提示する ことができる.

このダイアグラムは、これまでの複数の異なったコンクリーションの事例も踏まえ、海成堆積物中で形成された球状コンクリーションの形成速度を汎用的に見積もることに適用可能である.

 $^{1}\mathrm{Constrained}$ formation condition for spherical carbonate concretions

²Hidekazu Yoshida (Nagoya Univ.), ³Yusuke Muramiya (Nagoya Univ.)

秋田県男鹿市福米沢 SK-26D 井の更新統有孔虫化石群集と古環境 三輪美智子・江森良太郎・平松力(石油資源開発㈱ 技術本 部 技術研究所)

福米沢油田は、秋田市の北方約40kmの旧八郎潟西岸部の男鹿市、 申川油田の東部に位置し、女川層上部を貯留層としている。福米沢 地域には層厚が500mを超える厚い更新世の北浦層および脇本層が 分布するとされるが(鹿野ほか、2011)、微化石分析の実施された 坑井が少ない。本井の中〜上部の岩相は下位からシルト質泥岩、シ ルト岩および砂質シルト岩が主体である。

今回は、本坑井(TD:1600m)の中〜上部の更新統のカッテングス試料 の底生有孔虫化石分析結果について報告する。底生有孔虫化石は217 〜5920 個体と多く、特に下部で多産し、石灰質種がほぼ100%であっ た。分析区間のうち上部は、Buccella inusitata、Cassidulina norcrossi および Cribrononion clavatum を主体とすることから (Cribroelphidium yabei 帯を、下部は Uvigerina akitaensis, Angulogerina kokozuraensis および Epistominella pulchella を主 体とすることから Uvigerina akitaensis 帯を, それぞれ設定した。 さらに下部から, B. inusitata, C. norcrossi, Cassidulina reniforme, C. clavatum, Pullenia apertule, Oridorsalis umbonatus を共産し, 黒潮系種とされる Bolivina robusta および Bulimina marginata を稀産した。これら群集に基づき,本井の古環境は上部漸 深海帯から上部漸深海帯〜浅海帯へ浅海化したと推定された。さらに, 黒潮系種等の産出から,分析区間は,寒冷な水塊下の堆積物であり, かつ本区間は黒潮に対応するような温かい表層水塊の影響が断続的 に強まったと推定された。

参考文献

鹿野ほか(2011)戸賀および船川地域の地質(第2版).地域地質研 究報告(5万分の1地質図幅),産総研地質調査総合センター,123p

The Pleistocene foraminiferal assemblages and paleoenvironments from Fukubesawa SK-26D well, Oga City, Akita Prefecture. Michiko Miwa, Ryotaro Emori, Chikara Hiramatsu (JAPEX Technical Division, Research Center)

P02

ベーリング海の溶存酸素極小層における最終氷期底生有孔虫群集¹ 大串健一²・塙 周祐³(神戸大・人間発達環境学研究科)

本研究の対象海域であるベーリング海は、ベーリング海峡を通じ て北極海とつながっており、高緯度の気候変動の影響を受ける海域 であり、深層水循環の終着点でもあり、深層水循環の始点である北 大西洋と大気循環を通じてつながっていることから、過去の地球環 境変動を研究する上で重要な海域である. さらに、ベーリング海は 氷期には北太平洋中層水の形成域であった可能性も指摘されている. ベーリング海において中・深層水の循環変動があったのなら大気-海洋間の二酸化炭素交換にも大きく影響を及ぼしたと考えられる. このためベーリング海の中層水環境を復元することは古海洋学的意 義がある.最終氷期には北半球高緯度において急激な温暖化が繰り 返し起こったとされる. この気候変動はダンスガード・オシュガー サイクルと呼ばれており、最終氷期に相当する約10万年前から1 万4千年前までに24回の急激な温暖化イベントがグリーンランドア イスコアに記録されている.この繰り返し訪れた一時的な温暖期は, 亜氷期 (Interstadial) と呼ばれている (Dansgaard et al., 1993). 本研究では、ベーリング海北部漸深海帯の水深1,002mから採取し

P03

京都市北部市原地域の丹波地体群における放散虫年代¹ 戸城元甫(京都大・理)²・山崎あゆ(京都大・理)³ ・鈴木寿志(大谷大)⁴

木村ほか(1998)によると,京都市市原地域は丹波帯 II 型地体群灰 屋コンプレックスに属する.また,同コンプレックスにおいて,産 出した放散虫化石から,層状チャートはペルム紀からジュラ紀古世, 珪質頁岩はジュラ紀中世中頃,シルト質泥岩はジュラ紀を示すとさ れている.しかし,この研究で用いられた放散虫化石の種数は少な く,また一部は属のみから年代推定されている.本研究では,木村 ほかがジュラ紀放散虫を報告した地点より 1.5km 西方の鞍馬川河床 にて調査を行ったところ,珪質泥岩と黒色泥岩から保存良好な放散 虫化石が多数産出した.これら放散虫化石の同定により,従来と異 なる地質年代が明らかとなったので,ここに報告する.

珪質泥岩試料から, Hsuum hisuikyoense Isozaki & Matsuda, 1985, Hsuum matsuokai Isozaki & Matsuda, 1985, Eucyrtidiellum disparile Nagai & Mizutani, 1990, Zartus aff. imlayi Pessagno & Blome, 1980, Trillus sp. などの種が同定され, これらは Hori (1990)の Hsuum hisuikyoense 群集帯の指標種を含み, ジュラ紀 た海底コア PC23 (海洋地球研究船「みらい」MR06-04 航海)の底生有 孔虫化石群集を明らかにし、ダンスガード・オシュガーサイクルと 比較しベーリング海の海底において過去約 62,000 年間にどのよう な環境変動が起こったかを推定した.ベーリング海では水深約 500 m ~1500 m に溶存酸素極小層 (0MZ) が存在する. このため底生有孔 虫群集は貧酸素に耐性のある種を主体とする.本コアは Itaki et al. (2009)により年代モデルが構築されており、放射性炭素年代測定お よび微化石層序に基づいて、コア最下部の年代は約 65,700 年前に 達すると推定されている.本分析では、貧酸素種群の産出頻度、底 生有孔虫の個体密度、Shannon-Wiener 関数による種の多様度を求め た.その結果、個体密度が増加する時期に貧酸素種群の産出頻度が 増加、また貧酸素種群の産出頻度が高いとき種の多様度が低いとい うことが示された.これらの群集変動をグリーンランド氷床コア GISP II の δ^{18} 0 の変動曲線と比較した結果、貧酸素種の増加はDOI イ ベントに対応している可能性が考えられる.

¹Last glacial benthic foraminiferal assemblages in oxygen minimum zone in the Bering Sea ²Ken'ichi Ohkushi, ³Shusuke Hanawa (Kobe Univ.)

中世アーレン期を示す.

また,黒色泥岩試料からは、Striano japonocapsa plicarum (Yao, 1979), Praezhamoidellum yaoi Kozur, 1984, Helvetocapsa matsuokai (Sashida, 1999), Eucyrtidiellum unumaense (Yao, 1979), Cyrtocapsa kisoensis Yao, 1979, Hsuum brevicostatum (Ozvoldova, 1975), Archicapsa pachyderma (Tan, 1927)などが同 定され、これらの放散虫種は、Matsuoka (1983)の Striato japonocapsa plicarum 帯に相当し、バイユー期からバース期の年代を示す.

木村ほか(1998)によれば, 灰屋コンプレックス中の珪質頁岩(R9; GSJ R66590)からは, Striato japonocapsa plicarum, Eucyrtidiellum unumaense などが産出するとされているが,本研究の珪質泥岩試料 からはこれらの放散虫化石は産出せず,より古い年代を示す放散虫 化石が産出した.

¹Ages of Middle Jurassic radiolarians from the Tamba Terrane in Ichihara area, Kyoto

²Gensuke Toshiro (Kyoto Univ.), ³Ayu Yamazaki (Kyoto Univ.), ⁴Hisashi Suzuki (Otani Univ.)

新潟県佐渡島の鶴子層から産する中新世放散虫化石¹ 川谷文子^{*2}・指田勝男^{*3}・上松佐知子^{*4}・甲能直樹^{**5} * 筑波大生命環境, ** 国立科学博物館

新潟県佐渡島に分布する鶴子層は主に玄武岩や成層した珪質泥岩 により構成され,沖合・漸深海域の堆積物であるとされている(渡 辺,1983).本層からは鯨類,鰭脚類,魚類,海亀類,鳥類等の脊 椎動物化石を産することが知られている(廣田ほか,1987等).ま た放散虫化石・有孔虫化石(渡辺,1987),珪藻化石(柳沢,2012) 等の微化石の産出により具体的な年代も明らかになっている.演者 らは本層から産する鯨類・鰭脚類等海棲哺乳類化石の詳細な堆積年 代,堆積環境を考察するために放散虫や有孔虫化石の生層序学的検 討を行っている.今回鶴子層分布域の3地点において放散虫化石・ 有孔虫化石の産出状況について検討を行ったのでその予察的な結果 を報告する.

放散虫の検討を行った地点は素浜沿いの2地点、および佐渡島南部の川茂である.素浜沿いの2地点では全体的に成層した灰色シル ト岩を主体とし、黒色頁岩や褐色頁岩層を挟む.また時に長径1m 近くに達する石灰質ノジュールを含む. この2 地点では Eucyrtidium inflatum, Cornutella profunda, Sethocapsa japonica, Lychnocanoma magnacornuta, Cyrtocapsella tetrapera 等が産出する. これらの放散虫 は Kamikuri et al. (2004, 2009)の Eucyrtidium inflatum 帯および Lychnocanoma magnacornata 帯に至る放散虫化石帯に相当し,中期中 新世を示す. 一方,川茂では灰色シルト岩を主体とし、褐色シルト 岩、灰色~黒色シルト岩からなる. また長径数 10 cmの石灰質ノジ ュールを含む.本地点では Cornutella profunda, Cyrtocapsella japonica, C. tetrapera, Sethocapsa japonica, Flustrella sp.等が産する. これらの 放散虫は Kamikuri et al. (2004, 2009)の Eucyrtidium inflatum 帯の上部 に相当し、中期中新世の後期を示す. 本地点からは Bolivina sp., Uvigeria sp.等の底生有孔虫を産し、500 m~2000 m 以上の深海域で 堆積したことが考えられる.

¹Middle Miocene radiolarians from the Tsurushi Formation, Sadogashima Island, Niigata Prefecture, Japan

² Kawatani, A. (Tsukuba Univ.), ³Sashida, K. (Tsukuba Univ.), ⁴Agematsu, S. (Tsukuba Univ.), ⁵Kohno, N. (National Museum of Nature and Science; Tsukuba Univ.)

P05

栃木県北部に分布する塩原層群宮島層から見出された化石珪藻¹ 小島隆宏(茨城大学大学院・理工)²・齋藤めぐみ(国立科学博物館・ 地学)³・岡田誠(茨城大学・理)⁴

一般に、湖沼は短命である為、各々の堆積物は地理的にも時間的 にも不連続である.このため、湖沼生の珪藻の進化史や古生物地理 を明らかにするためには、各地に散在する湖沼堆積物の化石記録の 追跡が重要である.本発表では、中部更新統の湖成層である塩原層 群宮島層に含まれる珪藻化石の形態的特徴について報告する.

塩原層群は、栃木県北部の塩原盆地に分布するカルデラ湖堆積物 で(尾上 1989)、盆地縁辺部に分布する上塩原層と、盆地中央部に 分布する宮島層に区分されている(Tsujino & Maeda 1999). 宮島 層は主に珪藻質葉理泥岩で構成されており、植物や昆虫などの保存 良好な大型化石が産出することで良く知られている.

研究試料は、宮島層上部が箒川に沿って露出する那須塩原市中塩 原の露頭において9層準より採取した.持ち帰った試料を過酸化水 素により有機物分解した後、光学顕微鏡および電子顕微鏡により珪 藻化石の観察を行った.

産出した珪藻は16属20分類群であった. 群集組成はすべての層

準で大きな変化はなく, Stephanodiscus akutsui が圧倒的に優占し て出現し (71~90%), Cvclotella ocellata が随伴した (5~20%).

優占種 S. akutsui は、これまで北米の現生種 S. niagarae に同定 されてきたが (Akutsu 1964, Allison et al. 2008 など) 、近年、 演者らが微細形質の詳細な観察と近縁種との形態比較に基づき新種 として記載した (Kojima et al. 2016) . Stephanodiscus 属はしば しば湖ごとに固有な形態を持つことが知られており (たとえば Tuji et al. 2003:阿寒湖の固有種 S. akanensis) 、本種も多地点からの 報告が認められていない為、塩原層群堆積時に存在した"古塩原湖" の固有種の可能性が示唆される.

¹Fossil diatom from the Miyajima Formation of the Shiobara Group in northern Tochigi Prefecture, Japan

²Takahiro Kojima (Ibaraki Univ.), ³Megumi Saito-Kato (National Museum of Nature and Science), ⁴Makoto Okada (Ibaraki Univ.)

P06

福井県大野市上半原地域の手取層群上部より産出する前期白亜紀 植物群(田茂谷植物群)の層位学的位置¹ 酒井佑輔(大野市教育委員会/新潟大)²・松岡 篤(新潟大)³

手取層群における前期白亜紀植物群は、産出層準の違いにより, 尾口植物群,赤岩植物群,田茂谷植物群に区分されている(Kimura, 1975, 1987).田茂谷植物群の産出層位は、赤岩亜層群上部にあた るとされ、例えば、福井・石川県境に露出する北谷層も含まれてい る.その中で、福井県大野市上半原地域にある田茂谷植物群の産地 には、北谷層に対比されるという意見(Yabe et al., 2003)、より層 位的下位にあたる伊月層に対比されるという意見(松川ほか, 2003) があり、層位関係の捉え方には依然として議論がある.本研究では、 上半原地域と手取層群の模式的な層序が認められる大野市石徹白川 地域を比較し、田茂谷植物群の層位学的位置を再検討した.

石徹白川地域に露出する手取層群上部は、下位より石徹白亜層群 上部を構成する伊月層,赤岩亜層群下部を構成する後野層からなる. 石徹白川および上半原地域における伊月層から後野層に及ぶ岩相層 序は共通し,植物相についても類似する層位変化が認められた.

上半原地域の伊月層より、シダ類 Birisia 属、Eboracia 属、ソテ

ツ類 Nilssonia 属, ベネチテス類 Dictyozamites 属, イチョウ類 Baiera 属, Ginkgoidium 属, Ginkgoites 属, 球果類の Pityocladus 属, Pityophyllum 属, Podozamites 属, Stenorachis 属など 18 属 19 種を得た.一方, 同地域の後野層より, シダ類 Coniopteris 属, Gleichenites 属, シダ種子類 Sagenopteris 属, ソテツ類 Nilssonia 属, ベネチテス類 Anomozamites 属, イチョウ類 Ginkgoites 属, 球果類 Pagiophyllum 属, Podozamites 属など 14 属 17 種を得た.

田茂谷植物群の産地は、後野層に属することから、少なくとも伊 月層より層位的上位に位置する.Yabe et al. (2003)は、北谷層よ り産出する植物化石を田茂谷植物群に含めて、本植物群を再定義し ている.しかし、本研究では、後野層と北谷層の間で、岩相ととも に植物相の違いが認められた.植物相が異なる要因を解明するため には、今後、両層の堆積年代について検討することが求められる.

 ¹ The stratigraphical position of Early Cretaceous flora (Tamodani Flora) from the upper part of the Tetori Group in the Kamihambara area, Ono City, Fukui Prefecture, Japan
 ² Sakai, Y. (Ono City Board of Education / Niigata Univ.), ³ Matsuoka, A. (Niigata Univ.)

秋吉石灰岩層群で見られる前期/後期石炭紀境界直後の 造礁生物相と礁の構築様式¹ 増井充(大阪市立大学)²・江崎洋一(大阪市立大学)³・ 長井孝一(元琉球大学)⁴・杦山哲男(福岡大学)⁵・ 足立奈津子(鳴門教育大学)⁶

前期/後期石炭紀境界(以下, M/P 境界)では、世界規模の海退 現象が生じている.それに伴い,秋吉石灰岩では広域的に海面が露 出し,その後,造礁生物が繁栄するようになる.本発表では,秋吉 石灰岩層群で見られる,M/P 境界直後(バシキーリアン期からモス コビアン期初期)に構築された礁の生物相や構築様式を検討する.

当該の礁性石灰岩は、野外では、黒色層と白色層の繰り返しから 成るストロマトライト様構造で特徴づけられる.黒色層は、層孔虫 に酷似する生物からなる.一方、白色層は、複数の構成要素から成 るが、ケーテテスの占める割合が大きい.層孔虫様の生物は厚い層 状形態を、ケーテテスは厚い層状や半球状形態を有し、これらは被 覆し合い、ストロマトライト様の礁の主要枠組み形成者となる.主 要枠組み形成者の内部では、泥質の薄層が頻繁に挟在する.また、 層状藻類(Komia? sp.)・小型有孔虫・層状や半球状の成長形態を

P08

山陰海岸の海食洞内に分布するイシサンゴ類¹ 徳田悠希(鳥環大)²・江﨑洋一³・久一沙彩⁴・杉本雄祐⁵(大阪市 大)・今野仁志(マリンパーク HANEO)⁶・原口展子(島根大)⁷・ 和田年史(兵庫県大)⁸

海底洞窟内は、一般的に恒常的に貧栄養の環境である.そこには、 矮小化や幼形進化などの生活史戦略をとる種や、「生きている化石」 が生息し、他の沿岸環境に比べて特殊な生物相が認められる.一方、 海底洞窟に類似する海食洞の生物群集は、ほとんど研究されていない。 鳥取県岩美町浦富海岸の羽尾岬には、奥行き約150mにも及ぶ 山陰海岸でも最大級の海食洞(龍神洞)が存在する.羽尾岬周辺の 地質は下位の凝灰角礫岩と上位の玄武岩質安山岩からなるが、龍神 洞はこのうち下位の凝灰角礫岩が侵食されることにより形成されている. 龍神洞の内部は、入口付近では水深約4mで、奥部ほど水深 が浅くなる.また、洞内の中間部には大きな落石群が存在し、それ よりも奥側には、日が射し込まず、海水の循環が悪い「閉鎖的な環 境」が形成されている.

海中の生物群集については、光が豊富な入口付近には、緑藻・紅 藻などの大型藻類が繁茂し、散在的にフジツボ、カイメンなどが認 呈するコケムシ・匍匐性の床板サンゴや四射サンゴなどが,主要枠 組み形成者の表面に付着し,被覆層を形成する.これら泥質の薄層 や被覆層も,野外では白色層として観察される.また,主要枠組み 形成者や被覆者の内部で,球状微生物やフィラメント状構造を示す 微生物類の穿孔跡が観察される.

藻類・小型有孔虫・コケムシ・サンゴ類などの被覆者は、主要枠 組み形成者の成長が抑制された時期に付着・被覆していると考えら れる.また、礁へ生物侵食作用を及ぼす穿孔性微生物類は、礁の破 壊者であるといえる.以上のように、M/P 境界直後の生物礁では、 層孔虫様の生物とケーテテスが被覆し合い、その間、適宜、藻類や 小型有孔虫・コケムシ・サンゴ類などが被覆するというプロセスで 礁の枠組み構造が構築されている.

¹Organic reefal biota and structures immediately after the Early/Late Carboniferous boundary in the Akiyoshi Limestone Group, Southwest Japan ²Mitsuru Masui (Osaka City Univ.), ³Yoichi Ezaki (Osaka City Univ.), ⁴Koichi Nagai (Ryukyu Univ.), ⁵Tetsuo Sugiyama (Fukuoka Univ.), ⁶Natsuko Adachi (Naruto Univ. of Edu.)

められる.一方,入口から約30m内部では,光量に乏しく,藻類が 激減する.洞内の壁面を,カイメン,イシサンゴ,フジツボ,コケ ムシなどの固着性の濾過食者・懸濁物食者が占有する.特にイシサ ンゴでは体内に褐虫藻を宿していない Culicia sp.及び Paracyathus sp. が大規模な群落を形成する. Culicia sp.は、走根状に軟体部を伸長さ せ,新たな個体を出芽させる群体サンゴで,落石群よりも入口側で 壁面を広く被覆する.一方,単体サンゴである Paracyathus sp.は、 壁面の凹部や浮遊物・沈殿物が多い底面付近,さらには、半閉鎖的 な落石群の奥側に固着し分布する.これらのサンゴで見られる分布 様式の違いは、堆積物の沈殿、貧栄養環境への耐性、増殖様式の差 異に起因すると考えられる.今後、海食洞外部の隠棲的な環境の生 物群との比較検討を行い、海食洞の「浅海の生態系における避難場 所(レフュジア)」としての重要性を検討していく必要がある.

¹Scleractinian corals in semi-submerged sea cave. ² Yuki TOKUDA (TUES), ³ Yoichi EZAKI, ⁴Saaya HISAICHI, ⁵Yusuke SUGIMOTO (Osaka City Univ.), ⁶Hitoshi KONNO (Marine Park HANEO), ⁷Hiroko HARAGUCHI (Shimane Univ.), ⁸Toshifumi WADA (Univ. of Hyogo)

P09

岐阜県大垣市のペルム紀赤坂石灰岩から産する ッノガイ類(掘足綱)の分類学的再検討¹

安里開士 (筑波大院・生命環境科学)²・加瀬友喜 (神奈川大・理)³

ツノガイ類(軟体動物門、掘足綱)は象牙状に反り返った細長い 筒状の殻を持ち、底生有孔虫などを捕食する肉食性の貝類で、確実 な化石記録は古生代後期(石炭紀前期)にまで遡る。ツノガイ類は 単純な殻形態を持つために断片的な標本で同定するのは困難であり、 ツノガイ類と同定するには同類に特徴的な殻頂部に形成される頂孔 (二次的に形成される穴)の有無が重要となる。しかし古生代のツ ノガイ類では頂孔が保存された標本は稀で、これまでの研究でも頂 孔が保存された標本は4例しかない。中にはツノガイ類への帰属が 疑わしいものもある。

岐阜県大垣市の金生山周辺に分布するペルム紀の赤坂石灰岩は、 一部の種が巨大化する多様な動物化石群を産出する。その中でも軟 体動物は最も多様な分類群であり、ツノガイ類は Hayasaka (1925)に より4種 [Dentalium akasakensis, D. neornatum, D. (Laevidentalium) cf. priscum, D. (Plagioglypta) herculeum] が記載・報告されている。しか し、どの種も不完全な標本に基づいて記載されており、それらの種の同定や属位に関しては再検討の余地がある。本研究では新たに得られた標本に基づき、赤坂石灰岩産のツノガイ類の殻形態を明らかにし、古生代既知種との再比較を行った。その結果、それぞれの種が形態の異なる頂孔(細長いスリット状、ノッチ状、筒形ノッチ状)を持つことが明らかになった。これら形質と殻表面の彫刻を合わせて比較検討した結果、1新属3新種を含む5種を識別した。古生代のツノガイ類は、中生代以降の種と比較して巨大な種が知られている。赤坂石灰岩産のツノガイ類も巨大で、最小種でも殻長が15cmを超える。この巨大化は、ツノガイ類の餌資源(恐らくフズリナ類)が大量に存在していたことを示唆すると考えられる。

¹Taxonomic revision of fossil scaphopods from the Permian Akasaka Limestone, Gifu Pref., Japan.

²Kaito Asato (Grad. Sch. Univ. Tsukuba), ³Tomoki Kase (Dept. of Biol. Sci., Kanagawa Univ.)

化石原鰓類の貝殻微細構造とその進化 :上部白亜系より産出する化石種を中心に¹ 佐藤圭(京大院・理)²

軟体動物の貝殻は、炭酸カルシウムと微量な有機物が作るミクロ スケールの規則的な構造単位で構成されている(貝殻微細構造).各 種がもつ貝殻微細構造の組み合わせは近縁種間で類似することから、 微細構造形質は系統を良く反映していると考えられている.これま で講演者は微細構造進化パターンの解明を目的とし、最も原始的な 二枚貝類、原鰓亜綱における貝殻微細構造の系統学的評価を行って きた.現生原鰓類試料を用い、分子系統解析結果と貝殻微細構造を 対比することで、原鰓類各種は、それぞれ1-4種の微細構造をもち、 上科レベルで共通する保守的な微細構造(Solemyoidea:放射稜柱構 造,Nuculoidea:真珠構造,Manzanelloidea,Sareptoidea,Nuculanoidea: 均質構造)と、科~種レベルで変異する構造(e.g. Nuculoidea:稜柱 構造)を併せ持つことが明らかとなった.

このように現生原鰓類の微細構造が系統を良く反映する一方で, 化石原鰓類の微細構造における先行研究は,Nuculoidea 以外の上科 も、過去には真珠構造を有していたことを報告しており,現生原鰓

P11

オウナガイ類の成長に伴う殻形態の変化と内部形態¹ 瀬尾絵理子(東大大海研)²・奥谷喬司(神奈川県)³ 瀬尾芳輝(獨協医大)⁴・小島茂明(東大大海研)⁵

ハナシガイ科 Thyasiridae に属するオウナガイ類は, 鰓に共生細 菌を持ち, 堆積物に深く潜る内在性の二枚貝類である. 冷湧水域に は白亜紀末期に出現したと考えられており, 化学合成生態系の進化 史において重要なグループである. 化石化学合成生物群集に多く産 出するが, 内在性のため, 生きた個体はなかなか採集されない. さ らにハナシガイ科は, ①分類形質として重要な「歯」が無い, ②種 間の殻形態の類似性が高い, ③殻形態の測定基準を一律化するのが 難しい, といった分類学的な問題を抱えている.

従来,日本近海湧水域の現生オウナガイ類は,Conchocele bisecta (Conrad, 1849) に分類されてきた.しかし,①本種のホロタイプは 中新世の化石である,②現生での地理分布は全太平洋・インド洋・ 南大西洋の潮間帯直下~水深 1500 m の深海底に及ぶとされる,③殻 形態が似る C. disjuncta Gabb, 1866 と C. bisecta が別種か否か, 研究者により判断が異なる,といった問題により,現生深海化学合 成生態系のオウナガイ類の生態学的な研究も進んでいない. 類の微細構造は上科分岐以後に獲得された可能性が高い.本研究で は、白亜系蝦夷層群の羽幌町,羽幌川層泥質砂卓越部および中川町 大曲層・オソウシナイ層の上位白亜系から産出した絶滅原鰓類を中 心に用い,地質時代における原鰓類の微細構造進化史の解明に取り 組んだ.文献調査および化石原鰓類の微細構造観察の結果,(1)原 鰓類における微細構造の現生タイプの出現時期は白亜紀後期まで遡 ることができ,真珠構造をもつ化石タイプの微細構造組み合わせが 見られるのはこれ以前であることが示唆された.また,(2)現生種 で認識された,系統をよく反映する構造に着目することで,絶滅種 と現生種との系統関係の対比が可能となることが明らかとなってき た.

¹The shell microstructures of fossil protobranchs and their evolutions; with a focus on fossils from the upper Cretaceous. ²Kei Sato (Graduate School of Science, Kyoto University)

そこで本研究では、相模湾初島沖で採集されたオウナガイ類を用 い、分子系統学的解析により同一種と考えられる個体間の成長に伴 う殻形態の変異を明らかにし、日本近海湧水域産オウナガイ類の分 類学的な問題の解決の糸口を探った.さらに分類形質情報を増やす ため、核磁気共鳴画像(MRI)法を用い、内部形態の観察を行った. MRI 法は、高解像度の三次元連続画像により各臓器の構造を明らか にできる非侵襲的な手法である.

解析の結果,若い小型個体の殻形態は*C. bisecta*の特徴と,成長 した大型個体の殻形態は*C. disjuncta*の特徴と一致し,老成した *C. bisecta*に*C. disjuncta*の名がつけられていると結論づけられ た. さらに,南海トラフで採集したオウナガイ類の内部形態を観察 し,唇弁と口の位置関係にて,既往研究とは異なる結果が得られた. 今後,現生オウナガイ類の新規個体が採集できれば,より詳細な研 究が進むと考えられる.

¹Growth-dependent changes of shell morphology and anatomy of *Conchocele* bivalves from deep-sea seep areas. ²Eriko Seo (AORI), ³Takashi Okutani (Kanagawa),

⁴Yoshiteru Seo (Dokkyo Medical Univ.), ⁵Shigeaki Kojima (AORI)

P12

飛騨外縁帯福地地域に分布する石炭系一の谷層産微小巻貝化石¹ 伊左治鎭司(千葉県立中央博物館)²・大倉正敏(愛知県江南市)³

軟体動物の胎殻や微小種の化石は、通常は保存されにくいが、殻 を構成する炭酸カルシウムが置換または交代作用を受けている場合 には、むしろ大型化石よりも見いだしやすいことがある。そのよう な例として、古生代の石灰岩から多様な微小貝類の化石が産出する 例が知られている。

演者の一人大倉は、岐阜県高山市奥飛驒温泉郷福地の水洞谷下流 において、一の谷層(石炭系モスコビアン階)由来と考えられる石 灰岩を採集し、それらを酸処理した不溶性残渣から、多数の微小化 石を抽出した。微小貝類の殻は、交代作用により緑泥石に変化し、 その内形雌型の多くは珪化していたことから、殻の微細な表面彫刻 や内部形態が観察できる良好な資料を得ることができた。

巻貝化石については、その多くが胎殻化石であり科レベルの判別 に留まるが、属種まで同定できる微小種も存在する。これまでに確 認した巻貝類は、Bellerophontidae, Eotomaridae, Gosseletinidae, *Peruvispira*, Porcellidae, Microdomatidae, *Microlampra*, Trachyspiridae, Pseudozygopleuridae, Streptacididae, *Laxella micra*, Raphistomatidae, Naticopsidae などのグループに含まれる。

このうち、Laxella micraは、中華人民共和国広西チワン族自治 区に分布する上部ペルム系の長興石灰岩のみから知られていた種で あり、他の地域からは初産出である。また、Trachyspiridae に含ま れる胎殻化石は、国内初の報告となる。なお、同じ石灰岩からは、 大型の成貝化石の産出が稀であり、胎殻化石に対応する成貝化石が ほとんど確認できていない。このことは、成貝の保存状態により石 灰岩からの分離が困難であることに起因するかもしれない。

ーの谷層の微小化石の例は、変成作用を受けた石灰岩相において は普遍的に見られる可能性があり、成貝化石からはつかめない貝類 の多様性を明らかにできるうえで重要である。今後の新産地の発見 に期待したい。

¹Microgastropod fossils from the Carboniferous Ichinotani Formation in Fukuji area, Hida Gaien Belt.

²Shinji Isaji (Natural History Museum and Institute, Chiba), ³Masatoshi Okura (Konan City, Aichi Pref.)

四国北東部の上部白亜系和泉層群から産出する ノストセラス科アンモノイドとその進化学的意義¹ 御前明洋(北九州市博)²・辻野泰之(徳島県博)³

四国北東部阿讃山脈の和泉層群からはカンパニアン期後期の多様なノストセラス科アンモノイドの産出が知られている.本研究では、両角(2007)により"Bostrychoceras sp."とされたアンモノイドと、 "Didymoceras cf. awajiense"や"Didymoceras sp. B"とされたアンモノ イドの検討を行った.前者は、東かがわ市大楢、黒川、大松、天王 など(北縁相引田層)から産出し、後者はそのすぐ上位の地層が分 布する東かがわ市千足、川股、坂元、鳴門市長浜、上板町神宅など (引田層および同時異相関係の主部相日開谷層)から産出する.

本研究の採集標本および、徳島県立博物館と大阪市立自然史博物 館の標本合計70個体以上を検討した結果、"Bostrychoceras sp."は(1) 離れた螺管からなる成長初期、(2)塔状に接して巻く成長中期、(3) ほとんど螺旋部から離れないかあるいは少しだけ垂れ下がってから 強く反り上がるフック、(4)ほとんどイボが発達しないかあるいは成 長初期や後期に2列のイボを持つなどの特徴があり、Bostrychoceras 属の未記載種であると考えられる.また、"Didymoceras cf. awajiense"

P14

外殻性有殻頭足類の隔壁を構成する真珠構造の結晶学的性質¹ 竹田裕介(東大・総合研究博物館)²

外殻性有殻頭足類(オウムガイ類・アンモナイト類)は、殻内部 に隔壁構造を持つことで浮力を得ると同時に、耐圧器官としての機 能を果たしている.隔壁は機能形態学・形態形成論的に格好の材料 であり、多様なマクロ形態に注目した研究がこれまで多く行われて きた.一方で、微視的な構造も隔壁の機能形態・形態形成を理解す る上で欠かせない.隔壁はアラレ石の多結晶体の積層構造(真珠構 造)で構成されることが知られているが、その多様性は不明で、詳 細な結晶学的性質の比較が必要である.

そこで本研究では,現生・化石オウムガイ類およびアンモナイト 類の隔壁の真珠構造の比較を行った.走査型電子顕微鏡(SEM)を用い て,真珠構造を構成するタブレット型多結晶体の形態学的特徴を明 らかにした.また,X線回折による多結晶体の配向性(結晶方位分 布)を解析した.

現生および化石オウムガイ類の隔壁の真珠構造は、体の背腹方向 に引き伸ばされた六角形状のタブレットからなることが確認された. このタブレットは従来、鉛直方向に柱状に積層するとされていたが、 や"Didymoceras sp. B"は、いずれも、D. awajiense と判断される.有 田川地域の鳥屋城層では、D. awajiense の産出層準の下部からは比較 的高い螺旋部を持つものが産出し、上部からはそれに混じって平面 的な形態のものも産出する.淡路島の和泉層群西淡層から産出する D. awajiense は、鳥屋城層の本種産出層準上部のものに似た形態的特 徴を示すのに対し、西淡層の下位に位置する引田層や日開谷層のD. awajiense は、鳥屋城層の本種産出層準下部のものと似ている.

Bostrychoceras sp.は個体変異が大きく, D. awajiense に似た表面装飾を持つものや,それに似た比較的大きなフックを持つものがある. また,坂元産の D. awajiense には,成長のごく初期にわずかに離れた螺管を持つものが含まれる.形態の類似と層序関係から, Bostrychoceras sp.が D. awajiense に進化したと考えられる. <引用文献>両角芳郎, 2007. 阿讃山地から産出するノストセラス科アンモナイト.徳島県立博物館ニュース, no. 66, p. 2–3.

¹Nostoceratid ammonoids from the Upper Cretaceous Izumi Group in northeastern Shikoku, Japan and their evolutionary implications ²Akihiro Misaki (Kitakyushu Mus. Nat. Hist.), ³Yasuyuki Tsujino (Tokushima Pref. Mus.)

本研究の結果,シート状の積層が頻繁に起きていることが明らかに なった.結晶方位と比較した結果,タブレットの伸長方向は a 軸方 向に平行で,高い面内配向性を持っていた.

一方,アンモナイト類の隔壁の真珠構造はオウムガイ類のものと 比べて横方向に短いタブレットからなり,鉛直方向の柱状の積層が 卓越していることが明らかになった.更に,結晶方位分布はランダ ムで,面内配向性が低いことが明らかになった.

隔壁の真珠構造におけるこれらの結晶学的性質を二枚貝類および 巻貝類の真珠構造と比較したところ,有殻頭足類は亜綱レベルで形 態形成メカニズムが異なる可能性が明らかになった.また,このよ うな結晶学的性質がもたらす異方性や多様な物性は、マクロ形態の 機能を明らかにするうえでも無視できない.有殻頭足類に特徴的な 隔壁の進化を理解するには、幅広いサイズスケールでその構造を把 握する必要性があるといえる.

¹Biomineralogical nature in ectocochleate cephalopod septal nacre

²Yusuke Takeda (Univ. Museum, Univ. of Tokyo)

P15

岐阜県荘川地域の手取層群御手洗層産ベレムナイト再訪¹ 佐野晋一(福井恐竜博)²・0. S. Dzyuba (Trofimuk Inst. Petroleum Geol. Geophys., SB, RAS)³・伊庭靖弘(北大・理)⁴

手取層群御手洗層は、西南日本内帯には珍しく、前期白亜紀の海生 軟体動物化石を多産することで著名である、筆者らは近年手取層群産 ベレムナイトの分類学的検討を進めてきたが、今回、光記念館(岐阜県 高山市)所蔵の御手洗層産軟体動物コレクション中に、本邦初産出とな るシリンドロチューティス科 Arctoteuthis tehamaensis を見出した.また、 本種産出の生層序学的・古生物地理学的意義をあわせて議論する.

今回, 検討した資料は不完全な大型の鞘1点で, 後端を欠くが, 長さ 241mm, Alveolar 部付近での径約 30mmに達する. 鞘は円筒状だが, 後部は次第に細くなるものと考えられる. 断面は円に近いが, 左右の径 が背腹の径よりも太い(鞘後部で, 鞘が円筒状から細くなり始めた付近 での背腹断面 22.8mm, 側断面 24.1mm). 保存された範囲では鞘後方 腹側に溝は確認できないが, 腹側はやや平たい可能性がある. 鞘の断 面で左右の径が背腹の径よりも大きいこと, 鞘後方腹側の溝が短い, も しくはほとんど発達しないこと, また鞘の円筒状部の長さの割合や鞘後 部の形状から, この標本は A. tehamaensis に同定される. Arctoteuthis は典型的なBoreal 要素とされ、中でもA. tehamaensisはカリフォルニアとシベリアの両方から産出が知られ、地域間対比の上でも注目される.

従来、御手洗層からは、鞘が前方に一方的に太くなり、かつ著しく尖った後端部を持つことや、鞘後方腹側の溝が発達しないこと、断面で背腹の径が左右の径よりもやや大きいことで特徴づけられる、 Cylindroteuthis aff. knoxvillensis の産出が知られてきた(佐野ほか、 2015). 再検討の結果、本種は、カリフォルニアの Berriasian から記載された C. klamathonae や、シベリアやメキシコの Kimmeridgian ~ Tithonian から知られる C. lenaensis に類似する新種との結論に達した.

御手洗層からのこれら2種の産出は、時代論に議論がある御手洗層 のBerriasian 説を強く支持するデータとなり、またBoreal 要素のベレムナ イトが、北東太平洋域と同様に、北西太平洋域においても、白亜紀最初 期に、中緯度地域にまで進出していたことを示す点で注目される. ※本研究には JSPS 科研費 JP16H00325 の助成を受けた.

¹Cylindroteuthidid belemnites from the Mitarai Formation of the Tetori Group, northern Central Japan, revisited ²Shin-ichi Sano (Fukui Dino. Mus.), ³Oksana S. Dzyuba (Trofimuk Inst. Petroleum Geol. Geophys., SB, RAS), ⁴Yasuhiro Iba (Hokkaido Univ.)

島根半島東部の下部中新統古浦層における 非海生貝化石の古生物学的意義' 宮崎靖二(島根大・総理)²・入月俊明(島根大・総理)² ・酒井哲弥(島根大・総理)⁴

島根半島における最下部の地層の下部中新統古浦層は淡水〜汽水 成堆積物からなり (Sakai et al., 2013),上部層準が約18-17 Ma とさ れている (大平, 2014).この時代は本格的に日本海が拡大する前に あたり,古浦層からは,近年,保存良好な陸生脊椎動物化石や植物 化石などが相次いで報告されている (Nishioka et al., 2011, 2016 など).

今回,研究対象とした貝化石についても,幾つかの地点で報告が 行われているが(Suzuki, 1949 など),産状や群集の時間空間的な変 化について,詳しい検討がなされていない.そこで,主に島根半島 東部に位置する松江市美保関町の古浦層の地質調査を行った結果, 多数の貝化石が産出し,以下に示すような予察的結果を得たので報 告する.

産出した多くの化石はシジミ科に属し、サイズや形態の違いから 幾つかの異なる種が含まれていると推定された.その他に、 Acuticosta sp.や Semisulcospira sp., Bellamya sp.等が産出した. これらの化石は全て古浦層上部に相当する T4 凝灰岩鍵層より上 位の層準から東西方向に連続して産出した.また,化石産地の泥質 岩を用いて,CNS 元素分析を行った.その中で,1地点(松江市美 保関町笹子)においてのみ,採取した頁岩から,高い全イオウ濃度 (1.58wt%)が検出されたが,他の地点からは検出されなかった. イオウが検出された笹子から産出した貝化石はシジミ科に属す1種 のみで,片殻のみから構成される数枚の貝密集層として産出した. この産地以外では、シジミ科化石と共産する全ての種は淡水生であ り,これらの地点の古環境は淡水環境であったと示唆される.

以上のことから、調査地域の化石産出層準は、河川が注ぐ湖沼環 境で、笹子ではすでに強い海水の影響を受けていた可能性がある.

¹Paleontological significance of non-marine molluscan fossils from the Lower Miocene Koura Formation, eastern part of Shimane peninsula, southwest Japan

² Seiji Miyazaki (Shimane Univ.), ³ Toshiaki Irizuki (Shimane Univ.),

⁴ Tetsuya Sakai (Shimane Univ.)

P17

道北地域の白亜系および新第三系から産出した 十脚類化石の追加記録¹

安藤佑介(瑞浪化石博)²・御前明洋(北九州市博)³・猪瀬弘瑛(福 島県博)⁴・服部創紀(福井県立恐竜博)⁵・古野竹志(北海道安平町) ⁶・森木和則(北海道札幌市)⁷・疋田吉識(中川町自然誌博)⁸・嶋田 智恵子(秋田大)⁹・加藤久佳(千葉県立中央博)¹⁰

羽幌町をはじめとする道北地域の白亜系からは、十脚類化石の産 出が知られている(Collins *et al.*, 1993 など).また、新第三系 からの報告は、Kato & Hikida (2002)および Kato *et al.* (2014)の 2 例がある.発表者らの調査により、道北地域産の十脚類化石の追 加標本が蓄積されてきた.本発表では、追加記録として産出種を報 告する.中でも、特徴的な種は以下の通りである.

Callianassa ezoensis: これまでに知られる標本よりも不動指が 細長く,掌部が先細りする標本が見られ,本種の性的二型を示す可 能性がある.

Joeranina japonicus:北海道の白亜系から多く産出している種で

ある.標本の中に,背甲の形態が異なる2種類の個体が見られ,本 種の性的二型によるものと考えられる.

Metacarcinus sp. indet.:初山別村に分布する金駒内層(後期中 新世)から産出した.可動指上縁に棘状突起列が見られるためイチョウガニ科の Metacarcinus 属に同定した.

+脚目の歩脚:羽幌町の前浜から転石として採取されたノジュー ルに含まれる.ノジュールからは珪藻化石が見出され,N. kamtschatica 帯 (5.5-3.7Ma)に対比されることから、同地域に分 布する鮮新統遠別層由来である可能性が高い(嶋田ほか,2017).CT スキャンを行った結果,複数個体の歩脚がノジュール周縁に含まれ ており、その形態からクモガニ上科の可能性がある.

¹ Additional records of the Decapods from the Cretaceous and Neogene deposits in the northern Hokkaido area, Japan.

²Y. Ando (MFM), ³A. Misaki (Kitakyushu Mus. Nat. Hist.), ⁴H. Inose (Fukushima Mus.), ⁵S. Hattori (Fukui Pref. Dino. Mus.), ⁶T. Furuno (Hokkaido), ⁷K. Moriki (Hokkaido), ⁸Y. Hikida (Nakagawa Mus. Nat. Hist.), ⁹C. Shimada (Akita Univ.), ¹⁰H. Kato (Natural History Muse. & Inst., Chiba).

P18

千葉県更新統国本層・柿ノ木台層の貝形虫化石群集(予察)¹ 入月俊明(島根大・総理)²・紫谷 築(島根大・総理)³・林 広樹 (島根大・総理)⁴

千葉県養老川沿いには上総層群が連続的に分布し、古くから多く の微古生物学的研究が行われてきた(Aoki, 1964, 1968;五十嵐, 1994;Koizuni, 2002 など). 上総層群の国本層中には松山/ブリュ ンヌ境界(MBB,前期更新世/中期更新世境界)があり、現在、国際 標準模式地の候補地として注目されており、様々な地質情報の集約 が行なわれている.本研究はその一環であり、また、千葉県の上総 層群から産出する貝形虫化石群集に関する研究はないため、予察的 に貝形虫化石群集について研究を行った.

本研究で対象とした地層は養老川沿いに露出する上総層群のうち, 国本層中・上部と柿ノ木台層下部で,MBB を挟在する. 国本層は主 に青灰色砂質シルト岩砂岩互層からなり,柿ノ木台層は青灰色砂質 シルト岩からなる.

結果として,現在までに 80 種以上の貝形虫化石が認められた.国本層で特に多産した種は, Loxoconcha parapropontica と Schizocythere kishinouyei であった.前者は日本近海の水深約 200

m 以深に生息する種 (Zhou, 1993) であるが,後者は日本全国の沿 岸砂底種である.他にも同様に外側陸棚から上部漸深海帯に優占す る Krithe spp., Argilloecia spp., Falsobuntonia taiwanica や潮 間帯に生息する Cythere spp., Aurila spp.などが多産した.この ように浅海から深海に生息する種が混在する群集を構成しており, また,これらの種の産出頻度や個体群密度に関して,層準ごとに違 いが認められた.さらに,北方系の Acanthocythereis cf. dunelmensis, Robertsonites tabukii, Cytheropteron sawanense なども 10%前後認められ,親潮の影響も受けていたと考えられる.

一方,柿ノ木台層に関しては,国本層の群集と大きく異なっては いないが, *L. parapropontica, Krithe* sp. *Argilloecia* sp. が少 ないなど違いも認められた.

¹Preliminary report of fossil ostracode assemblages from the Pleistocene Kokumoto and Kakinokidai Formations, Chiba Prefecture, northeastern Japan

²Toshiaki Irizuki (Shimane Univ.), ³Kizuku Shikoku (Shimane Univ.), ⁴Hiroki Hayashi (Shimane Univ.)

栃木県塩原産のクワガタムシ科及びオオムカデ目化石について¹ 高橋唯(筑波大・生命環境)²・加藤太一(茨自博,茨大・理)³・ 相場博明(慶應・幼稚舎)⁴・指田勝男(筑波大・生命環境)⁵

例外的に保存状態の良い化石を産する保存的化石鉱脈 (konservat-Lagerstätten)は地質時代の生態系を理解する上で極 めて重要である。栃木県那須塩原市の箒川沿いに分布する更新世の 塩原湖成層は日本を代表する新生代の保存的化石鉱脈である。塩原 湖成層の中心部では主に細かい葉理の発達した白〜灰色の珪藻質の 泥層が広がっており、その葉理にそって極めて保存状態が良い化石 が産出することが知られている。特に葉脈が識別出来る葉化石(通 称「木の葉石」)が多産し、現在までに170種以上が記載されてい る。また通常保存されないような昆虫類やクモ類の節足動物化石は 合わせておよそ100種同定されており、脊椎動物化石では、ウグイ (魚類)やカエル、ネズミ化石が記載報告されている。

塩原湖成層の岩石は入手が容易なことに加え岩石自体も柔らかい ため、広く博物館や学校等の教育機関において化石のクリーニング 体験に用いられている。今回、演者らはミュージアムパーク茨城県 自然博物館が行っている教育普及活動の一環で得られた節足動物化

P20

再生腕の出現頻度から見る現生ウミシダ類が受ける捕食圧の深度・ 地理的変化¹ 高橋恵里(名古屋大・環)²・大路樹生(名古屋大・博)³

棘皮動物門ウミユリ綱は生涯茎を持つ有柄ウミユリ類と,成体が 茎を持たないウミシダ類に大別される.これらの進化史,生態及び 形態等々には捕食圧が大きく関わっており,有柄ウミユリ類に対す る捕食に関する研究はこれまで多くなされてきた.例えば深海の有 柄ウミユリ類の観察により,生息深度が相対的に浅い海の個体は深 い海の個体よりも多くの捕食を受けていることが示された.また浅 海に生息するウミシダ類に関しても,その捕食者としてどのような 生物が挙げられるのか等が現在少しずつ調べられてきている.ただ その全体的な捕食圧が深度により,また地理的にどのように変化し ていくのかはまだよくわかっていない.先行研究では部分捕食を受 けた結果として腕に残る再生痕の出現頻度を求め,それをウミシ ダ・ウミユリが受けた捕食圧を推し量るバロメータとしている.こ の手法に従い,既に採取された標本の再生腕を観察することで,現 生ウミシダ類への捕食圧の変化を定量的に調べることを目的とする. 今回は国立科学博物館及びスミソニアン国立自然史博物館の標本

P21

愛媛県西予市田穂に分布する三畳系田穂層から産出した前期三畳紀 のコノドント化石とその回復過程¹

前川匠(熊大・院・先)²・小松俊文(熊大・院・先)³・小池敏夫(神 奈川県横浜市)⁴・重田康成(国立科学博)⁵

愛媛県西予市城川町田穂に分布する三畳系の田穂層は、アンモノイ ドやコノドント化石を豊富に産出することで知られている.本研究で は田穂層の模式地を再調査し、本層を岩相により、灰白色や暗灰色の 層状石灰岩からなる"下部部層"と灰白色の塊状石灰岩からなる"上 部部層"に区分した.また産出したコノドント化石を用いて、 Neospathodus dieneri帯、Ns. cristagalli帯、Novispathodus ex gr. wageni帯、Nv. pingdingshanensis帯、Nv. triangularis帯の5つ のコノドント帯を設定した.これらのコノドント化石から、"下部部 層"において少なくともインドュアン階上部からオレネキアン階上部 までが連続することが明らかになった.また、インドュアン階一オレ ネキアン階境界(IOB)は、Nv. ex gr. waageniの初産出層準に相当 し、スミシアン亜階一スパシアン亜階境界(SSB)は、Nv. pingdingshanensis帯に含まれる.

IOB と SSB では、それぞれ Neospathodus 属と Novispathodus 属の

石 2 標本(番号 INM-4-15696,15697)についての報告を行う。 INM-4-15696 は大型のコウチュウ目の胸部の一部であり、現生乾燥 標本との比較を行い、脛節や上翅の特徴からクワガタムシ科 (Lucanidae)と同定した。塩原ではこれまでにアカアシクワガタ (Dorcus rubrofemoratus)が報告されているが、検討した標本はこ れとは異なる可能性がある。INM-4-15697 は数節の体節が保存され ているのみであるが、各節に一対の歩脚があり、体節のサイズや体 節 間 に お け る 変 形 が 小 さ い こ と か ら オ オ ム カ デ 目 (Scolopendromorpha)と同定した。一般的に塩原湖成層で産出する 昆虫化石はほぼ完全に関節した状態で産出するが、これら 2 標本は 例外的に極めて部分的である。そのため、分類学的な重要性のみな らず塩原におけるタフォノミーの観点からも重要な情報を保持して いると考えられる。

¹A Lucanidae and a Scolopendromorpha fossil from Shiobara, Tochigi Pref.

²Yui Takahahsi (Tsukuba Univ.), ³Taichi Kato (Ibaraki Nature Museum, Ibaraki Univ.), ⁴Hiroaki Aiba (Keio Yochisha), Katsuo Sashida(Tsukuba Univ.)

を使用し、浅海での深度による変化を見る為にカリブ海の Nemaster discoidea を、地理的な捕食圧の違いを見る為に北西太平洋の Heliometra glacialis maxima と北極海周辺の H. glacialis glacialis を 比較観察した.結果 N. discoidea の再生腕出現頻度はより浅い深度 で採取された集団がやや高い様子が見られ、浅海のウミシダ類においても有柄ウミユリ類と同じく浅い海では捕食圧が高いらしいこと がわかった.また地理的な違いにおいては、H.g. glacialis の方が比較的高い再生腕出現頻度を表し、北西大西洋に比べ北極海周辺の個 体の方が捕食圧が高いという結果が出た.

しかし今回は対象とした標本の数が少ないこと、またきわめてロ ーカルなサンプルに依存したデータであったため、全体的な傾向が 把握できなかったことなどの問題があった.今後広い地理分布、深 度分布を持つ種を中心に検討していきたい.

¹Depth and geographical variations in the predation pressure based on arm regeneration frequencies in comatulid crinoids. ²Eri Takahashi (Nagoya Univ., Environ. Sci.), ³Tatsuo Oji (Nagoya Univ., Mus.)

種数の回復〜適応放散の過程が観察できた.ディーネリアン亜階上部 において, Neospathodus 属の種数が増加しはじめる回復期前期(R-1) が認められ,スミシアン亜階に入ると Novispathodus 属や Eurygnathodus 属など新属が出現する回復期後期(R-2)が確認でき た.スミシアン亜階上部においては, Novispathodus 属の種数が増加 し(R-1),さらに Icriospathodus 属などの新属の出現が示す R-2 も 確認できた.また, R-2 において, "切り裂き型"の歯状突起を持つ Neospathodus 属と Novispathodus 属から, "洗濯板型"の歯状突起を 持つ Eurygnathodus 属と Icriospathodus 属が出現することが共通し ていた.これは、コノドントの回復期後期における食性の多様化を示 している可能性を示唆すると考えられる.

¹Early Triassic conodonts and the recovery process in the Triassic Taho Formation, Taho, Seiyo City, Ehime Prefecture. ²Takumi Maekawa (Kumamoto Univ.), ³Toshifumi Komatsu (Kumamoto Univ.), ⁴Toshio Koike (Yokohama, Kanagawa Pref.), Yasunari Shigeta (National Museum of Nature and Science). The first record of the genus *Parotodus* (Lamniform: Otodontidae) from the Kishima Group in Saga Prefecture, Japan.¹

Daisuke Nakatani (Saga Pref. Space and Science Museum)² • Yasuhiro Fudouji (Karatsu City, Saga Pref.)³ • David Ward (Natural History Museum, London)⁴

The genus *Parotodus* Cappetta, 1980 is a lamniform shark ranging from the Eocene to the Pliocene. Its teeth are rare and are usually found in mid to outer shelf deposits. In Japan, it occurs in rocks of early Oligocene to late Pliocene age.

Three fossil shark teeth were collected from the Yukiaino Sandstone Member, Karatsu Formation, Kishima Group in Saga Prefecture, southwestern Japan. Two isolated teeth, SSSMF-YF-830 and 094 were discovered from Koba, Hatatsu-cho, Imari City, Saga Prefecture. SSSMF-YF-137 was discovered from Itaya, Nishitaku-cho, Taku City, Saga Prefecture. In both localities, some fossils were discovered such as *Copepteryx* sp. and *Lima nagaoi* which were often found from the Yukiaino Sandstone Member.

P23

北海道中川町産出上部白亜系産出のサメ化石 *Echinorhinus priscus と Cretodus borodini*¹ 徳丸沙耶夏(北海道大学)²・中島保寿(東大・大気海洋研)³・ 疋田吉識(中川町自然誌博)⁴・佐藤たまき(東京学芸大)⁵

北海道中川町の上部白亜系からは軟体動物や爬虫類などの多様な 大型化石が多く報告されているが、サメ化石の研究は少ない。本発 表ではこれまでに北海道からは未報告であった2種、Echinorhinus priscusの歯4標本とCretodus borodiniの歯1標本について報告 する。両種ともサントニアン階~下部カンパニアン階とされる上部 蝦夷層群大曲層の砂岩から産出した。

Echinorhinusは現存する属である。現存種は多咬頭であるが、 化石種には単咬頭・多咬頭いずれも存在し、咬頭数は種の区別にも 用いられる特徴である。中川町産の Echinorhinus 4標本には歯根 の一部が欠損している標本も含まれているが、単咬頭、咬頭頂が遠 心踵に届く、歯根に存在する溝が歯冠の基部から歯根の基部まで存 在することから、E. priscusに同定した。Echinorhinusの産出は北 海道内で二例目、E. priscusの産出は日本初である。E. priscus は現在まで下部始新統産出の標本が最古であったが白亜紀には既に Three shark teeth were classified to the genus *Parotodus* because their morphology could be distinguished from other lamniform sharks by absence of serrated cutting edges, presence of broad neck, U-shaped basal edge of the root and development of the lingual protuberance of the root. SSSMF-YF-830 was originally identified to *Parotodus benedenii*, a Neogene species, based on tooth size and lack of a pair of lateral cusplets. However specimens SSSMF-YF-094 and SSSMF-YF-137 possess a pair of lateral cusplets similar to the middle Eocene species *P. mangyshlakensis*. Given that an increase in size and the progressive loss of lateral cusplets are trend in the genus *Parotodus*, we hypothesize that our specimens and some early Oligocene species between *P. mangyshlakensis* and *P. benedenii*.

This study is the first record of the genus *Parotodus* from the Kishima Group in Saga Prefecture, Japan. Furthermore, this is the first report of this species of *Parotodus* from Asia.

¹佐賀県の杵島層群から初めてのパロトダス属(ネズミザメ目・オト ダス科)の産出.²中谷大輔(佐賀県立宇宙科学館),³不動寺康弘 (佐賀県唐津市),⁴デビッド・ウォード(ロンドン自然史博物館)

存在していたことが明らかになった。

Cretodusは白亜紀に存在したネズミザメ目の属であり、頬側面に垂 直な隆線があることや副咬頭を持つこと、二股に歯根が分かれるこ とが特徴である。今回記載した標本は、咬頭の頬側面に垂直な隆線 がある、副咬頭が比較的大きい、近心側面の咬頭がS字状である、 白亜紀に存在した同属の二種と比べ小型(歯牙高8.7mm)であるこ とから C. borodiniに同定した。Cretodusの産出は北海道内で二例 目、C. borodiniの産出は日本初である。本種は同時代に北米と西 アジアに生息していたことが知られているが、今回の発見で太平洋 西縁にも存在したことが判明した。本標本群を含め、同町産のサメ 化石は蝦夷層群産サメ化石群集の分類学的多様性についての知見を 大幅に更新するものであり、今後の研究の発展が期待される。

¹*Echinorhinus priscus* and *Cretodus borodini* (Chondrichthyes, Elasmobranchii) from the Upper Cretaceous in Nakagawa Town, Hokkaido, Japan.

²Sayaka Tokumaru (Hokkaido Univ.), ³Yasuhisa Nakajima (AORI, The University of Tokyo), ³Yoshinori Hikida (Nakagawa Museum of Natural History), ⁵Tamaki Sato (Tokyo Gakugei Univ.)

P24

稲井層群大沢層(下部三畳系 Olenekian)より発見された 硬骨魚類化石群集が示す中生代初期の食物網の複雑性¹

中島保寿(東大)²・高橋 聡(東大)³・佐々木 理(東北大)⁴・ 永広昌之(東北大)⁵・御前明洋(北九州自然史・歴史博)⁶

海洋生態系における脊椎動物相は、古生代-中生代境界 (P/T 境界) 前後で著しく変化した.前期三畳紀の小さな時空間における脊椎動 物の体サイズと食性の多様性は、ペルム紀末の大量絶滅からの海洋 生態系の回復過程を理解する上で重要である.演者らは、南部北上 帯(宮城県北部)に分布する下部三畳系稲井層群大沢層の発掘調査 を行った.その結果発見された硬骨魚類化石群集に関して、肉眼、 顕微鏡およびµCT スキャンでの観察結果を予察的に報告し、中生代 の海洋生態系の発達史を理解する上での重要性について強調する.

化石の産出地点である南三陸町歌津と石巻市大指の2地点は、いずれも大沢層中部の Subcolumbites/Columbites (アンモノイド) 共産層準 (upper Olenekian) に対比される.歌津からは大型の捕食 性硬骨魚類 Birgeria sp. の上顎骨1点と、小型で稜線・溝の発達す る菱鱗を持つ硬骨魚類 (?Paleonisciformes indet.)の骨格複数点 が確認された.また大指からは、球状歯が密集した歯板および菱鱗 を備えた硬骨魚類(?Perleidiformes indet.)が確認された.硬骨 魚類産出層準の上下数メートルを調査したところ、いずれの地点で も*Utatsusaurus*かそれに類似する海生爬虫類とアンモノイド類が 得られ、歌津からはさらに嚢頭類などの甲殻類、大指からは二枚貝 類や腕足類が発見されている.今回の発見からは、過去研究で糞化 石の分析から推測されたとおり、前期三畳紀のパンサラッサ海西縁 で捕食性の大型魚類・爬虫類と小型魚類が共存していたことが支持 され、さらに殻破砕型の捕食を行う魚類の存在も明らかになった. 本化石群集は、P/T 境界の大量絶滅後、当該海域で生態系の食物網 構造が前期三畳紀の短期間で複雑化し、脊椎動物を主体とする捕食 者の多様化が進んでいたことを示している.

¹A newly discovered fossil osteichthyan assemblage from the Osawa Formation (Spathian, Lower Triassic) illuminates the complexity of the earliest Mesozoic marine food web.

²Yasuhisa Nakajima (Univ. Tokyo), ³Satoshi Takahashi (Univ. Tokyo), ⁴Osamu Sasaki (Tohoku Univ.), ⁵Masayuki Ehiro (Tohoku Univ.), ⁶Akihiro Misaki (Kitakyushu Mus. Nat. Hist. Hum. Hist.)

ブラジル下部白亜系サンタナ層産ピクノドン科魚類 *Iemanja palma* の新標本とその意義¹

宮田真也² (城西大・大石化石ギャラリー) ・Paulo, M. Brito³ (Rio de Janeiro State Univ.)・籔本美孝⁴ (北九州自然史博) ・高橋謙 輔⁵ (城西大・大石化石ギャラリー) ・上野輝彌⁶ (国立科博)

Ieman ja palma Wenz, 1989 はブラジルの下部白亜系から産出する ピクノドン科魚類で,ホロタイプと3つの標本に基づいて記載され た.本種の標本は産出数が少なく,吻部まで保存された標本は稀で あり,ホロタイプも吻端部が欠損している.このたび,大石コレク ション,国立科学博物館,北九州市立自然史・歴史博物館所蔵の標 本について検討する機会を得たので報告する.

化石はブラジルのアラリペ台地に分布するサンタナ層から産出す るリン酸塩ノジュール中に保存されている.年代は裸子植物花粉お よび渦鞭毛藻類のシストよりアプチアン-アルビアンと考えられて いる(Heimhofer and Hochul, 2010 など).

大石コレクションと北九州市立自然史・歴史博物館所蔵標本は吻 部がまっすぐで前方に延び臼状の歯が並ぶこと、体高や頭長などの プロポーションや腹部縁辺が大きく膨出することなどでホロタイプ

P26

慣性モーメントに基づく四肢動物のパドリング遊泳法の復元指標¹ 安藤瑚奈美・藤原慎一(名大博)²

四肢動物が水中で推進力を得る方法はその生物の水生適応の程度 や系統によって様々なパターンが存在するが、絶滅種がどのような 遊泳法をとっていたのかをより正確に復元するためには、形態のも つ力学特性と機能の関係の理解を深める必要がある。本研究では、 まず比較的単純な「形態-機能」関係から理解を進めるため paddling 遊泳を行うカメ類の水中での姿勢維持能力に焦点を当て, 胴体の回転しにくさ(慣性モーメント:1)やヒレが生む回転力(面 積モーメント:A)を絶滅種の遊泳機能を復元する新たな物理指標と して提唱することを試みた.四肢動物の遊泳法は四肢で水をかく方 法 (paddling) と胴体をくねらせる方法 (undulation) の2パター ンに大別されるが、前者の方法では四肢の動きによって胴体に対し て少なからず回転力が働くことが予想され、遊泳時に姿勢を安定さ せるにはこの回転力に抗う必要がある. Paddling を行う生物におい てもヒレを動かす方向(上下・左右・前後軸回り)や動作のタイミ ング(左右同時・交互)は様々であるが、それぞれの遊泳法に応じ て胴体の pitch, roll, yaw 軸回りの慣性モーメント比に違いが出る

P27

有鱗類における眼の硬組織と軟組織の相関関係¹ 山下桃(東大・理)²

中生代の海洋生態系では、海生爬虫類が頂点捕食者としてのニッ チを占めており、潜水深度のような生活様式の解明は、生態系シス テムを理解する上で重要な手がかりとなる.しかしながら、これま で潜水深度における定量的評価は行われていない.

生物の眼の各組織の大きさは生活様式を反映しており、例えば水 晶体の大きさは明暗の認識可能範囲の指標となる.しかし、化石種 においては、水晶体のような軟組織を直接観察することができない. そこで、本研究では、現生爬虫類において、眼の中の硬組織である 鞏膜輪と軟組織の相関関係を明らかにすることで、化石爬虫類にお ける眼の軟組織の復元の可能性を探った.鞏膜輪とは、魚類や鳥類 を含む爬虫類(ヘビ類、ワニ類を除く)に見られる眼の内部にある 輪状の骨組織であり、化石種においても保存されうる唯一の眼の組 織である.眼の軟組織の復元が可能になれば、視覚機能の推定と潜 水深度の理解につながると考えられる.

現生トカゲ類 28 属 29 種の頭部及び眼球について, 液浸標本を 1%ルゴール溶液(I_KI)で染色した後にマイクロ CT スキャン撮影 とほぼ一致することから I. palmaに同定される.大石コレクション の I. palmaはほぼ全身が保存されており,特に吻部の保存状態は極 めて良好である. 吻部の背側と腹側は緩やかに湾入し,上顎と下顎 の先端はほぼ同じ位置で終わる.また,尾部骨格も良く保存されて おり,下尾骨は幅広く湾曲する.

国立科学博物館所蔵標本は標準体長が 51.5 cmでこれまで報告さ れている *I. palma* よりはるかに大きい.保存状態もよく吻端部と尾 部骨格も保存されている.本標本は吻部が前方に突出すること,腹 部が *I. palma*に見られるような比較的幅広い鱗で覆われることなど から *Ieman ja* 属の一員と考えられるが,頭部が大きく,吻部が太く て長いこと,腹部縁辺が大きく膨出しないことなどで *I. palma* と は異なることから別種または性的二型の可能性が考えられる.

¹Some new specimens of pycnodontid fish *Iemanja palma* from Santana Formation (Lower Cretaceous), Araripe Basin, Brazil

²Shinya Miyata (Josai Univ.), Paulo, M. Brito³ (Rio de Janeiro State Univ.), ⁴Yoshitaka Yabumoto (Kitakyushu Mus. Nat. Hist. Hum. Hist.), ⁵Kensuke Takahashi (Josai Univ.), ⁶Teruya Uyeno (Natl. Mus. Nat. Sci., Tokyo)

ことが予想される.本研究ではこの仮説を検証するにあたり、多種 多様な環境に適応し、その形態、遊泳法が多様である現生カメ類を 用いた.カメ類は固い甲羅を持つが故に paddling のみに焦点を絞っ た検証が可能である.

現生カメ類の CT 撮像データからソフトウェアを用いてカメの胴体の *I*, *A*を算出した結果, リクガメは水中で姿勢を維持しにくい一方で, ウミガメやスッポンモドキは左右同時に前後軸回りに漕ぐ運動に対して姿勢が安定するような体形をしていた.上下軸回りに左右交互に漕ぐ水生カメ類はウミガメほどではないが, 胴体が pitch, yaw 軸回りに回転しにくく水中での回転を抑制しやすいことがわかった.また, 左右軸回りに漕ぐ遊泳法は常に pitch 回転を生じるが, pitch 軸周りの *I* が卓越するオオアタマガメなどの頭部や尾の大きい種がこの遊泳法を無理なく行う事ができると考えられる. 今後, 他の系統での検証を重ねて普遍性を確かめることで, 化石種の遊泳方法の復元に応用できる有効な指標になっていく事が期待される.

¹A new method for reconstructing the paddling locomotionin tetrapods using moment of inertia

²Konami Ando, Shin-ichi Fujiwara (Nagoya Univ. Mus.)

を行った.デジタルデータから鞏膜輪の内径と水晶体の直径を計測 し,相関関係の有無を調べた.その結果,鞏膜輪の内径と水晶体の 直径に強い相関関係(r² = 0.80)があることがわかった.さらに水 晶体の径が, 鞏膜輪の内径に対し劣成長を示すことが明らかになっ た.

鳥類とトカゲ類は眼の構造が非常に類似しており,水晶体の直径 と鞏膜輪の内径の強い相関関係は鳥類においても同様に示されてい る.上述のように,本研究によってトカゲ類では水晶体の直径と鞏 膜輪の内径の関係は劣成長であることが判明した.しかし鳥類では, 水晶体の直径と鞏膜輪の内径が等成長の関係にある.したがって, 鳥類とトカゲ類では各組織の相対的な大きさが異なることがわかっ た.これらの結果を用いることで,鞏膜輪の大きさから様々な分類 群の古脊椎動物において水晶体の大きさをより正確に推定すること が可能となった.さらに鞏膜輪と他の組織との相関関係を明らかに することで,古脊椎動物の眼球構造と視覚機能のより詳細な復元が できると考えられる.

¹ Correlation between hard and soft tissue of the eye in extant lizards ² Momo Yamashita (University of Tokyo)

熊本県御船町に分布する上部白亜系御船層群から初産出した トカゲ化石¹

筑紫 健一 (放送大)²·池上 直樹 (御船町恐竜博物館)³·大谷 順⁴· 椋木 俊文 (熊本大・先)⁵・大森 聡一 (放送大)⁶・小松 俊文 (熊本大・先)⁷

熊本県御船町に分布する上部白亜系の御船層群"上部層"からトカ ゲ類の化石が見つかった.この化石は、御船川沿いに露出する赤色 泥岩中の石灰質ノジュールに保存されており、圧密の影響や変形が 少なく、細かな骨まで立体的に保存されている.しかし、微細な骨 をノジュールから剖出するのが難しいことや、ノジュール中の産状 観察を非破壊で行いたいため、熊本大学工学部 X-Earth Center のマ イクロフォーカス X線 CT スキャナーを用いた.

この石灰質ノジュールは、直径が3~4 cmのやや扁平な球状で、その表面に脊椎骨や肋骨などの多数の細かい骨が部分的に露出している状態である. CT スキャナーで解析したところ、頭部と尾部を欠いているものの、胴体の一部や上腕骨などが保存されていることが明らかになった. 胴体部には脊椎骨が3つ関節しており、これらの脊椎骨の神経棘はあまり発達せず、椎体は典型的な前凹型である.

P29

福島県いわき市の双葉層群足沢層から産出したポリコチルス科首長 竜の烏口骨化石とその古生物地理学的意義¹

加藤太一(茨自博,茨大・院・理工)²・橋本一雄,松本武雄,鈴木 千里(いわき自然史研究会)³・長谷川善和(群馬県博)⁴・菜花智(い わき市石炭・化石館)⁵・国府田良樹(茨自博・研究協力員)⁶・安藤 寿男(茨大・理)⁷

双葉層群は白亜紀後期(Coniacian 後期〜Santonian 前期)に堆積 した浅海〜河川成層で,福島県いわき市に南北約15km,東西約2km にわたって分布し,下位から足沢層,笠松層,玉山層に分けられる. 玉山層からはエラスモサウルス科首長竜であるフタバスズキリュウ のほぼ全身骨格化石が産出しているが,足沢層からもエラスモサウ ルス科の部分的な化石が産出している.さらに,足沢層と玉山層か らポリコチルス科首長竜の可能性がある歯および脊椎が発見されて いる.発表者らは未報告の足沢層産の首長竜化石について検討し, ポリコチルス類の鳥口骨化石と同定した.これまで国内では北海道 の蝦夷層群以外でポリコチルス類の確実な分布を示す資料はなかっ たため,その古生物地理学的意義についても報告する。

今回検討した標本は発表者らのうち3名が1982年2月7日に発見

また, 胴体の背面部には少なくとも 20 個以上の皮下骨が残っており, 数列ではあるものの, その配列がほぼ完全な状態で保存されていた. これらの皮下骨は, 前後方向に伸長する長方形型で, その表面には 目立った装飾が無く滑らかである.本標本は, 頭部を欠いているた め, 属種を特定することは困難であるが, 特徴的な長方形型の皮下 骨を有することから, 中期ジュラ紀から後期白亜紀にかけて知られ ているムカショロイトカゲ科 (Paramacellodidae) もしくはヨロイ トカゲ科 (Cordylidae) に分類される可能性がある.

トカゲ類化石が産出した層準の地質年代は、世界的にトカゲ類の 化石記録が極めて少ないチュロニアン階に含まれている可能性が高い. そのため、本標本は白亜紀のトカゲ類の地理的な分布の変遷を 明らかにする上で重要である.

¹First occurrence of fossil lizard from the Upper Cretaceous Mifune Group in Kumamoto Prefecture, Japan. ²Kenichi Chikushi (Open Univ. Japan), ³Naoki Ikegami (Mifune Dinosaur Museum), ⁴Jun Otani, ⁵Toshifumi Mukunoki (Kumamoto Univ.), ⁶Soichi Omori (Open Univ. Japan), ⁷Toshifumi Komatsu (Kumamoto Univ.)

し、その後いわき市石炭化石館にて展示されていたものである. ほぼ完全な鳥口骨で、clavo-coracoid process, posterolateral flare, medial coracoid foramina などの形態的特徴からポリコチルス類のものであると判断される. *Polycotylus latippinus*の体長約5mの個体と比較すると、本標本の個体の推定体長は約3mとなる.

本標本によってポリコチルス科首長竜が白亜紀 Coniacian におい て福島県にも分布していたことが確認された.足沢層からは前述し たエラスモサウルス科首長竜ほか, Coniacian 以降に分布を広げた モササウルス類の歯化石も発見されており,当時この海域に少なく とも3タイプの異なる海生爬虫類が分布していたことが示された.

¹A coracoid fossil of polycotylid plesiosaur from Ashizawa Formation, Futaba Group and its paleobiogeographic implication. ²Taichi Kato (Ibaraki Nature Museum, Ibaraki Univ.), ³Kazuo Hashimoto, Takeo Matsumoto, Chisato Suzuki (Iwaki Natural History Association), ⁴Yoshikazu Hasegawa (Gunma Museum of Natural History), ⁵Satoshi Nabana(Iwaki City Coal and Fossil Museum), ⁶Yoshiki Koda (Ibaraki Nature Museum), ⁷Hisao Ando (Ibaraki Univ.).

P30

モンゴル上部白亜系産巨大翼竜類について¹ 對比地孝亘(東大・院理)²・Brian Andres(南フロリダ大学)³・Patrick M. O' Connor(オハイオ大学)⁴・渡部真人(早大・国際教養)⁵ Khishigjav Tsogtbaatar・Buuvei Mainbayar(モンゴル科学アカデ ミー・古生物学地質学研究所)⁴

モンゴルゴビ砂漠に分布する上部白亜系からは多様な化石脊椎動物 相が報告されているが、翼竜類化石の産出は非常に乏しい。本発表 では、ネメグト層(カンパニアン上部-マストリヒチアン)から初と なる翼竜類の化石の発見を報告する。本標本は南ゴビの産地グルリ ンツァフにおいて発見された複数の断片的な後部頸椎(椎体および 前関節突起付近の部分的神経弓2つ)からなる。翼竜類として同定 を支持する最も強力な根拠は、椎体後部にある補助的な関節突起で ある postexapophysis が存在することである。この構造は、 Ornithocheiroidea など翼竜内の複数のクレードに見られる派生形 質である。また、他の翼竜類の派生形質として、すべての断片にお いて、皮質骨が非常に薄く、内部が含気性であることが挙げられる。

本標本について着目すべき点はその大きさにある。第8あるいは 第9頸椎のものであると考えられる椎体は推定最大幅約198 mm あり、 アロメトリーの影響を考慮に入れた控えめな見積もりでも、翼開長 10 m 前後の翼竜から由来すると推定され、これはこれまで報告され ている巨大翼竜(*Quetzalcoatlus northropi, Arambourgiania philadelphiae*、 *Hatzegopteryx thambema*)と同等の大きさである。これらの翼竜はいず れもMaastrichtian から産出し、Azhdarchidae に属するものである。 実際に汎世界的に、これまでに Maastrichtian から報告され、ある 程度詳細な分類的帰属が判明している翼竜類のほとんどがこのクレ ードのものであることと、その大きさを考慮に入れると、本標本も Azhdarchidae に属する可能性が高い。上記3種の翼竜はそれぞれ北 米、中東、東ヨーロッパから産出しているが、今回のモンゴルから の標本の産出により、このような巨大翼竜は Maastrichtian のロー ラシアに広く分布していた可能性が支持される。

¹Gigantic pterosaurian remains from the Upper Cretaceous of Mongolia

²Takanobu Tsuihiji (Univ. of Tokyo), ³B. Andres (Univ. of South Florida), ⁴P. M. O'Connor (Ohio Univ.), ⁵W. Mahito (Waseda Univ.), ⁶K. Tsogtbaatar, B. Mainbayar (Inst. of Paleontology and Geology, Mongolian Academy of Sciences)

香川県さぬき市多和兼割の上部白亜系和泉層群から産出した 脊椎動物化石¹

原巧輔(東京学芸大学)²・金澤芳廣(香川県丸亀市新田町)³ 林昭次(岡山理科大学)⁴・佐藤たまき(東京学芸大学)⁵

日本の上部白亜系カンパニアン~マーストリヒティアン階におけ る脊椎動物化石の産出する地域の1つに和泉層群が存在する。和泉 層群は四国地方を中心として、大阪府の和泉山脈東部から淡路島、 阿讃山地を通り愛媛県松山市まで続く。この地域からは長頸竜類、 ウミガメ類、モササウルス類などの海生爬虫類や、恐竜、軟骨魚類・ 硬骨魚類などが産出することが知られている。

本研究では、大阪市立自然史博物館に寄贈された香川県さぬき市 多和兼割の和泉層群から産出した脊椎動物化石 22 点を記載したと ころ、大型のカメの縁板骨やサメの歯が含まれていることが判明し た。カメの縁板骨5点には、鱗板溝が存在しない、内縁が著しく発 達する、内縁が波打つ、という形質が認められることから、原始的

P32

福岡県の下部白亜系関門層群より産出した恐竜類の多様性¹ 田上 響(福岡大・理)²・立畠 潤一郎(福岡大・院・理学)³・ 長屋 亨(福岡大・理)⁴

福岡県および山口県に分布する下部白亜系関門層群は、多くの脊 椎動物化石が産出することで知られており、下部を構成する非海成 の脇野亜層群からは、多様な淡水性魚類化石がこれまでに報告され てきた (Uyeno, 1979; Yabumoto, 1994). 対照的に、カメ類 (岡崎, 1992; Sonoda et al., 2015)や恐竜類等の陸生脊椎動物の分類学的研究は少な く、特に恐竜類では、近年まで獣脚類 Wakinosaurus の歯化石の記載 があるのみであった (Okazaki, 1992). しかし、基盤的新角竜類の遊 離歯標本 (Tanoue and Okazaki, 2014)が確認されたことにより、関門 層群において、さらなる恐竜類化石の産出が期待されるようになっ た.

本研究では、福岡県北九州市小倉南区に分布する、脇野亜層群上 部のシルト岩層より産出した、破片化した脊椎動物化石の分類を検 討した.高さ9.4mmの遊離歯標本は、頂部が遠心に湾曲した円錐形 であり、近心および遠心のカリナ (carina)に鋸歯が見られ、近心のカ リナは歯冠基部で舌側に寄ることから、獣脚類のドロマエオサウル なオサガメ類 Mesodermochelys undulatus と同定された。また、サ メには Chlamydoselachus sp., Hexanchus microdon, Paranomotodon angustidens, Protolamna sp. などが含まれていた。このうち P. angustidens は和泉層群では初出であり、これでまでに日本国内で 報告されている本属の標本の中では歯牙高が最大であった。

本研究の成果を加えて、これまでに和泉層群から報告されている サメ化石と、日本国内の同年代の地層(北海道の根室層群)から見 つかるサメ化石を比較すると、現時点で3属が共通して産出してい る一方、根室層群や欧州のサントニアン~マーストリヒティアン階 からの報告があっても和泉層群からは未報告の属(*Centrophoroides*) もある。継続的な調査により和泉層群のサメ化石相の更なる解明が 期待される。

Vertebrate fossils from the Upper Cretaceous of Izumi Group, Kagawa $\operatorname{Prefecture}^1$

Kosuke Hara (Tokyo Gakugei University)², Yoshihiro Kanazawa (Nitta-cho, Marugame, Kagawa)³, Shoji Hayashi (Okayama University of Science)⁴, Tamaki Sato (Tokyo Gakugei University)⁵

ス科の歯と同定された (Currie et al., 1990). 小歯の密度が Wakinosaurus のそれより高いため,この遊離歯は関門層群における 新たな分類群のものである.また,長さ35cm,高さ20cm,幅7cm の骨化石は,外側に長径7cm,短径2cmの含気孔が存在し,内部全 体が何層もの厚さ2~5mmの薄い板によって仕切られた含気骨であ る.この標本は,背側に神経弓と椎体の境界に形成される neural centrum structure の跡が見られることから竜脚類の頸椎と,内部に大 きい区画である camera と小さい区画である camella を共に持つこと から基盤的なティタノサウルス形類のものと同定された (Upchurch et al., 2004; Wedel, 2007).

本研究にて報告する標本の産出は,既に報告されている獣脚類 Wakinosaurus および基盤的新角竜類とともに,関門層群における恐 竜類の多様性の高さを示唆している.

¹Diversity of dinosaurs from the Lower Cretaceous Kanmon Group in Fukuoka Prefecture, Japan

²Kyo Tanoue (Fukuoka Univ.), ³Junichiro Tatehata (Grad. School of Sci., Fukuoka Univ.), ⁴Toru Nagaya (Fukuoka Univ.)

P33

モンゴル国上部白亜系ジャドフタ層の風成層に印跡された 獣脚類足印の形成過程について¹ 田部智大²・石垣忍(岡山理大)³・B. MAINBAYAR⁴・ Kh. TSOGTBAATAR (IPG・蒙)⁵・實吉玄貴⁶・浅井瞳(岡山理大)⁷

一般に風成層中に恐竜の足跡化石が保存される例は少なく、モン ゴル国より二例、北米から数例が報告されているに過ぎない. 岡山 理科大学-モンゴル古生物学地質学研究所共同調査隊は 2015 年調 査においてモンゴル国ゴビ砂漠中央部の Udyn Sayr に分布する上部 白亜系ジャドフタ層の風成層より 16 点の足印化石を発見した.これ らは地表に足印を含む周囲の地層が突出するように産出し、突出部 分は塊状である. 印跡動物は獣脚類が 4 点、不明が 12 点である.

筆者らは、比較的保存のよい1点の獣脚類足印化石(足印長 40cm, 足印幅 28cm. II, III, IV 指印あり.皮膚痕なし. 爪痕不明瞭. 以 下「本足印」と呼ぶ)の中央を横断するように掘削して地層の変形 状態を記録した. 産出地点の地層はほぼ水平だが、本足印の印跡面 は Dune の Slipping Surface で 35°傾斜している. 印跡面は下方に たわみ、その影響は足印下 30cm のラミナまで及んでいた. ラミナの 断裂は確認できなかった. Milan & Loope (2007) は、ユタ州の Entrada 砂岩層 (風成層) 中 の獣脚類足印の形成を検討し、風成層ではあるものの印跡時の支持 基体はかなり湿っている状態で印跡されたとして、支持基体変形の モデルを示した (以下 ML モデルと呼ぶ).本研究で対象とした足印 の断面は ML モデルとほぼ同様であったが、①ラミナの下方へのたわ みがより深部まで及んでいること、②ラミナの断裂変形が見られな い、の二点で相違があった.本足印は ML モデルに比して支持基体の 含水率が少なかったために支持基体が柔らかく、印跡圧が深部にま でおよび、また断裂のない変形が生じたことがこの違いの原因と筆 者らは推定する.

¹Imprinting process of a theropod footprint on eolian bed in Djadohta Formation, Upper Cretaceous, Mongolia.

²Tomohiro TANABE; ³Shinobu ISHIGAKI (Okayama Univ. of Sci.);
 ⁴Buuvei MAINBAYAR; ⁵Khishigjav TSOGTBAATAR (Mongolian Acad. Of Sci.);
 ⁶Mototaka SANEYOSHI; ⁷Hitomi ASAI (Okayama Univ. of Sci.)

- 48 -

熊本県天草市の前期始新世バク形類の系統解析¹ 宮田和周²(福井県大・恐竜研)

熊本県天草市御所浦の古第三系赤崎層から産出したバク形類化石 は、当初左上顎第四小臼歯の乳歯と第一大臼歯と考えられていたが、 これらは第一および第二大臼歯と判明し、さらに同一個体のものと 見られる右上顎犬歯および第三大臼歯も追加された。この種は小さ なサイズに加え、低い protoloph と metaloph、直線的な ectoloph を持 ち、"イセクトローフス科"の一種と見られるものの、その系統位置 は定かでない。同科は基盤的なバク形類からなる側系統群であり、 中国の前期始新統からはさらに原始的な Orientolophus、Homogalax、 Chowlia 属が既報にある。またインドおよびパキスタンの前期始新 統からも同科の Karagalax や Gandheralophus が知られる。これら原 始的なアジアのタクサを含めた包括的な系統解析を行い、赤崎層産 の種の系統関係を考察した。

Froehlich (1999, 2002)と欠ける既出のアジア産"イセクトローフス

科"、および Mesolambdolophus などの基盤的バク形類、そしてアジ ア最初期の有角類の一つ、Minchenolestes を加えた48 タクサと125 形質を基に、PAUP 4.0 による発見的探索を実施した。解析には Holbrook and Lapergola (2011)の形質評価の改定を参照した。結果、6 つ最節約樹 (CI: 0.2821; RI: 0.6703) が得られ、その含意樹形は Minchenolestes+有角類からなる単系統群の姉妹群として赤崎層の種 は位置づけられる。ブーツストラップ値に十分な信頼度が無いが、 想定されていた Orientolophus や Isectolophus とは近縁で無く、有角類 の基盤種である可能性を示唆する。なお、既出のアジア産"イセク トローフス科"のタクサは、Mesolambdolophus と赤崎層の種の間に 位置し、系統関係の解決は得られない。

文献) Froehlich (1999, 2002): J.V.P.19: 140–159, Z.J.L.S. 134: 141–256. Holbrook and Lapergola (2011): J.V.P. 31: 895-901.

¹ Phylogenetic analysis of the Early Eocene tapiromorph perissodactyl from the Akasaki Formation, Amakusa, Kumamoto Prefecture, Japan.
²Kazunori Miyata (Res. of Dinosaur, Fukui Pref. Univ.)

P35

 ミャンマー中期始新世ポンダウン相の食肉型類
 (Carnivoramorpha, Manmalia)の系統分類についての再検討¹
 江木直子(京大・霊長研)²・鍔本武久(愛媛大・理)³・
 ジンマウンマウンテイン(Magway大・地質)⁴・タウンタイ (Meikhitila大・地質)⁵・高井正成(京大・霊長研)⁶

ミャンマー中部に分布するポンダウン層は東アジア南部の始新統 を代表する化石産出層であり、これまでに50属60種以上の哺乳類 が報告されている。従来は中期始新世末と考えられていたが、U/Pb 放射年代から中期始新世後半の初めに変更された。食肉類は断片的 なものが多く、分類学的同定が混乱していたため、再検討を行った。

ミアキス科(Miacidae):ミアキス科および Miacis 属は食肉目に 対し側系統群を形成し、始新世初頭の北米およびユーラシアに出現 する。ポンダウンの種は Miacis としては大型であるが、タイの後期 始新世から報告されている種に近いと考えられ、cf. Miacis とした。

アンフィキオン科(Amphicyonidae):食肉目のイヌ型亜目に属し、 この科の最初の化石記録は北米の中期始新世後半で、ポンダウン相 と同時期で、北部東アジアとヨーロッパの記録より古い。後期始新 世中国南部の Guanxicyon とは形態が異なり、属種は不明である。

P36

ケニア北部ナチョラ地域の中期中新世反芻類(哺乳綱偶蹄目)¹ 辻川寛(東北文化学園大・医療福祉)²・中野良彦(大阪大・人間科 学)³・仲谷英夫(鹿児島大・理)⁴・國松豊(龍谷大・経営)⁵・中 務真人(京都大・理)⁶・菊池泰弘(佐賀大・医)⁷・石田英實(京都 大)⁸

ケニア北部ナチョラ地域の中部中新統アカ・アイテパス累層は, 大型化石類人猿ナチョラピテクス・ケリオイを大量に含むことで知 られ,産出年代はカリウム・アルゴン法などにより,約1500万年前 と推定されている. Pickford et al. (1987)は1982-4年度の採集標本 に基づきナチョラの動物を報告した.1986-2002年度の追加標本を加 えた辻川・仲谷 (2005)における哺乳動物相の改定を経て,記載論 文作成のために本研究では,その中の反芻類(哺乳綱偶蹄目反芻亜 目)を再検討した.

反芻類の歯 28 標本と枝角 1 標本を検討し, 5 科 5 属 6 種を確認した. 内訳は、マメジカ科 Dorcatherium pigotti, D. chappuisi, ジャコ ウジカ科(?) Walangania africanus, クリマコケラス科 Climacoceras sp.,キリン科 cf. Canthumeryx sirtensis, ウシ科 cf. Gazella sp.であった. Climacoceras sp.は骨性の枝角のみに基づき, それ以外の反芻類 ニムラヴス科(Nimravidae):ネコ型亜目の基底に位置付けられているこの科は、中国南部に中期始新世前半・後半の化石記録があるが、他の地域では後期始新世か漸新世に現れる。ポンダウン相には東西ユーラシアに分布する Nimravus intermedius と Nimravus と近縁であるがこの科の中では小型の属の2つが存在する。

クマ上科(Arctoidea): クマ,イタチ,アライグマなどを含む系統 の基幹群は後期始新世から知られ始めるが,他の地域では漸新世に 多様化するに対し,タイの後期始新世クラビ動物相で既に10種以上 が存在したことが報告されている。ポンダウン相では2属が存在し たと考えられ,クラビ相での多様化の先駆けと位置付けられる。

結論として,現段階で,ポンダウン相には6種の食肉型類が認め られる。始新世初頭から存続するミアキス科を例外として,これら は食肉類の複数の科・上科の初期記録を代表している。

¹ Revision on systematic classification of carnivoramorphans (Mammalia) from the Middle Eocene Pondaung Formation of Myanmar ²Naoko Egi (Kyoto Univ.), ³Takehisa Tsubamoto (Ehime Univ.), ⁴Zin-Maung-Maung-Thein (Magway Univ.), ⁵Thaung-Htike (Meikhitila Univ.), ⁶Masanaru Takai (Kyoto Univ.)

は、臼歯に基づいた.本検討により Pickford et al. (1987) にキリン 科とウシ科が付け加わることとなり、クリマコケラス科の枝角は既 存の分類群に見られない場所に小さな枝が認められることから、 *Climacoceras gentryi* から *Climacoceras* sp.に変更した.

ナチョラピテクスおよび反芻類を含む層準の哺乳類層序に基づく 年代に変更はなく, Faunal Set IIIb(約16-14.5 Ma)に相当する

(Pickford, 1981).ナチョラ地域の反芻類は, cf. Gazella sp.を除いて, 歯冠が低く,森林環境だった可能性が高い.このことはナチョラピ テクスの体肢骨の分析に基づく移動様式の推定(樹上歩行的)と整 合的であるが,近年の研究(Ungar et al., 2012)では比較的大型のマ メジカ科 D. chappuisi はグレイザーとの結果もあり,今後のさらなる 資料の追加と精査が必要であろう.

¹Ruminants (Artiodactyla, Mammalia) from the Middle Miocene of Nachola, northern Kenya

²Hiroshi Tsujikawa (Tohoku Bunka Gakuen Univ.), ³Yoshihiko Nakano (Osaka Univ.), ⁴Hideo Nakaya (Kagoshima Univ.), ⁵Yutaka Kunimatsu (Ryukoku Univ.), ⁶Masato Nakatsukasa (Kyoto Univ.), ⁷Yasuhiro Kikuchi (Saga Univ.), ⁸Hidemi Ishida (Kyoto Univ.)

束柱類(哺乳類:?アフリカ獣類)の古生物地理分布および 進化・絶滅との関係性¹ 松井久美子(国立科学博物館,日本学術振興会特別研究員)²・ 荒諒理(東大・理・地惑)³

束柱類は目レベルで完全に絶滅した海生哺乳類の1クレードであ る.彼らは漸新世から中新世にかけての環太平洋北部地域沿岸とい う,限られた時代・地域に生息していた.束柱類化石は日本を含め て比較的多くの標本が見つかっているにも関わらず,その古生態に ついては不明な点が多く残されている.特に,束柱類の生息環境の 変遷や水棲適応過程については,これまで束柱類の生息当時の古環 境解析を元に考察された先行研究が複数知られている.しかしなが らこれらの研究では,調査地域がごく狭い範囲に限られていたり, 調査や比較の対象が1属もしくは2属の限られた標本のみを用いた 議論であったりして,束柱類全体を網羅している研究はほとんど存 在しない.そのため,束柱類の進化や水棲適応度の変化を明らかに する上で重要となる,時間軸に沿った広範囲の地理的分布の変遷過 程を明らかにする必要がある. そこで本研究では、現在知られているすべての束柱類産出記録を、 文献とデータベースを元に調査し、地図上に分類群および時代ごと にマッピングを実施した。その結果、確実に束柱類が生息していた と考えられる時代は始新世・潮新世境界付近に始まり、約10Maまで であること、さらに北部太平洋の東西両岸において、デスモスチル ス科はパレオパラドキシア亜科より広い生息域をもち、かなり寒冷 な環境にも適応可能であったことが明らかになった。さらに、初期 に分岐したデスモスチルス科である Cornwallius はより派生的なデ スモスチルス科である Desmostylus に生息域を奪われる形で絶滅し たことが示唆された。最後まで北太平洋に生息していた束柱類は Desmostylus で、10Ma 前後に起こった急速な海水準の低下に伴う浅 瀬の縮小によって束柱類は完全に絶滅したと考えられる。

¹Paleogeography of Desmostylia (Mammalia: ?Afrotheria) and its implication for evolution and extinction of Desmostylia ²Kumiko Matsui (National Museum of Nature and Science, Tokyo, JSPS Research Fellow), ³Masamichi Ara (Univ. of Tokyo)

P38

ロシア鮮新統ウドゥンガ哺乳動物相中の 大型アナグマ類 Ferinestrix 標本^{*1}

荻野慎諧(丹波竜化石工房)²・仲谷英夫(鹿大・理)³,高井正成(京 大・霊長研)⁴, E. N. マシェンコ(ロシア古生物研)⁵, N. P. カル ミコフ(ロシア南部科学センター)⁶

シベリアのバイカル湖南東岸のウドゥンガ(Udunga)地域の鮮 新世(およそ350万年前)の地層から,齧歯類7種,兎類4種,食 肉類11種,長鼻類2種,奇蹄類5種,偶蹄類9種を含む哺乳類相が 報告されている.このウドゥンガ哺乳動物相は食肉類の種数が豊富 で,なおかつ標本数も全体の1/5と,他の哺乳動物相に比べて構成 割合が高いことが特徴の一つである.

食肉類化石の中でも特に,アナグマ亜科に分類される絶滅種 *Ferinestrix rapax*(Wolsan and Sotnikova, 2013)が標本のおよそ半数を 占めている.

Ferinestrix はこれまでに鮮新世のシベリアと北米から報告されている.陸生のイタチ科の中では最大級のサイズで,現生のアナグマと異なり,かなり肉食に特化した特徴を有し、学名の由来もそれぞ

P39

ハンガリー北西部ウェータシュシェシュ考古遺跡における約 350ka のヒト科に似た足跡の再解析

A re-analysis of ~350Ka hominin-like footprints from Vértesszőlős, Hungary.

田中郁子(神戸大・日本学術振興会・LJMU(UK))^{1,2,3}・ András Markó(Hungarian National Museum)⁴・ Balázs Bradák(神戸大・日本学術振興会)^{1,2}・兵頭政幸(神戸大)¹・ Eleanor Strickson (LJMU)³・Peter Falkingham (LJMU)³

ウェータシュシェシュサイトは、ハンガリーの北西部に位置する 考古遺跡である.ここはヒト科の後頭骨化石(Samu, Homo heidelbergensis)の他、ウマ類、クマ類、ウシ類等の哺乳類体化石 と鳥体化石が産出し、時代は中期更新世の約50-35万年前に相当す る.Samu 発見場所の近くに位置する足跡サイトは、表面を石灰質泥 れ ferina=新鮮な肉, estrix=捕食者, rapax=猛烈な, となっている. ウドゥンガ哺乳動物相からは 100 以上の遊離歯が確認され, それ ぞれの歯のサイズには雌雄差に起因すると考えられる明瞭な個体差

がある. また、ウドゥンガ地域の Ferinestrix は同所的に多数の標本が見つ かっている点にも着目したい.多くのイタチ類は群れをつくらない が、現生のアナグマは群れで生活している.堆積環境によってイタ チ類が選択的に集積することは考えにくく、現生のアナグマが形成 しているような集団が、ある時まとまって化石となった可能性が示 唆される.

¹ Fossil large melid *Ferinestrix* from the Pliocene Udunga fauna, TransBaikalian region, Russia.

²S. Ogino (Tamba Dinosaur Fossil Lab.) ³H. Nakaya (Kagoshima Univ.), ⁴M. Takai (Primate Res. Inst., Kyoto Univ.), ⁵E. N. Maschenko (Paleontological Institute, Russian Academy of Sciences), ⁶N. P. Kalmykov (Southern Scientific Center, Russian Academy of Science)

岩に覆われている. そこには細長い3つの足跡(孤立した1つの足跡と連続した2つの足跡)が識別される. これらの足跡は, ヒト科か小さなクマ(Ursus stehlini)が残したと議論されており, この 事を明らかにするため,従来の記載法に加えフォトグラメトリを用いて定量的に三次元形態解析を行った.

孤立した1つの足跡は、2つの蹄と輪郭の丸さを持つ事から、偶 蹄類(ウシ類)の足跡と識別され、さらに、2つの足跡が重複して いる事がわかった.一方、連続した2つの足跡は両方とも、細長く、 丸みを帯びた輪郭はヒト科のかかとに似ている.さらに、足の先端 に見られる丸く広い小さな複数の痕は、指痕のようである.しかし、 これらの足跡は、長さと幅の割合が大きく異なるため、同一動物の 足跡とは考えにくい.片方または両方が風化が進んだヒト科の足跡 である可能性がある.しかし、残念ながら、足跡は表面の風化が進 んでおり、かつ、明瞭さに欠けるため、三次元形態のみから印跡動 物の種類の正確な特定は難しいと結論せざるをえない.

高知県土佐清水市爪白の中新世潮汐低地堆積物に見られる 生痕化石群集¹ 奈良正和(高知大・理工・生物)²・矢島穂高(高知大・理)³

高知県土佐清水市に分布する中新統三崎層群は、日本海拡大期の 前孤海盆を埋積した堆積物である.最近, Nara and Aikou (2016) は、 この三崎層群堆積盆が、日本海拡大にともなう活発なテクトニクス と、それに起因する三崎層群堆積場への大量の砕屑物供給の影響を 受けた高い環境ストレスの影響下にあった可能性が高いことを論じ ている.こうした特異な堆積盆における古生態学的特徴を知るため には、堆積盆内の様々な場における古生物群集の復元に関する事例 研究を積み重ねることが重要である.本講演では、この三崎層群堆 積盆のうち、充填最末期の堆積物である竜串層上部に発達した潮汐 低地システムに見られた生痕化石群集について報告する.

ここで扱う潮汐低地システムで形成された堆積物は、土佐清水市 爪白海岸に位置する海中展望塔への階段入り口付近に見られ、下位 より、フォアセットにマッドドレープをともなうトラフ型斜交層理 砂岩(潮汐流路堆積物)、砂岩泥岩互層(潮汐砂底堆積物)、フレ ーザー層理を含むやや泥質な砂岩層(潮汐砂底堆積物)の順に重な

P41

モンゴル国ゴビ砂漠南東部 Bayshin Tsav に分布する上部白亜系の 岩相層序と古環境¹

蔦永早也香²・浅井瞳³(岡山理大・生地院)・実吉玄貴⁴(岡山理 大・生地)・B. Mainbayar⁵・Ar. Batswkhj⁶・Bu. Batsaikhan⁷・Kh. Tsogtbaatar⁸(モンゴル古生物学地質学研究所)

モンゴル国ゴビ砂漠からは、数多くの脊椎動物化石が産出する. 化石を産出する地層に対して、堆積学的な観点に基づいた岩相記載 や古環境解析をすすめることは、化石動物の生息環境解明や、古生 態の復元に重要である.本研究ではゴビ砂漠南東部 Bayshin Tsav に分布する上部白亜系を対象に、堆積学的手法に基づいた岩相層序 記載と古環境の復元、化石タフォノミーの予察を行った.

調査対象とした Bayshin Tsav は、上部白亜系 Bayan Shire 層とされる地層が分布し、2km四方の平坦な地形からなる。産地内に分布する一方向流の堆積構造を観察することで、古流向を復元し、地層形成時の河川環境復元に利用した。本研究では、岩相層序と同一層準から得られた計114点の古流向の復元結果を合わせて報告する。

Bayshin Tsav の岩相層序は、下位から順にUnit 1(氾濫原堆積物), Unit 2(河道埋積堆積物), Unit 3(氾濫原堆積物)の3層から構成される.古流向の復元はUnit 2において実施した.古流向は、主 る. 生痕化石群集が見られるのは、潮汐砂底堆積物と考えられる、 やや泥質な砂岩層である.

この生痕化石群集は、蠕虫類の摂食痕である Dactyloidites ottoi を特徴生痕種とし、多毛類の移動摂食痕である Macaronichnus segregatis degiberti, 埋在性ウニ類の移動摂食痕である Scolicia isp. をともなう. Scolicia isp. の形成者と考えられるウニ類は、典 型的な挟塩性生物で海域環境の指標となること、D. ottoiは、スペ イン、バスク地方の白亜系において水深 0-3 m のごく浅い海域の堆 積物に特徴的に産すること、さらに、M. s. degiberti も潮汐卓越 の潮間帯のほか、卓越営力を問わず広い潮下帯域に見られる生痕化 石であることがわかってきている.以上のことから、この生痕化石 群集が形成された場は、潮汐砂底の中でも、通常の海域程度の塩分 を有する海水の影響下にあったものと考えられる.

¹Ichnocoenosis occurring in the Miocene tidal flat deposits of Tumajiro, Tosashimizu, SW Japan

²Masakazu Nara (Kochi Univ.), ³Hodaka Yajima (Kochi Univ.)

にS45°EからS45°Wを示しており,南へ向かう流れを中心とする. このような流れの特徴は,産地内全体で観察された.また,Unit 2 内に堆積構造の変化や堆積物の極端な変化など,古環境の変遷は確 認できない.以上の点から,Unit 2 は複数または単一の河川系から なる安定した環境であったと推察される.しかし,Unit 2 を確認で きる最大層厚は5mであり,安定した古環境と考え合わせると,堆積 速度は遅かったと示唆される.これにより堆積時,沈降速度は遅か ったと考えられ,同時代の他産地との比較検討を進める必要がある. Unit 2 からは多くの化石が産出し,一部は関節した状態で発見され るものの,多くが骨片もしくは遊離した状態で発見される.本研究 結果から,遅い堆積速度に伴う再堆積の繰り返しにより,化石の産 状が影響を受けたと示唆された.

¹Lithostratigraphy and Paleoenvironments of the Upper Cretaceous in Bayshin Tsav, southwestern part of Gobi desert, Mongolia.

²Sayaka Tsutanaga •³Hitomi Asai •⁴ Mototaka Saneyoshi (Okayama Univ.Sci.), ⁵Buurei Mainbayar • ⁶Arglsaikhan Batswkhj • ⁷Buyantegsh Batsaikhan •⁸Khishigjav Tsogtbaatar (IPG)

P42

動物の硬組織と軟組織を同時観察する薄片作製のための 新たな包埋法¹ 浦野雪峰(名大・環)²・高木菜都子(名大・全技セ)³・田上響(福

岡大)⁴・藤原慎一(名大博)⁵ 近年,絶滅動物の研究のひとつの手法として,現生動物の硬組織と軟組 織を理解し,絶滅動物に応用するというものがある.軟組織と硬組織の分 布や結合の様子を観察することは、動物の運動能力や成長方向を知る上で, 非常に重要であり,そのために,軟組織と硬組織を分離することなく同時

に観察することが求められている.しかし,生物体組織の切片作製に現在 主に使われているミクロトームでは,切片のサイズが小さい(60mm四方 程度)ため,大きな標本を観察することが難しい.また,切片作製前に骨 質部の脱灰を行うため,骨質部が柔らかくなることで変形が生じる恐れも ある.

以上のような問題点を解決するため、近年、Spurr 樹脂を包埋材として薄 片作製を行う手法が開発され、硬組織と軟組織の同時観察が可能になった. しかし、Spurr 樹脂は高価であり、薄片の大量作製が難しい.また、硬化し た Spurr 樹脂は黄色がかっているため、ブロックのまま落射光で試料の形 態や色調を観察することには適さない.更に、近年 Spurr 樹脂が製造中止 になっており、今後在庫が減少していくことを考慮すると、代替手法の開 発が急がれる.

そこで本研究では、無色透明かつ比較的安価で手に入りやすい樹脂で、 硬組織と軟組織の構造の同時観察をすることを目標に、樹脂の種類や温度 などの様々な条件を変え、試料包埋の実験を行った.試料には、先行研究 との比較が容易なキタクシノハクモヒトデと、主要な実験動物のひとつで あるニワトリの頭部を用いた.

その結果、クモヒトデ類のような表面積に対する容積が小さい試料であ れば、アセトンによる十分な脱水を経た後で、粘性を緩める操作を行った デブコン ET (無色透明なエポキシ系樹脂)を試料に浸透させることで、薄 片試料の作製に耐えうる包埋が可能なことが分かった.一方で、ニワトリ の頭部のような表面積に対する容積が大きい試料では、脱水にかける時間 を長くすることで、内部まで完全に樹脂置換できると期待される.

 $^1\mathrm{A}$ new embedding method for preparing thin section of animal hard and soft tissues

²Yukine Urano (Nagoya Univ.), ³Natsuko Takagi (Nagoya Univ.), ⁴Kyo Tanoue (Fukuoka Univ.), ⁵Shin-ichi Fujiwara(Nagoya Univ. Mus.)

「沖縄に国立自然史博物館を!」シンポジウム開催報告¹ 藤田和彦(琉球大・理)²・昆 健志(琉球大・研究企画室)³・ シンポジウム「沖縄に国立自然史博物館を!」実行委員会⁴

特異な地史をもつ琉球列島には世界に誇れる自然が残されている. この地の生物多様性と自然の懐の深さを研究し、全世界にアピール するための拠点(国立自然史博物館)が必要である.シンポジウム 「沖縄に国立自然史博物館を!」実行委員会では、沖縄に国立自然 史博物館を設立することを目指して、これまで計3回のシンポジウ ムを開催し、沖縄に造るべき国立自然史博物館について語り、新た な自然史博物館像を描いてきた.本発表では、自然史に関わりの深 い古生物学会員に向けた情報共有を目的とし、これまで沖縄で開催 されたシンポジウムの概要を報告する.

第一回目は、平成26 年12 月に沖縄県立博物館・美術館で開催された. 「ちゅら島の豊かな自然を未来につなぐ」を副題として、沖 縄県内外の行政担当者・有識者から7 題の講演とパネルディスカッ ションを基に、様々な視点から沖縄における国立自然史博物館設立 の重要性を語りあった.

第二回目は、平成27年11月に沖縄県立博物館・美術館で開催さ

れた.「次世代の博物館像を求めて」を副題として,既存の博物館 を超えた次世代の自然史博物館とはどのようなものなのかについて, 博物館関係者や有識者による5題の講演などを基に,沖縄に造るべ き国立自然史博物館の姿を見据えつつ,様々な視点から議論した.

第三回目は、平成28年7月に石垣市市民会館で開催された.「島 噢ネットワークの可能性を探る」を副題とし、さまざまな分野の研 究者からの5題の講演などを交えながら、島嶼やフィールドを有機 的に結びつけたネットワーク型の自然史博物館のあり方を議論した.

日本学術会議が、平成28年5月に、提言「国立自然史博物館設立 の必要性」を公表した.それを受けて、現在「国立沖縄自然史博物 館設立準備委員会」が組織され、活動を始めようとしている.シン ポジウム「沖縄に国立自然史博物館を!」は、上記の提言と案作成 の段階から連携している.

¹Symposia report for establishing a national museum of natural history in Okinawa, ²Kazuhiko Fujita (Fac. Sci., Univ. Ryukyus), ³Takeshi Kon (Res. Plan. Office, Univ. Ryukyus), ⁴Organizing committee of symposia for establishing a national museum of natural history in Okinawa

HP01

千葉県君津市西谷地域から産出する化石単体サンゴ¹ 安藤綾海・今村陸・島袋朱里(千葉県立木更津高等学校)²

サンゴには礁をつくる造礁性サンゴと、つくらない非造礁性(単体)サンゴがある。千葉県の造礁性サンゴの化石は館山市の沼サン ゴのように示相化石として詳しく調べられている(千葉県地学図集 サンゴ編,1963)。一方、単体サンゴの化石に関する研究は造礁性サ ンゴに比べて少ない。例えば化石単体サンゴは、Yabe and Eguchi (1942)により千葉県君津市西谷地域の地蔵堂層(徳橋ほか1983 より約40万年前)から産出が知られていた。しかし、近年研究は行 われておらず、サンゴの分類が古いため現生種との比較が難しいと いう問題があった。また、産出層準についても詳しい記載はない。 そこで、西谷地域を調査して単体サンゴを採集し、現生種の属まで の分類をまとめた Cairns and Kitahara (2012)で分類した。その 結果、単体サンゴが特定の層準から密集して産出し、この地域で初 産出となる化石単体サンゴも発見したので報告する。

西谷地域は千葉県の西部に位置しており、中嶋・渡辺(2006)の 地質図より下総層群の地蔵堂層が分布している。西谷地域では、2 つの露頭が見られ、地蔵堂層は厚さが約27.6mである。全体として

HP02

現生と化石のシャミセンガイの元素分析¹ 秋山大成 ・ 吉田宙希 (熊本県立宇土高等学校)²

私たちは、現生と化石のシャミセンガイの殻の元素組成と、環境 との関係について調査している.その結果、二つのシャミセンガイ の元素組成に違いがあることがわかった.

シャミセンガイは現在では瀬戸内海の一部,九州の有明海,奄美 大島などに生息し,水深50センチ前後の泥地に潜っている.シャミ センガイ類はカンブリア紀に起源をもつ腕足動物門の一群であり, 出現以来,ほとんどその形態が変化していないことから,「生きた 化石」の代名詞とされている.

今回の研究では,熊本県八代市坂本町深水で産出したシルル紀後 期の化石のシャミセンガイと,熊本県上天草市松島町中の瀬の干潟 で採取した現生のシャミセンガイの殻の元素分析を行った.

方法としては、まずエポキシ樹脂でシャミセンガイ(現生と化石) を真空気器内で固め、固めたものをダイヤモンドカッターで切断し、 シャミセンガイの正断面が見えるまでカーボランダムで削った.そ の後、正断面が見えている面をスライドガラスで接着し、接着した 面と反対の面を同様に削り磨いた.プレパラートを作成しそれを顕 礫層と、細粒から粗粒砂層の互層であり、上部には斜交葉理が発達 する極粗粒砂層が重なる。

化石単体サンゴは、火山灰層 Hy-4 (三梨, 1973)の下位の層準(厚 さ 20 cm)より多産し、216 個体を採集した。この層準は、I to and 0' hara (1994)では陸棚で堆積したとされており、単体サンゴと一 緒に産出した合弁の二枚貝化石も同様な環境を示す。採集した単体 サンゴを分類した結果、今まで西谷地域で知られていた4種 (*Deltocyathus orientalis*,*Stephanophyllia fungulus*, *Heterocyathus* sp.,*Flabellum transversale*)が見つかった。その うち *Deltocyathus* 属が *Deltocyathoides* 属に、*F. transversale* が *Truncatoflabellum* sp. であることが分かった。さらに、この地域で 初産出となる5種(Caryophyllia sp., *Balanophyllia* sp., *Flabellum* sp., *Premocyathus* sp., *Endopachys* sp.)を発見した。 今後、種名まで調べ、西谷地域の単体サンゴを明らかにしたい。

¹Fossil solitary corals from the Pleistocene Jizodo Formation of the Nishiyatsu area, Chiba Prefecture, Japan ²Ayami Ando, Riku Imamura, Akari Shimabukuro (Chiba Prefectural Kisarazu High School)

微鏡観察して,元素分析する領域を決めた.元素分析については九 州大学中央分析センターのX線顕微鏡(GT5000)で測定した.測定時 間は24時間であった.

分析の結果,現生のシャミセンガイでは、B, Ca, Fe, I, 一部K, P, が多く殻に含まれており,化石のシャミセンガイではB, Ca, I, K, P, Mgなどが保存されていることがわかった.

この結果から,殻の元素分析では I が現生のシャミセンガイと化 石のシャミセンガイに含まれていることがわかった.現生のシャミ センガイの殻は、リン酸カルシウムからなり、表面や殻と殻の間に は I を含んだ有機物がある.よって、化石にはオリジナルな有機物 が殻の間や表皮に保存されている可能性がある.また、ミドリシャ ミセンガイの殻には I が含まれることから、化石はミドリシャミセ ンガイに近いことがわかった.

今後は、ウスバシャミセンガイとミドリシャミセンガイの生息場 や生態の違い等を調べ、化石のシャミセンガイの古生態を明らかに していきたい.

¹Elemental analyses of extant and fossil *Lingua* spp. ²Taisei Akiyama, Hiroki Yoshida (Uto High School)

THE PALAEONTOLOGICAL SOCIETY OF JAPAN Hongo MT-Building 4F, Hongo 7-2-2, Bunkyo-ku, Tokyo, 113-0033 JAPAN

> 2017 年 6 月 5 日印刷 2017 年 6 月 9 日発行 発行 日本古生物学会 〒113-0033 東京都文京区本郷7-2-2 本郷MTビル401号室 電話 03-3814-5490

> > 印刷所 株式会社杏林舍 〒114-0024 東京都北区西ヶ原3-46-10 電話 03-3910-4311

© The Palaeontological Society of Japan 2017 (無断転載, 複写を禁ず)