

Abstracts with Programs The 2018 Annual Meeting The Palaeontological Society of Japan (June 22-24, 2018, Sendai, Miyagi Prefecture)

日本古生物学会 2018 年年会

講演予稿集

2018年6月22日-24日

仙台市(宮城県)

日本古生物学会

共催:東北大学大学院理学研究科、 東北大学学術資源研究公開センター・東北大学総合学術博物館

表紙の図の説明

進化と大量絶滅の関係と大量絶滅の原因。カンブリア爆発とオルドビス紀大放散の多細胞動物の大進化後、5回の大量絶滅が起きた。大進化と大量絶滅の結果が各時代の生物の構成の概要を決めている。大量絶滅が起きると空いた生態的空隙に新しい進化が起きて群集組成が変る。 横軸は、群集変化にしてあり、多様性ではない。大量絶滅の原因は、3回目と4回目は大規模火 山活動、5回目は小惑星衝突が有力である。1回目と2回目は大規模火山活動の証拠が昨年と 今年に報告されたが、不明な事が多い。

(絵と解説:©海保邦夫、東北大学大学院理学研究科、転載禁止)

日本古生物学会2018年年会・総会開催実行委員会

委員長:海保邦夫

委員:浅海竜司・井龍康文・永広昌之・黒柳あずみ・鈴木紀毅・高柳栄子・西 弘嗣

R<学協会著作権協議会委託>

本誌からの複製許諾は,学協会著作権協議会(〒107-0052 東京都港区赤坂9-6-41, 電話 03-3475-4621; Fax. 03-3403-1738)から得て下さい.

(講演予稿集編集:遠藤一佳・對比地孝亘・伊藤泰弘)

日本古生物学会 2018年年会

2018年6月22日(金)~6月24日(日)

東北大学 青葉山北キャンパス

********1. プログラム 概要 ********

0月22日(金)云場:東北入子(青果山北キャンハス)	
【13:00-16:50】 シンポジウム「大量絶滅の原因とプロセス」・・・・・・	••••ii
【17:00-18:10】 総会 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••iii
【18:30-20:30】 懇親会(東北大学 青葉山東キャンパス あおば食堂 DOCK)	•••iii
6月23日(土)会場:東北大学 青葉山北キャンパス A-C 会場, ポスター会場	<u>1</u>
【 9:00-10:00】 学術賞受賞記念特別講演 1 (A 会場) ・・・・・・・・・・	• • • iii
【10:15-11:15】 学術賞受賞記念特別講演2(A 会場) ・・・・・・・・・・	• • • iii
【11:30-12:30】 一般講演 口頭発表 1(A-C 会場) ・・・・・・・・・・・	•••iv
【13:30-14:30】 一般講演 ポスター発表コアタイム (ポスター会場)・・・・	••iv-vi
【14:45-16:00】 一般講演 口頭発表 2(A-C 会場) ・・・・・・・・・・・	• vi-vii
【16:15-17:15】 一般講演 口頭発表 3(A-C 会場) ・・・・・・・・・・・	vii-viii
【17:30-17:45】 ポスター賞表彰式(ポスター会場1付近) ・・・・・・	• • viii
【17:45-19:45】 夜間小集会 (地球科学研究棟 5 階 503,513 号室)・・・・・・	•viii-ix
6 月 24 日(日)会場:東北大学 青葉山北キャンパス A-C 会場	
【 9:15-10:30】 一般講演 口頭発表 4 (A-C 会場) ・・・・・・・・・・・	•••ix-x
【10:45-12:00】 一般講演 口頭発表 5(A-C 会場) ・・・・・・・・・・	••x-xi
【13:30-15:00】 普及講演会(東北大学 理学研究科大講義室) ・・・・・・	••••xi
【9:45-14:30】 化石友の会イベント ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• xi-xii
発表方法と機器についての注意事項など(必ずお読みください)・・・・・・	• • xiii
その他会場案内など ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• xiv-xvi

2018年年会参加費:一般会員 6,000円 学生会員 2,000円 友の会会員 1,000円 一般非会員 7,000円 学生非会員 3,000円 高校生以下無料(予稿集は有料,1冊 500円)

********* 2. プログラム 詳 細 ******** 6月22日 (金)

【13:00-16:50】東北大学 青葉山北キャンパス A会場

シンポジウム「大量絶滅の原因とプロセス」 Causes and processes of mass extinctions コンビナー:海保邦夫(東北大)・井龍康文(東北大)

生物の大量絶滅は過去5億4千万年間の顕生代に5回起きている.それらは、オルドビス 紀末、後期デボン紀、ペルム紀末、三畳紀末、白亜紀-古第三紀境界である.大量絶滅は、 その後の生態系の構成要素を高次分類群レベルで大きく変えることにつながり、生物進化 を理解するうえでも必要不可欠な研究対象であり続けている.大量絶滅の原因と大量絶滅 に至るプロセスは、地球物理学、地球化学、地質学、古生物学の研究者が携わってきたこ とで、それらの真実が見えて来た.このシンポジウムでは、原因に関する新しい証拠、大 規模火山活動と小天体衝突による気候環境変動メカニズムに焦点をあて、5回の大量絶滅 の原因とプロセスについての最新知見を参加者と共有し、あらたな展開を目指して議論し たい.

13:00–13:10 Opening speechYasufumi Iryu (Tohoku University, Japan)

13:10–13:40 Reconsidering The Late Ordovician Mass Extinction: the nature and timing of environmental changes and their relationship to extinction events

Seth Finnegan (UC Berkeley, USA)

13:40–14:00 Biotic responses to volatile volcanism and environmental stresses over Guadalupian-Lopingian (Permian) transition

Yuangeng Huang (China University of Geosciences, Wuhan, China)

14:00–14:30 **The end-Permian mass extinction event in the pelagic Panthalassa** Satoshi Takahashi (University of Tokyo, Japan)

[14:30 – 14:50] — Coffee Break —

14:50–15:20 CO2 amplification of orbitally paced variability in the hydrological cycle acrossthe end-Triassic extinctionJessica Whiteside (University of Southampton, UK)

15:20–15:50 Climate and environmental changes at the Cretaceous-Paleogene: triggers and consequences of rapid mass extinction Johan Vellekoop (KU Leuven, Belgium)

15:50–16:30 Global cooling-drought by soot and sulfuric acid aerosols caused the mass
extinctionsKunio Kaiho (Tohoku University, Japan)

16:30-16:50 Discussion

【17:00-18:10】 総会(東北大学 青葉山北キャンパス A会場)

【18:30-20:30】 懇親会(東北大学 青葉山東キャンパス「あおば食堂DOCK」)

懇親会は予約制です.参加を希望される方は、必ず事前にメールかハガキで、6月12日

(火)[必着]までに,お申し込み下さい.参加をキャンセルされる場合も6月12日(火) までにご連絡をお願いします.

会場:青葉山東キャンパス「あおば食堂 DOCK」(工学研究科青葉記念会館手前)

移 動:総会後,徒歩でご案内します(15分程度). 直接出向かれる場合は,本会 プログラムの会場案内をご覧下さい.

お帰りは、地下鉄東西線・青葉山駅の南1出入口が最寄りとなります.

会費:一般会員・一般非会員・友の会会員…6,000円,学生会員・学生非会員…4,000円

申込先:高柳栄子(東北大学大学院理学研究科地学専攻)

メール: psj.tohoku.2018.konshinkai●gmail.com (「●」を「@」に置き換えてください)
 ※件名は「日本古生物学会懇親会申込」とし、会員の種別(一般会員・友の会会員・一般非会員・学生会員・学生非会員)を明記してください.

ハガキ:〒980-8578 宮城県仙台市青葉区荒巻字青葉6-3

東北大学大学院理学研究科地学専攻 高柳栄子 宛

6月23日(土) 東北大学 青葉山北キャンパス

【9:00-10:00】学術賞受賞記念特別講演1 (A 会場)

土屋正史「有孔虫類の分子生物学的研究」

【10:00-10:15】休憩

【10:15-11:15】学術賞受賞記念特別講演2(A会場)

山田敏弘「化石と分子生物学を融合した進化古植物学的研究」

【11:15-11:30】休憩

【11:30-12:30】 一般講演 口頭発表1 (A-C会場)

A 会場	B 会場	C 会場
微古生物学の部	古環境の部(1)	古生態学の部
座長:松崎賢史	座長:高橋聡	座長∶椎野勇太
A01 m 土屋正史・石渡祐一・吉 田尊雄・藤倉克則 生態的要因 による岩礁地性底生有孔虫の遺 伝的集団の遷移と形成	B01 m 足立奈津子・杉本雄祐・ 江崎洋一・刘建波・渡部真人・ Gundsambuu ALTANSHAGAI・ Batkhuyag ENKHBAATAR・Dorj DORJNAMJAA モンゴル西部ゴ ビ・アルタイ地域に分布する最 下部カンブリア系石灰質微生物 類礁の初期変遷と地球生物環 境	C01 m 山北聡 コノドントは 何をどのように食べていたの か? 仮説 1 : gondolellids は筒状・円錐状放散虫を食べて いた
A02m 長谷川四郎 東北地方 太平洋側斜面域の深海性有孔 虫群集	B02 m 江崎洋一・刘建波・足立 奈津子 北中国山東省の張夏 層 (カンブリア系第三統)から 産するサンゴ様生物の生息環境 と系統的な位置	C02 m 山北聡 コノドントは 何をどのように食べていたの か? 仮説2: coniform P_1 element を持つものはバンパイ ア
A03 m 板木拓也・平陽介・鍬守 直樹・斎藤仁志・星野辰彦 人工知能を用いた放散虫群集の 自動データ取得へ向けた試み A04 m 齋藤めぐみ・豊田和弘	B03 w Md. Aftabuzzaman • Kunio Kaiho • Li Tian • Ryosuke Saito Timing of collapse and recovery of land vegetation and marine extinction at the end of the Permian B04 w Raman Biswas • Kunio	C03 m 山崎和仁 種間相互作 用を伴う古生態系の非平衡安 定性解析 C04 w 今岡宏太・山崎和仁 移
琵琶湖における珪藻の大型化に 湖水深の変化は影響したか	Kaiho • Ryosuke Saito • Li Tian Terrestrial collapse and cyanobacteria blooming spanning the end-Permian mass extinction	動個体群の生物多様性変化

【12:30-13:30】休憩

【13:30-14:30】 一般講演 ポスター発表

(奇数番号コアタイム 13:30-14:00 偶数番号コアタイム 14:00-14:30)

P01 辻本彰・野村律夫 東シナ海の表層コアから見積もられた堆積速度と底生有孔虫群集
P02 佐々木聡史・入月俊明・卜部厚志・瀬戸浩二・林広樹・酒井哲弥 長崎県壱岐島の微化石 と堆積物分析に基づく完新世の環境変化
P03 松井浩紀・R. Sutherland・G. R. Dickens・P. Blum・IODP Exp. 371 Scientists IODP Exp. 371 の成果速報:タスマン海域の微化石
P04 伊藤剛・松岡篤・馮慶来 ペルム紀放散虫 Albaillellaria にみられる二形性の形態的特徴
P05 中川孝典・脇田浩二 秋吉帯ペルム系錦層群中のマンガン炭酸塩岩から産した放散虫化石 の微細構造
P06 小安浩理・廣瀬亘 北海道中軸南部様似地域に分布するチャートからの放散虫化石の産出 とその年代

- **P07** 児矢野愛海・金子優樹・佐藤遼祐・篠崎愛恵・岸本直子・相田吉昭 X線 micro-CT による *Glomeropyle* 属放散虫の形態と内部構造- *Glomeropyle bispinosa* と *Glomeropyle* sp. の 比較研究
- **P08** 鈴木桜子・相田吉昭・岸本直子 X線 micro-CT による *Glomeropyle* 属放散虫の内部構造-*Glomeropyle grantmackiei* と G. mahinepuaensisの比較研究
- P09 植竹勇介・山本康晶・朝比奈俊輔・相田吉昭 内部骨針を持つ放散虫 G. grantmackieiの Ar+イオンビーム加工を用いた走査電子顕微鏡(SEM)による微細立体構造の解析
- P10 上栗伸一・Ted Moore 放散虫化石群集に基づく東赤道太平洋における前期/中期中新世境 界付近の海洋環境変遷
- P11 奥平早香・浅海竜司・高柳栄子・阿部理・井龍康文 石垣島で採取されたサンゴ化石による中期完新世の古環境復元
- P12 同前万由子・徳田悠希・江崎洋一・鈴木淳・池原研・片山肇・板木拓也 日本海でのイシ サンゴの分布制限要因は水温である-山陰沖イシサンゴ相の成立過程の解明-
- P13 増井充・江﨑洋一・長井孝一・杦山哲男・足立奈津子 秋吉石灰岩層群で見られる前期/ 後期石炭紀境界直後の生物礁の構築様式と微生物類の作用
- P14 杦山哲男・佐藤裕一郎・麻生昭雄 大分県豊後大野市三重町高屋の石灰岩の生層序とその構造帯帰属の再検討
- P15 田中源吾 下部デボン系福地層の深海性介形虫群
- P16 藤原勇樹・入月俊明・瀬戸浩二・香月興太・山田桂・Jin-Young Lee 長崎県対馬舟志湾にお ける過去約3,000年間の古環境変化と貝形虫群集
- **P17** 新垣裕康・鈴木雄太郎 遊泳性三葉虫 *Pricyclopyge gallica* (Tjelnvik, 1956): 複眼の 形態解析
- P18 永広昌之・佐々木理・鹿納晴尚 南部北上帯下部三畳系(上部オレネッキアン階)大沢層 産の新種嚢頭類
- P19 加藤久佳・池澤広美 茨城県涸沼の完新統より得られたトゲノコギリガザミ化石
- **P20** 臼井彩佳・鈴木雄太郎 ヤマトタマヤスデ Hyleoglomeris japonica の球体化姿勢: "うご き" が関わる節足動物の形づくり
- P21 藤岡大・高栁栄子・山本鋼志・井龍康文 陸水性続成作用が珪長質砕屑岩より産する腕足 動物化石に与える影響の定量的評価
- P22 酒井佑輔・後藤道治・中田健太郎・佐野晋一 福井県大野市九頭竜地域の手取層群産アン モノイドと海成上部ジュラ系の分布の再検討
- P23 岡村省吾・松原尚志 北海道根室地域の上部白亜系根室層群ノッカマップ層の貝類化石年 代
- P24 間嶋隆一・越智眞弓・三浦美佐・人見真紀子・斎藤猛・並木勇樹・大塚悠佑・清水秀倫・ 野崎篤・宇都宮正志・楠稚枝・佐藤圭・西田梢・河潟俊吾・和仁良二・中村栄子 千葉県 君津市川谷に露出する中部更新統柿ノ木台層から産出する化学合成化石群集と共産する巣 穴と自生炭酸塩
- P25 吉村太郎・武末翔吾・中山正光・佐々木猛智 ナノインデンテーションおよび圧縮強度試験を用いた二枚貝の殻層構造における力学的優位性に関する検討
- P26 Muhammad Aqqid Saparin Mark Williams Jan Zalasiewicz Toshifumi Komatsu Adrian Rushton • Doan Dinh Hung Silurian Graptolites of the Co To Islands, Northeast Vietnam
- P27 宮田真也・樽創・籔本美孝 神奈川県川崎市に分布する下部更新統飯室層から産出したタ イ科魚類化石
- P28 中谷大輔 モロッコ産 Zarafasaura oceanis (長頚竜類)の頭骨とその意義
- P29 三宅優佳・堤之恭・御前明洋・ルグラン ジュリアン・對比地孝亘・小松俊文 鹿児島県甑 島列島に分布する上部白亜系姫浦層群の地質年代
- P30 對比地孝亘・三宅優佳・小松俊文・真鍋真・ルグラン ジュリアン 鹿児島県上甑島に分布 する姫浦層群から発見された恐竜化石
- P31 佐野晋一 手取層群の脊椎動物相はどのぐらい多様なのか
- **P32** 小平将大・林昭次・Chinzorig Tsogtbaatar・Koen Stein・Khishigjav Tsogtbaatar 骨髄 骨を用いたオルニトミモサウルス類の性成熟期の検討

- P33 今井拓哉・東洋一・湯川弘一・高橋文雄・山根謙二・篠田健二・清水好晴 山口県下関市の関門層群下関亜層群(前期白亜紀後期)から産出した国内初のデンドロウーリトゥス卵 科の卵殻化石
- P34 浦野雪峰・杉本泰伸・田上響・松本涼子・河部壮一郎・大橋智之・藤原慎一 トリのクチ バシ角質部の層構造から予想するクチバシの成長様式
- P35 安藤佑介・楓達也・木村敏之・高桒祐司・野村真一・宮田真也・齊藤毅 瑞浪北中学校敷 地造成工事現場(岐阜県瑞浪市)の下部中新統瑞浪層群明世層から産出した化石
- P36 江木直子 哺乳類の距骨 cotylar fossa の足根関節での機能の検討と系統分類形質として の意義
- P37 鍔本武久 踵骨による陸棲哺乳類の体重推定
- P38 樽創 Paleoparadoxia tabatai (Tokunaga, 1939)の咀嚼運動の推定
- P39 半田直人 日本の新第三紀中新世サイ科(哺乳綱, 奇蹄目)化石:現状と課題
- P40 辻川寛・Martin Pickford・國松豊・中野良彦・中務眞人・菊池泰弘・石田英實 中期中 新世ケニア北部ナチョラ地域の巨大イノシシ類
- P41 西岡佑一郎・高井正成・鍔本武久・江木直子・タウンタイ・ジンマウンマウンテイン 新 第三紀ミャンマーにおけるウシ科群集の隔離過程
- P42 田中嘉寛・樽野博幸 大阪層群(中期更新統)より初めて産出したクジラ化石
- P43 加藤敬史 漸新統佐世保層群から発見されたキヌゲネズミ科およびトビネズミ科(齧歯目) 化石について
- P44 安井謙介・木谷良平・一田昌宏 豊橋市自然史博物館及び豊橋総合動植物公園所蔵の現生 哺乳類及び鳥類の骨格標本について
- P45 田尻理恵・江﨑洋一 樹脂包埋薄片作成における脱水方法の比較

高校生ポスターセッション

HP1 原悠介 栃木県葛生地域に分布する苦灰岩の特徴について

- HP2 上田航平・榧本和仁・宮﨑紫清 約40万年前の古東京湾の単体サンゴに関する新発見
- HP3 長谷川仁衣那・藤堂博仁・出雲由夏・高橋愛佳・松野綾・吉岡美咲・高橋明日香・荒井晴 香・馬淵璃裕奈・吉岡文菜・伊藤克真・清水颯将 脊椎動物の糞形態と体サイズの関係: ウマ類を対象とした事例研究

【14:30-14:45】休憩

A 会場	B 会場	C 会場
古脊椎動物の部(1)	古環境の部(2)	古生物地理の部
座長∶藤原慎一	座長∶足立奈津子	座長∶板木拓也
A05 w 鈴木花・小林快次・加納 学・唐沢與希・林昭次・太田晶・ 宮地鼓 北海道芦別市上部白 亜系蝦夷層群羽幌川層から産 出した獣脚類化石	B05 w 長谷川卓・外山浩太郎・ L.K. O'Connor・B.T. Huber・ R.W. Hobbs・K.A. Bogus・IODP Exp. 369 乗船研究者 南テチ ス海高緯度域における白亜紀セ ノマニアン/チューロニアン境 界の 0AE2 : 国際深海科学掘削 計画 (IODP) 第 369 次航海の予察 成果	C05 w Christopher P. Stocker • Mark Williams • Philip D. Lane • Derek J. Siveter • Tatsuo Oji • Simon Wallis • Gengo Tanaka • Toshifumi Komatsu Palaeobiogeographical significance of the Silurian and Devonian trilobites of

【14:45-16:00】一般講演 口頭発表 2 (A-C 会場)

A 会場	B 会場	C 会場
古脊椎動物の部(1)	古環境の部(2)	古生物地理の部
座長∶藤原慎一	座長∶足立奈津子	座長∶板木拓也
A06 w 石垣忍・Mainbayar, B. ・Tsogtbaatar, Kh・西村龍 太郎・蔦永早也香・林昭次・實 吉玄貴 モンゴル国南ゴビ県 Khavirgiin Dzoの上部白亜系か ら産出した大型竜脚類の行跡 A07 w 中島重大・小林快次・高 岐奈司、四中公教。	B06 w 加藤禎理・長谷川卓・後 藤晶子・James Crampton 白亜 紀セノマニアン/チューロニア ン期境界の南太平洋高緯度域 における環境変動 B07 m 吉川亞理紗・長谷川卓・	CO6 m 相田吉昭・山北聡・武藤 俊・Hamish Campbell ニュー ジーランド北島 Kapiti 島から 産出する後期三畳紀放散虫 - 高緯度型固有種は存在するの か? CO7 w Sano, S. ・Iba, Y. ・Tin Tin Latta Wakata A a Sam Wa
崎竜司・田甲公教・ Tsogtobaatar Chinzorig・ Khishigjav Tsogtbaatar・ Anthony R. Fiorillo モンゴ ル・ゴビ砂漠ネメグト産地の恐 竜足跡化石:古生態学・古環境 学的意義	後藤晶子・岩瀬優也・守屋和 佳・Jim Haggart カナダ太平 洋沿岸に分布する上部カンパニ アン-マーストリヒチアン階に 関する有機地球化学的特徴	Tin Latt • Kubota, A. • Saw Mu Tha Lay Paw • Thura Oo First record of rudist bivalves from Cretaceous limestone in the northern part of Myanmar (a preliminary report)
A08 m Tsogtbaatar, Kh. ・渡部 真人 空中写真の恐竜化石産 地についての研究への利用例: モンゴル、ゴビ砂漠西部ネメグ ト層化石産地の地質	B08 w 天野和孝・ジェンキン ズ・ロバート・栗田裕司 北海 道東部浦幌町の暁新世沈木群 集中の中生代遺存種と最古の 化石記録	C08 w 嶋田智恵子・Robert G. Jenkins・齋藤めぐみ・山崎誠・ 田中裕一郎・疋田吉識 北海道 中央部三笠市に分布する中部 蝦夷層群三笠層より産出した 日本最古の珪藻化石群集
A09 m 渡部真人・Tsogtbaatar, Kh. モンゴル、ゴビ砂漠西部 恐竜化石産地 Khermeen Tsav (ネメグト層)の堆積相と動物 相との関係:空中写真を利用し た分析	B09 w Kazutaka Amano Crispin T.S. Little Kathleen A. Campbell Lucinid bivalve fossils from Miocene hydrocarbon-seep sites in the Hawke Bay area of North Island, New Zealand	CO9 m 安原盛明・岩谷北斗・ Gene Hunt・岡橋久世・加瀬友 喜・林広樹・入月俊明・Yolanda M. Aguilar・Allan Gil S. Fernando・Willem Renema 西 太平洋域における新生代浅海 生物多様性変動

【16:00-16:15】休 憩

【16:15-17:15】一般講演 口頭発表3(A-C会場)

A 会場	B 会場	C 会場
古脊椎動物の部 (2)	古環境の部(3)	生層序の部(1)
座長:宮田和周	座長∶渡部真人	座長:伊藤剛
A10 w 髙橋亮雄・エリック セ ティヤブディ・イワン クルニ アワン・ウングル P. ウィボウ オ・イヴァン Y. P. スハルヨ ギ・ガート D. ヴァンデンベル グ ジャワ島中部の下部更新統 より発見された淡水生および陸 生カメ類の化石について	B10 w 安藤寿男・長谷川精・長 谷部徳子・N. Ichinnorov・太 田亨・長谷川卓・山本正伸・李 罡・B-O. Erdenetsogt・U. Heimhofer モンゴル南東部の 中上部ジュラ系-下部白亜系湖 成層の堆積年代と堆積環境	C10 w 稲田稔貴・小松俊文・ 浦川良太・前川匠・高嶋礼詩・ グエン ダック フォン・ザン デ ィン フン ベトナム北部シーフ ァイ峠に分布する上部デボン系 のコノドント生層序

A 会場	B 会場	C 会場
古脊椎動物の部 (2)	古環境の部(3)	生層序の部(1)
座長∶宮田和周	座長∶渡部真人	座長:伊藤剛
Al1m 木村由莉・松井久美子・ 長田充弘・猪瀬弘瑛・池田一 也・Brian L. Beatty・大林秀 行・平田岳史・大藤茂・新村達 也・上松佐知子・指田勝男 眠 れる『恐竜』化石その1:筑波 大学から半世紀以上ぶりに再発 見されたパレパラドキシア	B11 m ルグラン ジュリアン・ 小松俊文・三宅優佳・對比地孝 亘・真鍋真 甑島列島及び天草 諸島に分布する上部白亜系姫浦 層群の古植生と古環境	C11 w 指田勝男・Sirot Salyapongse タイ国西部 Nong Prue 地域に分布するチャート角 礫岩から産するペルム紀および 三畳紀放散虫とその産出意義
A12 m 松井久美子・木村由莉・ 長田充弘・猪瀬弘瑛・池田一 也・Brian L. Beatty・大林秀 行・平田岳史・大藤茂・新村達 也・上松佐知子・指田勝男 眠 れる『恐竜』化石その2:筑波大 学から半世紀以上ぶりに再発見 されたパレパラドキシア	B12 m Kunio Kaiho•Naga Oshima Cause of cooling-drought events triggered by asteroid-comet impacts	C12 w 前川匠・James F. Jenks・重田康成 ネバダ州 Crittenden Springs の含アンモ ノイド石灰岩から産出したスミ シアン亜期(前期オレネキアン 期)のコノドント化石
A13 w 北川博道 Paleoparadoxia tabatai はどこ まで大きくなったか	B13 w 吉川武憲・森繁・香西武 中期中新統"雨滝湖成層"から 産出する植物化石群	C13 w 松岡篤 ジュラ・白亜系 境界と放散虫の進化系統

【17:15-17:30】休憩

【17:30-17:45】ポスター賞表彰式(ポスター会場1付近)

【17:45-19:45】夜間小集会

A. 大量絶滅直後のLagerstätte: 稲井層群大沢層の化石研究と保護(地球科 学研究棟 5 階 503 号室)

世話人:中島保寿(東京都市大学)

 趣 旨:宮城県の南部北上帯に分布する稲井層群大沢層(下部三畳系Olenekian)は、保存 良好な脊椎動物・無脊椎動物化石を産するLagerstätte(化石鉱脈)として、また、ペルム紀
 −三畳紀境界の大量絶滅直後の生物相に関する類稀な記録として、国内でも有数の重要化石 帯である.この夜間小集会では、近年飛躍的に得られている、大沢層の古生物および堆積 環境に関する研究成果を持ち寄り、ライトニングトーク形式で紹介し、最後に将来研究の 展望について議論したい.また、希少な化石資料の保護に向けて、学会員で議論を深め、 意識を共有することを目指す.

話題提供:

高橋聡(東京大学)・吉澤和子(JOGMEC)・武藤俊(東京大学)・永広昌之(東北大学) 「大沢層の記録する前期三畳紀南部北上古陸周辺の海洋環境」 佐々木理(東北大学)·中島保寿(東京都市大学)

「マイクロ CT でみた大沢層中のパイライト保存」

永広昌之(東北大学) 「大沢層のアンモノイドと嚢頭類」

加藤久佳(千葉県立中央博物館)・永広昌之(東北大学)・鹿納晴尚(東北大学)

「大沢層の十脚甲殻類化石」

吉澤和子(JOGMEC)・對比地孝亘(東京大学)・真鍋真(国立科学博物館) 「*Utatsusaurus*の頭蓋骨化石の CT 解析」

中島保寿(東京都市大学)・鹿納晴尚(東北大学)・佐々木理(東北大学)

「大沢層の新たな脊椎動物化石群集」

B. みんなで「手取層群」の定義と層序の大区分を考える(地球科学研究棟 5 階 513 号室)

世話人:山田敏弘(大阪市立大学)·佐野晋一(富山大学)

趣 旨:「手取層群」は北信越地方に分布するジュラ〜白亜紀の堆積物で,東アジアを代 表する古生物学研究のホットスポットである.従来,北信越地方に点在する堆積盆を一括 して手取層群とし,それを九頭竜,石徹白,赤岩の3亜層群に区分するのが一般的だった. しかし,近年の生層序学的見直しの結果,九頭竜亜層群と石徹白亜層群の間に,約500万 年の時間間隙があることが分かった.また,神通区の堆積物を個別の層群として独立させ る提案がなされた.このように,これまで通用していた「手取層群」の定義が揺らぎ始め ている.この夜間小集会では,1)使いやすい「手取層群」の定義は何か,2)亜層群ラ ンクでの区分は必要か,について,研究史,構造発達史,および古生物相の変遷などの観 点から議論する.私たちは,これらの2点について,研究者間の合意形成を目指しており, この夜間小集会では,話題提供者からの提案のほか,参加者からの自由な提案を歓迎する. 話題提供:山田敏弘(大阪市立大学)・佐野晋一(富山大学)・大藤茂(富山大学)

6月24日(日)東北大学 青葉山北キャンパス

A 会場	B 会場	C 会場
古脊椎動物の部(3)	古環境の部(4)	生層序の部(2)
座長:江木直子	座長∶斎藤めぐみ	座長:上栗伸一
A14 w 川谷文子・甲能直樹 佐 渡島の下部~中部中新統より産 出した東柱類が示唆する巨大化	B14 m 矢部淳・植村和彦・鄭恩 境・金京植 東アジア固有針葉 樹類の地理的隔離はなぜ成立し たか?	C14 w 西弘嗣・Babu Ram Gyawali・高嶋礼詩 フランス Vocontian Basin の上部白亜系 統合層序

【9:15-10:30】一般講演 口頭発表 4 (A-C 会場)

A 会場	B 会場	C 会場
古脊椎動物の部 (3)	古環境の部 (4)	生層序の部(2)
座長∶江木直子	座長∶斎藤めぐみ	座長∶上栗伸一
A15 w 宮田和周 鹿児島県上 甑島層群中甑層の前期始新世 ブロントテリウム科(奇蹄類) 化石	B15 m 松崎賢史・板木拓也・多 田隆治・上栗伸一・黒川俊介 放散虫群集に基づいた後期中新 世における日本海の古海洋環境 (IODP Exp. 346 Site U1425 & U1430)	C15 w 大関仁智・清水紀和・上 松佐知子・指田勝男 山中層群 石堂層及び秩父盆地新第三系 白沙層のチャート礫・珪質泥岩 礫より産する微化石
A16 w 村上達郎・高津翔平・鍔 本武久 岐阜県の中新統瑞浪 層群から産出した"サイ科"の 上腕骨化石の再検討	B16 m 岩井雅夫 第四紀後期 アラビアモンスーン残像-IODP Exp. 355 の珪藻化石から-	C16 m 本山功・上栗伸一 日本 における過去 20 年間の新第三 系放散虫層序学の進展
A17 m 渡部真人 ヒッパリオ ン類の分類に用いられた頭骨お よび四肢骨における形質の対応 関係と生態的な意味(哺乳類ウ マ科)	B17 m 山田桂・小原一馬・池原 実・瀬戸浩二 過去 3000 年間 の東アジア夏季モンスーン強度 と太陽活動との関連	C17 w 林圭一・廣瀬亘・川上源 太郎 北海道北東部に分布する 中新統の層序学的整理と渦鞭毛 藻シスト化石層序による対比の 試み
A18 m 木村由莉・冨田幸光・ Daniela C. Kalthoff・Isaac Casanovas-Vilar・Thomas Mörs 岐阜県可児市から見つかったエ オミス科の新属新種とアジアに おけるエオミス科齧歯類の多様 性	B18 m 小玉智之・高柳栄子・浅 海竜司・阿部理・井龍康文 ヒレジャコの殻の酸素同位体組 成を用いた海水温復元の信頼性 および問題点	C18m千代延俊・山崎誠・松田 博貴・鳥井真之・佐々木圭一 鹿児島県喜界島の上部新生界 石灰質微化石層序

【10:30-10:45】休 憩

【10:45-12:00】一般講演 口頭発表 5 (A-C会場)

A 会場	B 会場	C 会場
古脊椎動物・タフォノミーの部	古環境の部(5)	形態解析・分類の部
座長∶田中嘉寛	座長∶山田桂	座長∶田中源吾
A19 w 木村敏之・長谷川善和 群馬県の安中層群よりケントリ オドン類化石の産出	B19 m 西尾拓哉・高柳栄子・浅 海竜司・新城竜一・山本鋼志・ 井龍康文 現生腕足動物殻の 微量金属元素濃度に関する基礎 的研究	C19 w 生形貴男 オウムガイ類 の殻形態の多様性は比表面積に 制約される
A20 m 蔡政修 広島の中新世 からのヤマオカクジラの古繁殖 地	B20m 高柳栄子・西尾拓哉・藤 岡大・山本和幸・井龍康文 現 生腕足動物殻の成長速度と年齢 の推定方法	C20? 椎野勇太・土田貴史 ジグザグを持つ腕足動物 Vinlandostrophia ponderosaの 適応戦略

A 会場	B 会場	C 会場
古脊椎動物・タフォノミーの部	古環境の部(5)	形態解析・分類の部
座長∶田中嘉寛	座長∶山田桂	座長∶田中源吾
A21 m 長澤一雄・渡部晟・澤木 博之・渡部均 秋田県男鹿半島 鵜ノ崎海岸の中新統コンクリー ションより多数の鯨類化石を発 見	B21 w 藤田和彦・下地勝大・小 谷野将 那覇新港地下における 完新統サンゴ礁堆積物中の礁性 微生物被殻の深度分布	C21 m 山田晋之介 ウミホタ ル上目貝形虫の背甲超微細構造
A22 w 大山望・前田晴良 上部 三畳系美祢層群の昆虫化石分類 とその保存度について	B22?野村律夫 宍道湖におけ る堆積速度と有機物の分解速度 について	C22 w 徳田悠希・石黒泰弘・江 崎洋一・千徳明日香 <i>Truncatof1abe11um gardineri</i> 骨格に認められる破損・修復痕 を用いた沖合軟底質上でのイシ サンゴの捕食圧の解明
A23 m 平山廉・宮園誠司・不動 寺康弘・河野重範 佐賀県唐津 市の新第三系野島層群より発見 されたイシガメ科(カメ目・潜 頚類)について	B23w 北村晃寿 御前崎の隆 起貝層の再発見	C23 w 高橋宏和 東北大学に 所蔵されている中新統産ウミニ ナ科貝類化石

【13:30-15:00】普及講演会

「大量絶滅はなぜ起きるのか ―恐竜は今も生きていたかも知れない!―」

- ·講師:海保邦夫(東北大学大学院理学研究科教授)
- ・会場:東北大学 理学研究科大講義室(H-32)
- (最寄駅:地下鉄東西線・青葉山駅「北1出口」)
- ・定員:400名(申し込み不要)(13:00開場予定)

6月24日 (日)

【9:45-14:30】 化石友の会イベント 仙台市泉区焼河原の竜の口層・向山層の観 察と化石採集

- ・日時:2018年6月24日(日曜日)9:45~14:30(予定)
- ·巡検地:宫城県仙台市泉区焼河原
- ・講師: 永広昌之名誉教授(東北大学総合学術博物館)
- ・集合場所:東北大学理学部自然史標本館(地下鉄東西線青葉山駅「北1出口」から徒歩3 分).
- ・集合時間:9:45

・巡検内容:竜の口層・向山層の観察と化石採集(雨天の場合:レクチャー「竜の口の海の生き物たち(仮題)」および自然史標本館の見学を午前中に行います.)

- ・定員:20名(先着順)
- ・参加申し込みの締め切り日:2018年5月20日.参加決定者には別途詳細を連絡します (参加決定のお知らせは5月25日を目処にお送りいたします).

・申し込み方法:学会ホームページ,もしくは下記 URL から参加申し込みフォームにご入 力お願いします.

・参加費:200円(保険代として)

・野外活動に適した服装(長ズボン,長袖,靴は長靴推奨)をし,昼食,軍手,雨具をご 持参ください.ハンマーとタガネは必要であれば貸出し可能です.

・ご質問などがございましたら friends@palaeo-soc-japan.sakura.ne.jp にお問い合わせください.

・申し込み参加フォームの URL:

https://docs.google.com/forms/d/e/1FAIpQLSeKsWVo7JKFGXffr9vRe_c01WKQGxSD9LPU6C1 Eewfg5Hz7kQ/viewform

・スマホなどは下記 QR コードからでも登録できます.

****3. 発表方法及び機器についての注意事項など *****

<口頭発表をされる方へ>

【重要!】口頭発表はパソコン等持参です!貸出はありません.

- ・接続端子は、<u>HDMIかmini D-Sub15ピンの2種類</u>のみです.<u>それ以外の端子の場合はご自身</u>で変換アダプターをお持ち下さい.
- ・休憩時間などに接続状況を確認して下さい. 接続作業時間も講演時間に含みます.
- ・プロジェクター画面は原則として4:3画角となります.
- ・デュアル・ディスプレイ設定のノートパソコン(普段,外部モニターと併用しているノー トパソコン)は,接続前にシングルモニターに切り替えて下さい.
- ・パソコン等の操作や接続は、発表者ご自身でお願いします.
- ・一般講演の口頭発表時間は15分です(質疑応答、使用機器の接続時間含む).

<ポスター発表をされる方へ>

- ・ポスターのサイズはA0(横841 mm×縦1189 mm)が基準です.一発表につき,指定された 1面のみをご利用下さい.貼り付け場所は主に合同A棟(2階ホール)もしくは合同C棟(2 階ロビー)ですが,貼り付け指定場所は当日にご確認ください.
- ・ポスターは6月23日(土)の9:00から貼ることができます.また,24日(日)の12:30までに各自撤収して下さい.詳しくは会場受付または会場係員までお尋ね下さい.
- ・ポスター掲示用の画鋲は会場で用意します.

会場及び発表方法・機器に関する問い合わせ先

開催実行委員:井龍康文 (yasufumi.iryu.d8●tohoku.ac.jp) Tel: 022-795-6622 鈴木紀毅 (sendai_taikai●mbe.nifty.com) Tel:022-795-6623 *「●」を「@」に置き換えたうえ,必ず両名へメール願います.

*メール題目「古生物学会2018東北大・問い合わせ」

行事係:遠藤一佳(東京大学) E-mail: endo@eps.s.u-tokyo.ac.jp

<u>その他</u>

- **ご来場について**:公共交通機関をご利用下さい.懇親会を除き,地下鉄東西線・青葉山 駅の北1出口(改札を出て左に曲がる)が最寄りとなります.その出口から会場まで徒 歩2分.
- **IC 乗車券**: 仙台市営バス・地下鉄とも Suica と icsca のみ利用できます.
- 標本展示等希望者:井龍康文 (yasufumi.iryu.d8●tohoku.ac.jp)と鈴木紀毅 (sendai_taikai
 mbe.nifty.com) へ 5 月 20 日 (日)までにメールにてご相談下さい (●を@に置き換えて送信願います).詳細をお知らせします.メール題目は「古生物学会 2018 年東北大・出展」でお願いします.希望数によってはお断りすることもございます.予めご容赦ください.
- 6月22日(金)について:合同 C 棟のみ出入り可能です.22 日は談話室(1)・談話室(2)(合同 A 棟 204・303 号室)は入室できません.また,授業期間なので廊下等では静粛にお願いします.
- 懇親会について:本プログラム iii ページ参照.
- お食事: 会場 A, B, C のいずれも飲食可能です.
 - 6月22日(金):キャンパス内で可能ですが,授業期間なのでお昼前後は相当の混雑 が予想されます.
 - 6月23日(土):キャンパス内の大学生協の食堂(11:00~13:30)と購買部.
 - 6月22日(金)~24日(日):欠品になる恐れがあります.

*会場A横のセブンイレブン東北大学理学部店(8:00~22:00).

- 喫煙:東北大学の敷地内は建物の内外を問わず,全面禁煙となっています.
- 託児所:市内には託児施設がありますので,各自お調べください.
- **盗難対策**:本学会を含め,学会開催中の盗難が報告されています.貴重品は各自の責任 で管理をお願いいたします.
- **写真およびビデオ撮影について**:発表者の許可なく講演およびポスター発表を撮影する ことを禁止します.
- 理学部自然史標本館(東北大学総合学術博物館)の見学:古生物学会の開催期間中,学 会参加者に限り,無料で観覧できます.受付にて受付簿に記帳,ならびに学会の黄色い 名札をご提示ください.開館時間は10:00~16:00です.

**************4. 会場案内 **************

■ 学会会場への交通

《地下鉄》

《タクシー》

仙台市地下鉄東西線「仙台駅(TO7)」より「八木山動物公園行き」に乗り、 「青葉山駅(TO2)」で下車(乗車時間9分、料金250円)。 青葉山駅「北1出口」より徒歩2分。 工学研究科中央棟 あおば食堂 DOCK 青葉山駅北1出口 および南1出口より 徒歩約10 分

懇親会会場

JR 仙台駅西口タクシー乗り場より乗車、所要時間約15分、料金約2,000円。

シンポジウム

大量絶滅の原因とプロセス

Causes and processes of mass extinctions

コンビナー:海保邦夫・井龍康文

Reconsidering The Late Ordovician Mass Extinction: the nature and timing of environmental changes and their relationship to extinction events

Seth Finnegan, Department of Integrative Biology, University of California, Berkeley

The Late Ordovician Mass Extinction (LOME) is the first of the "Big 5" major mass extinctions, and among the largest in terms of total taxonomic losses. This event has long stood out as unusual relative to other major extinction events. Whereas a number of Meso-Cenozoic extinction are linked to warming and ocean acidification associated with emplacement of large igneous provinces (LIPs), the two pulses of the LOME appear to coincide with cooling and expansion of Gondwanan ice sheets near the Katian-Hirnantian boundary and subsequent warming and deglaciation. The fact that subsequent cooling episodes were not accompanied by comparable extinction events raises questions about whether climate changes alone are a sufficient explanation for the LOME. The recent discovery of elevated Hg concentrations associated with extinction pulses in some sections raises the prospect LIP involvement, but any LIP-based extinction model must still account for known patterns of environmental change.

Oxygen isotope data suggest that the magnitude of Late Ordovician glaciation may have been exceptional relative to subsequent glacial episodes, with sections in Laurentia and Baltica recording up to +4% shifts across the Katian-Hirnantian boundary. Clumped isotope analyses of brachiopods and rugose corals from Anticosti Island, Québec and the U.S. Midcontinent indicate mid-Hirnantian cooling of tropical surface waters by \sim 5-7° C and peak ice volumes substantially exceeding those of the Pleistocene glacial maxima. Although the shift appears to be relatively rapid improved age constraints are needed to compare rates of change to other greenhouse-icehouse climate transitions.

The large (+4‰ to +8‰) carbon isotope excursion associated with the mid-Hirnantian glacial maximum suggests enhanced organic carbon burial, but there is at present no consensus regarding changes in ocean redox structure through LOME interval. Some pyrite sulfur isotope datasets record large positive excursions in the early Hirnantian, which have been interpreted as evidence of widespread anoxia accompanying cooling and glaciation. However, this interpretation is not supported by carbonate-associated sulfur isotope datasets, which show little change. Iron speciation and molybdenum isotope datasets generally suggest oxygenation of shelf environments in the early Hirnantian followed by a shift towards less oxygenated conditions during a mid-Hirnantian glacial maximum. New analyses of uranium isotopes and other global-scale redox proxies are needed to clarify the role of oxygenation changes in driving the LOME and the early Silurian recovery.

Extinction selectivity patterns provide important constraints on the environmental drivers of the LOME. Among the planktonic graptolites, the first extinction pulse wiped out many long-lived taxa interpreted to have inhabited denitrifying waters above widespread tropical oxygen minimum zones. The lineages that diversify during the Hirnantian are derived from groups that previously inhabited relatively high-latitude, oxygenated settings. Among the benthic brachiopods, the first pulse of the LOME preferentially affected genera with limited latitudinal ranges and genera that were confined to relatively deep (outer shelf) habitats. The preferential extinction of genera with limited latitudinal ranges implicates cooling and compression of meridional sea surface temperature gradients as an important driver of extinction. The extinction of genera confined to deeper waters is consistent with elimination of a widespread Late Ordovician low-oxygen biotope, but not uniquely so.

The large-amplitude glacioeustatic sea-level changes associated with the LOME may drive some extinction via habitat reduction, especially in the cratonic seaways that were exceptionally widespread in the Late Ordovician world. However, associated hiatuses and facies shifts also complicate and likely distort analyses of the timing of biotic turnover events. Regional-scale field studies that sample fossils and geochemical proxies in a unified sequence stratigraphic framework hold great promise for further elucidating the environmental drivers of the LOME and understanding the differences between the Late Ordovician glaciation and subsequent greenhouseicehouse transitions.

Biotic responses to volatile volcanism and environmental stresses over

Guadalupian-Lopingian (Permian) transition

Yuangeng Huang, Zhong-Qiang Chen (China University of Geosciences, Wuhan) • Paul B. Wignall (University of Leeds) • Stephen E. Grasby (Geological Survey of Canada,) •

Kunio Kaiho (Graduate School of Science, Tohoku Univ.)

Biotic extinction over the Guadalupian-Lopingian (G-L) transition is actively debated, with its timing, validity, and causality all questioned. Here we show, based on detailed sedimentary, paleoecologic, and geochemical analyses of the Penglaitan section in South China, that the G-L extinction is characterized by a slightly earlier collapse of metazoan reef systems followed by benthic extinction. Mercury concentration/ Total organic Carbon (Hg/TOC) ratios show two anomalies, revealing the eruption pattern of the Emeishan Large Igneous Province (ELIP) over the G-L transition. The first Hg/TOC peak is moderate and represents the activation of ELIP, which coincided with the collapse of the end-Guadalupian reef ecosystem, a large positive shift in Chemical Index of Alteration, and a dramatic fall in sea-level. The collapse of the metazoan reef ecosystems was followed by a microbial bloom, related to elevate terrestrial chemical weathering. A much larger Hg/TOC peak occurs just above the G-L boundary and represents the main eruption episode of ELIP. This volatile volcanism coincided with benthic extinction, a negative δ^{13} Ccarb excursion, oceanic anoxia and abrupt sea-level rise. The temporal coincidence of these phenomena supports a cause-and-effect relationship, and that the eruption of ELIP likely triggered the G-L extinction.

The fossil record of several major benthic groups (such as foraminifera, corals, brachiopods, and ammonoids) from South China reveals a major marine extinction event around the Guadalupian-Lopingian (G-L) transition. A contemporaneous biotic crisis has also been recognized in the high-latitude Boreal sections (Spitsbergen). However, study of this crisis is hindered by the widespread absence of uppermost Guadalupian strata related to a major eustatic regression. Thus, there remains considerable debate about the timing of the extinction: did it occur at the G-L boundary (GLB) or within the Late Guadalupian? Furthermore, it is unclear if the extinction was simply a prolonged diversity decrease undeserving of a "mass extinction" epithet or if it was an abrupt event characteristic of such crises. The link between eruptions of the Emeishan large igneous province (ELIP) in SW China and G-L extinction has also been disputed.

The late Guadalupian saw the proliferation of Tubiphytes reefs within the ELIP region and a diverse sponge reef at Tieqiao southeast of the lava fields. The relationship of these reefs to the timing of the crisis is currently unclear – are they part of the recovery phase or are they a pre-extinction development that suggests the main extinction took place around the GLB, and if so what is the potential cause? To address these questions, we re-examined the G–L succession at the Global Stratotype Section and Point at Penglaitan in South China.

This study documents a new metazoan reef from Penglaitan, which is assessed alongside a new carbon isotope dataset, mercury concentrations, and chemical weathering index, that reveal a pronounced reef collapse and benthic extinction coinciding with extreme environmental stresses and volatile volcanism.

The end-Permian mass extinction event in the pelagic Panthalassa

Satoshi Takahashi (Univ. Tokyo Sci.) · Kunio Kaiho (Tohoku Univ. Sci.) · Satoshi Yamakita (Univ. Miyazaki) · Masahiro Oba, Shin-ichi Yamasaki, Noriyoshi Tsuchiya (Tohoku Univ. Env.) · Takeshi Kakegawa, Takeyoshi Yoshida, Noritoshi Suzuki (Tohoku Univ. Sci.) · Masayuki Ehiro (Tohoku Univ. Mus.) · Ryoichi Nakada (Kochi core center) · Yusuke Watanabe (Univ. Tokyo Sci., present affiliation: JAEA) · Yoshio Takahashi (Univ. Tokyo Sci.) · Yasumasa Ogawa (Akita Univ.) · Kazuhiko Kimura (Miyagi Univ.)

The largest mass extinction event in the Phanerozoic occurred at the Late Permian to Triassic transition. During this event, ~90 % of marine species were disappeared. As possible causes of this mass extinction, evidences of drastic environmental changes such as global warming, oceanic acidification, and oceanic anoxia have been reported mainly from the shallow water oceanic sedimentary rocks. However, it has been poorly known on response of pelagic ocean during such extreme conditions, because the pelagic Permian-Triassic boundary sections are rare.

We have reported environmental records in pelagic deep-sea facies of the palaeo-superocean namely Panthalassa during this mass extinction event based on the Permian-Triassic sedimentary rocks from the Japanese accretionary complexes. These sediments have been considered to be deposited at the low latitude pelagic region at least several thousands of km far from the continents. The Upper Permian to Lower Triassic transition in the pelagic deep-sea is characterized by lithological changes starting from Upper Permian radiolarian-rich bedded chert through uppermost Permian siliceous claystone and Permian to earliest Triassic black claystone. Carbon isotope negative excursion which corresponds to global mass extinction horizon was recognized at the base of this black claystone. A decreasing trend in siliceous micro fossils dominated by radiolarian tests and diversity of radiolarian fossils¹ were detected at the boundary of the siliceous claystone and the overlying black claystone beds. These trends coincided with an increase in total organic carbon content implying oceanic anoxia. Geochemical composition of redoxsensitive elements based on one of the best continuous Permian-Triassic boundary sections (Akkamori section) provided further information². Increases in vanadium [V], molybdenum [Mo], and uranium [U] occurred in the Upper Permian grey siliceous claystone beds. These trends indicate oxygen-poor depositional condition. The most severe sulphidic condition was estimated by the highest peaks of Mo and V in the uppermost siliceous claystone and overlying lowermost black claystone beds, in accordance with the end-Permian mass

extinction event². Above the mass extinction horizon, these elements decrease significantly, despite high total organic carbon contents. A possible interpretation of this trend is drawdown of these elements in seawater after the massive element precipitation during the sulphidic water condition. A decrease in the Mo/U ratio despite enrichment of Mo and U also supports decrease in Mo from seawater. Furthermore, reactive Iron [Fe] chemical species hosted in pyrite also decrease in pyrite-Fe across the boundary. This phenomenon would reflect a decrease in reactive Fe in the bottom water due to massive pyrite formation under prolonged sulfidic water.

Therefore, it was revealed that the redox changes in the pelagic Panthalassa at the end-Permian mass extinction have great impact on the seawater composition. Mo, V, and Fe act as bio-essential nutrients for primary producers and animals. The continuing reducing water column and lack of nutrient elements could have had a considerable effect on primary producer turnover and marine life.

¹Sano et al. (2012), *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 363-364, 1-10. doi:10.1016/j.palaeo.2012.07.018.

²Takahashi et al. (2014), Earth Planet. Sci. Lett. 393, 94-104. doi:10.1016/j.epsl.2014.02.041

CO₂ amplification of orbitally paced variability in the hydrological cycle across the end-Triassic extinction

Jessica H. Whiteside (University of Southampton, UK) · Joyce A. Yager (University of Southern California, USA) · Paul E. Olsen (LDEO of Columbia University, USA) · Martin Palmer (University of Southampton, UK) · J. Andrew Milton (University of Southampton, UK) · Morgan Schaller (Rensselaer Polytechnic Institute, USA)

Global atmospheric models of increasing pCO_2 predict an intensification of the hydrological cycle coupled with warming, as well as an implied amplification of the effects of orbitally forced precipitation fluctuations. Supporting evidence exists for the Pleistocene; however, such evidence has not yet been developed from ancient Mesozoic warm intervals that serve as partial analogues for future greenhouse worlds. We presents lithological, $\delta^{13}C$, soil carbonate, and compound-specific hydrogen isotopic data (δD) from plant wax n-alkanes from Late Triassic and Early Jurassic (pCO₂ values >1,000 ppm) marine and non-marine records from eastern North America, Peru, and England with emphasis on the end-Triassic mass extinction.

From eastern North American Pangean rift basins, variance in lake level expression of the climatic precession cycle from lithology and bD appears temporally linked to CO₂ based on soil carbonate proxy data from the same strata. Cyclicity variance is high during times of high CO₂ (~4000 ppm) for most of the Late Triassic, drops precipitously as CO₂ declines below 2,500 ppm during most of the Rhaetian, and dramatically increases when massive atmospheric CO₂ increases $(\sim 5,000 - 6,000 \text{ ppm})$ associated with the Central Atlantic Magmatic Province (CAMP) and end-Triassic extinction (ETE) drove insolation-paced increases in precipitation. Cyclicity variance drops again as CO₂ declines (<2,000 ppm) during the Jurassic. Preliminary data suggest significant variability in leaf wax δD , corresponding to other environmental changes across the extinction interval. In addition, ⁸⁷Sr/⁸⁶Sr in marine strata (1) tracks CO_2 with a dramatic decrease from 0.70795 to 0.70765, suggesting a mechanistic link through weathering. Measurements from St. Audrie's Bay (Bristol Channel Basin) demonstrate the generality of this pattern of amplified orbitally forced hydrological changes, in an area far from the CAMP basalts.

Eastern North American lake level data can now be directly correlated to the independently U-Pb-calibrated δ^{13} C data from the marine Pucara Basin section in Peru that has an ammonite-based ETE (2) and placed in a common timescale using the two independent U-Pb age

models. Fourier analysis of the Pucara $\delta^{13}C_{org}$ data reveals only one significant frequency at ~400 kyr. Based on the U-Pb age models, the 405 kyr peaks in intervals of high precessional variation in the Newark astrochronology are in phase with 405 kyr ¹³C-depleted peaks. The marine and continental ETE events correlate comfortably within the limits of the two independent U-Pb age models and astrochronologies with the initiation of the CIE corresponding to that of the marine and continental ETE.

Similar periodic variations do not occur in the $\delta^{13}C_{carb}$ data suggesting the fluctuations do not necessarily reflect the global exchangeable reservoirs, but are more simply explained as variations in the balance of terrigenous vascular plant organic matter vs organic matter of marine phytoplankton or bacterial origin. The strong increase in the magnitude of $\delta^{13}C_{org}$ data through the ETE in Pucara is thus consistent with amplification of variance in the effects of climatic precession as reflected in the intensity of the hydrological cycle.

The synchronous increase in variance of lake level cyclicity and δ^{13} C in marine environments along with the changes in δ D is most parsimoniously interpreted as driven by massive CAMP-sourced CO₂ increases, other consequences of which, such as volcanic winters and ocean acidification, drove the mass extinctions on land and in the sea.

¹Tackett, L.S. et al. 2014. Lethaia, 47(4):500.

²Yager JA et al. (2017) EPSL 473:227.

Climate and environmental changes at the Cretaceous-Paleogene: triggers and consequences of rapid mass extinction

Johan Vellekoop (KU Leuven, Belgium)

About 66 million years ago, a large asteroid slammed into the Earth, marking the Cretaceous-Paleogene (K-Pg) boundary. This impact eventually led to a mass extinction event, signifying the end of the reign of the non-avian dinosaurs. Abrupt and short-lived "impact winter" conditions, caused by dust, soot and aerosols injected into the stratosphere, have commonly been implicated as one of the main mechanisms leading to this mass extinction event. High-resolution TEX₈₆ organic paleothermometry^{1,2} and concurring migration patterns of temperature-sensitive dinoflagellates^{3,4} indeed provide evidence of impact-provoked, severe climatic cooling immediately following the K-Pg impact. This recorded short-lived "impact winter" occurred superimposed on a long-term cooling trend that followed a warm phase in the latest Cretaceous, related to Deccan Traps volcanism. In recent years, climate-model studies have shown that the K-Pg boundary "impact winter" may have lasted years to decades and was characterized by a cooling of global ocean surface waters of up to -15 degrees C^{5,6,7}.

The K-Pg boundary impact also led to a near-instantaneous input of a large volume of CO_2 into the atmosphere, resulting in one of the most abrupt global warming events in the last 100 million years. Hence, the warming after the brief K-Pg boundary "impact winter" may represent an analogue to current global warming and provides insight into its potential long-term effects.

Integration of high-resolution geochemical, micropaleontological and palynological records from sites around the world can be used to assess the rapid environmental changes following the K-Pg boundary impact. Our results show that climate warming during the millennia after the "impact winter" was associated with hypoxic bottom waters at the studied shelf sites, causing major stress for benthic communities. We attribute this decline in dissolved oxygen to a combination of decreased gas solubility and ocean ventilation resulting from the warming of the sea water and increased oxygen demand in shelf bottom waters due to increased nutrient inputs and associated high productivity. ¹ Vellekoop, J. *et al. PNAS* **111 (2)**, 7537-7541; doi:10.1073/pnas.1319253111 (2014).

² Vellekoop, J. *et al. Geology* **44 (8),** 619-622; doi:10.1130/G37961.1 (2016).

³ Brinkhuis *et al. Palaeo., Palaeo., Palaeo.* **141,** 67-83 (1998).

⁴ Vellekoop, J., et al. Palaeo., Palaeo., Palaeo. 426,

216-229; doi: 10.1016/j.palaeo.2015.03.021 (2015).

⁵ Brugger et al. *Geophys. Res. Lett.* **44**, doi:10.1002/2016GL072241 (2017).

⁶ Bardeen et al. *PNAS* E7415–E7424; doi: 10.1073/ pnas.1708980114 (2017).

⁷ Kaiho, K. *et al. Scientific Reports* **6**, 28427; doi: 10.1038/srep28427 (2016).

Global cooling-drought by soot and sulfuric acid aerosols caused the mass extinctions

Kunio Kaiho, Mami Miura, Mio Tezuka, Naohiro Hayashi, Kazuma Oikawa, Md. Aftabuzzaman, Daisuke Tanaka (Tohoku University) • David S. Jones (Amherst College) • Jean-Georges Casier (Royal Belgian Institute of Natural Sciences) • Megumu Fujibayashi (Akita Prefectural University) • Ryosuke Saito (MIT) • Tian Li (CUG, Wuhan) • Sylvain Richoz (Lund University) • Naga Oshima (Meteorological Research Institue)

There were five mass extinctions in the Phanerozoic Eon. The emplacement of large igneous provinces (LIPs) with each event is well established for the Cretaceous-Paleogene, Triassic-Jurassic, and Permian-Triassic extinctions; a Late Devonian LIP has been tentatively identified, while evidence for a Late Ordovician LIP is indirect. Elevated Hg/TOC ratios have been reported in strata spanning each of these extinction events, suggesting a causal link between massive volcanism and extinction. An asteroid impact induced the Cretaceous-Paleogene mass-extinction, as evidenced by Ir accumulation at the ppm level, shocked quartz, and the corresponding impact crater at the boundary. Explosive volcanic eruptions and asteroid-comet impacts can cause short-term global cooling, but the short time scale complicates detection of the cooling in the stratigraphic record. Here, we present new geochemical data that supports short-term global cooling by soot and sulfuric acid aerosols as a trigger mechanism for the most recent four mass extinctions. These records include new Hg/TOC measurements (as a record of volcanism) coupled to polycyclic aromatic hydrocarbon (PAH) abundances (as a proxy for soot and soot-forming processes).

The Late Devonian biotic crisis is the second of the big five mass extinctions in the Phanerozoic and is composed of three extinction events at 383, 372, and 359 million years ago. Marine anoxia, possibly triggered by volcanism, is the likely kill mechanism for each event. Here we use new geochemical data from marine strata exposed in France, Belgium, and southern China, and to argue that explosive volcanic eruption induced global cooling and drought by sulfuric acid and soot aerosols, likely leading to environmental change and extinction.

The end Permian extinction, the largest biotic crisis of the Phanerozoic, is thought to be due to gas released from huge volcanic eruptions in eastern Siberia. Volcanic eruption and contact metamorphism can release massive CO_2 to the atmosphere, inducing long-term warming. Global warming and related environmental changes have been detected at the mass extinction horizon, which have been thought to be the main cause of the mass extinction. Here we show that short-term global cooling by sulfuric acid and soot aerosols preceded warming and could have been the main cause of the mass extinction, evidenced by new PAH and Hg/TOC data from marine strata exposed in southern China and Italy.

Emplacement of the Central Atlantic Magmatic Province (CAMP) is thought to have triggered the end-Triassic mass extinction 201 million years ago. However, neither the climatic effects of volcanism nor the kill mechanisms have been clarified. Here we argue that nonexplosive volcanism caused both land plant devastation and marine extinction, evidenced by new PAH and Hg/ TOC data from marine strata exposed in Austria.

An asteroid, also known as the Chicxulub Impactor, hit Earth some 66 million years ago. The impact of the asteroid heated organic matter in rocks and ejected it into the atmosphere, forming soot in the stratosphere. Soot is a strong, light-absorbing aerosol that caused global cooling and drought that triggered the mass extinction of non-avian dinosaurs and other animals. Here we show the probability of the mass-extinction occurring was only 13 percent including the sulfuric acid effect. This is because the catastrophic chain of events could only have occurred if the asteroid had hit the hydrocarbon-rich areas occupying approximately 13 percent of the Earth's surface.

Palaeontological Society of Japan

学術賞受賞記念

特別講演

土屋正史

山田敏弘

有孔虫類の分子生物学的研究¹

土屋正史(国立研究開発法人海洋研究開発機構)²

有孔虫の分子生物学的・分子系統学的手法を用い た研究は、90年代後半になって DNA 塩基配列を正 確に解析できるようになってから本格的に開始され た。主な目的は、真核生物の中の系統学的な位置の 決定と、形態学的な種との関係を明らかにするもの であり、現在もその流れは継続している。さらに近 年では、ゲノム解析が試みられたり、環境 DNA 解 析による多様性解析が行われたりしている。有孔虫 の場合,解析できる遺伝子領域が限られているなど, 他の生物に比べて不利な点が多いものの, 複数個体 を集めて RNA を抽出することで、タンパクの遺伝 子を解析するに至り, 複数の遺伝子領域を連結させ たデータセットから、有孔虫がリザリアに含まれる ことや、放散虫との近縁性が示されるなど、真核生 物内の進化過程について,多くの知見が得られてき ている。

有孔虫の属間や種間の遺伝子解析では、おもに 18SrRNAやITSを用いた解析が行われ、環境によ る変異型が多く存在する形態種群の関係を明確化す ることや、分岐年代推定を行い化石記録と比較した 研究例がある。前者の例では、より厳密に形態種を 認定することで、詳細に古海洋環境解析を行うこと が可能となる。一方、遺伝的変異がどの程度あれば 遺伝的変異を蓄積し分化するのかと言った基本的な 情報は依然として不足している。

これまでに演者が取り組んできた研究では,有孔 虫の生態や遺伝的分化機構を明らかにすることを目 的に,飼育実験や野外試料による生活環の推定,有 孔虫種間の分子系統解析,地域集団間の遺伝的変異 と地域集団の形成機構,交配実験に基づく交配集団 の認定と地理的隔離の有無と,遺伝的集団の関係と 形成機構を検討してきた。研究では,環境制御飼育 実験を通して,殻形質の遺伝的安定性と環境変異型 の関係を明らかにし,分子系統解析からそれらを明 確化した。さらに,地域集団を明確に識別可能な遺 伝子マーカーを導入して解析を行ってきた。

これまでの研究の中で,岩礁地性底生有孔虫 Planoglabratella opercularis を対象にした遺伝的分化 機構の解明は特筆できる。本種は,石灰藻の葉上を 這う生活様式を持ち,有性生殖時に二個体が臍側面 を融合させ殻の中で遊走子を交換するため,個体や 遊走子の分散能力は極めて低いことが予測できる。 このことを踏まえ「P. opercularis の遺伝的分化は、 生態的要因から地理的隔離や生殖的隔離がおこり, 海陸分布や海流といった物理環境が遺伝的分化を促 す」ことを検証した。交配実験に基づく解析では、 各地域集団が輪状種様の交配集団から構成されてい ることを示し, また, 遺伝的変異は各地域集団に蓄 積していることを示した。さらに、分岐年代推定の 結果、日本列島の成立による地理的な隔離が地域集 団の分化に寄与することを示した。P. opercularis は, 海陸分布や生態的な要因により遺伝的に分化し、生 殖的な隔離によって地域ごとに遺伝的変異を蓄積す ることを示す。また、日本海から北海道にかけて存 在する遺伝型は, 分子系統樹では分岐が最も深く, 分岐年代の推定値を考慮すると、日本海における最
 終氷期の低温・低塩分環境でも,集団が維持してい た可能性が示唆された。

最近では,アミノ酸の分子レベル窒素同位体比に 基づく栄養段階推定法を, 岩礁地性底生有孔虫の捕 食-被食や宿主-共生系に適用し、微小生息空間内の 低次栄養生物の資源利用の解析も行っている。その 結果、微小生息空間内で多様な餌資源利用形態が存 在し,生殖様式や生態が類似している種であっても, 内生微細藻類の存在形態が異なる種の場合、分岐パ ターンが異なることが示唆されてきている。このよ うな餌資源利用や共生藻類と宿主との相互作用など の内的要因が関与する適応や多様化については、十 分に明らかにされているとは言えない。物質輸送を 含む適応過程をゲノム解析やトランスクリプトーム 解析と組み合わせた解析が必要であり、これらを通 じて,有孔虫がどのように環境に適応し進化してき たのかを明らかにできる。また、遺伝型を識別でき るような形質を化石試料の解析に用いることで、環 境変遷をより詳細に読み取る手法の検討や形態の進 化過程も検討していきたい。

¹ Molecular phylogenetic study of foraminifera

² Masashi Tsuchiya (JAMSTEC)

化石と分子生物学を融合した進化古植物学的研究1

山田敏弘(大阪市大・理・植物園)²

現在の地球には、学名が定まった種だけでも約 2万種の維管束植物が生育する.この多様性は、現 在の環境への適応だけでなく、過去の地史学的イベ ントの結果、成立した.また、過去には体制進化や 系統分化の基軸となった分類群が存在したが、その ほとんどは絶滅した.従って、現在の植物多様性を 理解するためには、現在と過去をつなぐ研究が欠か せない.そこで私は、古植物学と現生植物学を融合 した研究を行い、維管束植物の体制革新や大系統推 定について解明してきた.ここでは特に、種子の体 制進化と種子植物の大系統推定に関する研究を紹介 したい.

1) 種子植物の祖先を復元する研究

種子植物の祖先の体は、二叉分枝する軸(テローム) と、軸の先端に付く胞子嚢だけからできていた.そ の後、テロームは、栄養テローム(胞子嚢なし)と 生殖テロームとに分化した.栄養テロームは癒合し て一枚の皮となり(=扁平化)、大(雌性)胞子嚢 をつける一本の生殖テロームを包んだ.以上が化石 から推定される種子の進化である.つまり、種子軸 は生殖テローム、種皮は栄養テローム系と解釈され る.しかし、「分枝する種子」は現存せず、種子と テローム系との相同性を裏付ける発生学的証拠は無 かった.

WUSCHEL (WUS) は現生種子植物で同定されたホ メオボックス遺伝子であり、栄養テロームに由来す る茎では、その先端成長の責任因子である.同じく 種子においても WUS は、種子軸の先端で発現し、 軸の先端成長を担う.しかし、栄養テローム系に由 来する種皮では、WUS は発現しない.

私たちは、種皮扁平化の責任因子である Class III Homeodomain-Leucine Zipper (HD-ZIPIII) 遺伝子が、 種皮形成領域における WUS の発現を抑制すること を見出した.また、既に WUS の発現抑制に関与す ることが分かっていた BELL1 遺伝子と HD-ZIPIII 遺 伝子の変異を重ねることにより、より強く広範囲で WUS の異所的発現を種皮形成領域で誘導した.そ の結果、種皮は先端に大胞子嚢をつける軸系に変化 した.

つまり,種子を4億年前のテローム系に先祖返り させたことになり,化石で提唱された「種皮はテロー ム系である」という仮説を,現生種子植物の発生学 的証拠から初めて示した.

2) 被子植物の外種皮の起源と被子植物の姉妹群推定

被子植物は前期白亜紀に出現し,現生植物の90% を占めるまでに多様化した.しかし,被子植物の姉 妹群となった裸子植物は,長らく謎だった.

姉妹群を推定するため,被子植物と裸子植物の体 制が比較されてきた.例えば,被子植物の種子は, 裸子植物型の種子(種皮と大胞子嚢)の外側に,裸 子植物には無い外種皮を持つ.従来,外種皮は複数 枚の葉が癒合して,裸子植物型の種子を取り囲んだ ものと見なされ,同様の構造を持つキカデオイデア 類などが姉妹群として有力視されていた.

私は,北海道三笠市の蝦夷層群日陰の沢層から採 集した前期白亜紀(アルビアン)の種子化石を観察 し,「珠孔とへそが隣接し,両者の間に外種皮が無い」 ことに気づいた.また,前期白亜紀から報告された 被子植物の種子化石を文献調査したところ,同じく 珠孔とへそが隣接していた.さらには,現生被子植 物の基部系統の種子を調べたが,同様の特徴を持つ ことが分かった.つまり,この特徴は被子植物種子 の原始的な特徴であり,被子植物の種子進化や起源 に関する重要なデータを提供するはずである.

そこで、どのように珠孔とへそが隣接した種子が できるのかを発生学的に調査した.その結果、外種 皮は複数枚の葉が癒合したものではなく、一枚の葉 に相当することが分かった.また、この解釈は葉原 基のマーカーとなる YABBY 遺伝子の発現からも支 持された.

「外種皮は一枚の葉と相同」という結果は,被子 植物の姉妹群に関する従来の仮説を否定した.そこ で,裸子植物型種子の外側に1枚の葉を持つシダ種 子類を被子植物の姉妹群とする,新たな系統仮説を 提唱した.

¹ Evolutionary Palaeobotany: A synthetic approach of fossils and molecular biological data

² Toshihiro Yamada (Botanical Gardens, Osaka City Univ.)

Palaeontological Society of Japan

一般講演

口頭発表

A会場	A01-A23
B会場	B01-B23
C会場	C01-C23

ポスター発表 P01-P45

高校生 ポスターセッション HP1-HP3

生態的要因による岩礁地性底生有孔虫の遺伝的集団の遷移と形成¹ 土屋正史²・石渡祐一²³・吉田尊雄²・藤倉克則² JAMSTEC²,東京海洋大学³

日本海の海洋生物は、最終氷期に海水準が低下し周囲の海洋との 繋がりがなくなることで、大きな影響を受けた。特に表層の低温化・ 低塩分化は、海洋表層の生物相に影響を与えたことが知られている。 実際、最終氷期最盛期前後には、海氷や低塩分環境に伴う珪藻種の 増加が認められている。一方、岩礁地性有孔虫類の集団がこの時期 に維持されていたのかは不明な点が多い。本研究では、低温・低塩 分水の影響を強く受ける岩礁地性底有孔虫が、どのような遺伝的分 化・遷移パターンを示すのかを明らかにするため、Pararotalia niponica と Elphidium crispum について、SSU rRNA 遺伝子を用いた 分子生物地理学的解析を行うとともに、内生微細藻類の葉緑体 SSU rRNA 遺伝子に基づく分子同定を行った。研究では、内生生物が宿 主の適応機構に与える影響を推測し、生態的要因や過去の海洋環境 変動が、どのように多様性の維持に影響を及ぼしたのかを推測した。

分子生物地理学的な解析の結果, E. crispum は日本海側と太平洋側の地域集団に分かれるため、日本海表層の低塩分化の際にも日本海

A02

東北地方太平洋側斜面域の深海性有孔虫群集¹ 長谷川四郎(東北大・博物館)²

故的場保望秋田大学名誉教授が遺された有孔虫標本と微化石関連 文献類が、ご遺族のご意向を受けて2014年に東北大学総合学術博物 館に移管された.その中に、Matoba (1976)による仙台湾沖や未公表 の釜石沖海域の標本が含まれていた.演者は、南三陸沖海域に設置 されていた海底地震計 (OBS) ハードハット内で発見された未固結堆 積物の有孔虫群集を分析する中で、深度分布の比較対象として周辺 海域の現世有孔虫群集の分布を検討している.この的場標本はOBS 海域を南北に挟む海域のものであることから、格好の比較データに なると期待できる.

南三陸沖の OBS は、2011 年東北地方太平洋沖地震の後に緊急回収 されたもので、内部の堆積物は地震に伴い発生した重力流により運 搬・挿入されたものと推定された(三浦ほか、2011).しかし、その 有孔虫群集は現地性種で構成され、浅海底からの異地性個体は確認 されず(長谷川、2012)、地震直後に混濁流が発生したとする地震後 の調査結果とは一致しない、そのため、OBS 内群集の由来を追究す る目的で、周辺海域の現世有孔虫群集をさらに検討している. 側に独自の集団が維持されてきた可能性が高い。一方, P. nipponica は日本海と太平洋の集団でほぼ同一の配列を持つことから,日本海 側と太平洋側の地域集団には分化せず,ごく最近まで遺伝的交流が 起きていたことが示唆される。両種とも岩礁地に繁茂する石灰藻の 微小空間内で仮足を展開する葉上生活性の生活様式を持つが, E. crispum は広範な塩分環境(淡水性・汽水性・海棲)の珪藻葉緑体を 盗葉緑体として保持し,盗葉緑体の光合成産物を利用するのに対し て, P. nipponica は熱帯・亜熱帯由来の海棲珪藻を保持し,宿主は細 胞内の内生微細藻類を捕食することが示唆された。

以上のことから、日本海の閉鎖による表層付近の低温・低塩分化 は、宿主有孔虫が利用できる珪藻種の生存にも影響を与えるため、 それを利用する有孔虫集団の存続にも影響を与えた可能性が高い。 その結果、宿主の遺伝的分化パターンは、宿主が利用する餌資源や 獲得する内生藻類(あるいは盗葉緑体)の由来微細藻類が持つ生態的 な要因に強く影響されることが示唆された。

¹Genetic differentiation and transition pattern of rocky-shore benthic foraminifera due to ecological factors

²Tsuchiya M, ²³Ishiwatari Y, ²Yoshida T, ²Fujikura K (²JAMSTEC, ³Tokyo University of Marine Science and Technology)

ここでは、的場標本を中心に、既存の小名浜沖(海保・長谷川, 1986)と八戸沖(Fontanier et al., 2014)のデータ、ならびに、 これまで情報が不十分であった2000m以深の未公表データなどを併 せて有孔虫群集の深度分布を検討した。その結果、以下に示すよう に、東北地方太平洋側斜面域における有孔虫群集の水深に応じた帯 状分布が明らかになった。

水深(m)	底生有孔虫群集
$253 \sim 500$	Bolivina decussata - Angulogerina ikebei
$590 \sim 1040$	Stainforthia apertura - Takayanagia delicata
1050~1180 (-1260)	Elphidium batialis - Bolivina spissa
$(1400 -) 1570 \sim 1590$	Uvigeina akitaensis - Elphidium batialis
1970~1990 (-2100)	Elphidium batialis - Bulimina aculeata
$(2700 -) 3400 \sim 4200$	<i>Uvigeina senticosa - Elphidiella</i> sp. B
4600~6000+	<i>Textularia earlandi - Reophax</i> spp.
(括弧内は OE	S 群集の分布を加味した水深)

¹Deep-sea foraminiferal assemblages along the slopes off Tohoku District, Japan, in the NW Pacific. ²Shiro Hasegawa (Tohoku Univ. Museum)

A03

人工知能を用いた放散虫群集の自動データ取得へ向けた試み¹ 板木拓也(産総研・地質情報)²・平 陽介³・鍬守直樹³・ 斎藤 仁志(NEC)³・星野辰彦(JAMSTEC・高知コア研)⁴

微化石の分類作業は、本来なら豊富な知識と経験が必要であるが、 人工知能技術のひとつであるディープラーニング(深層学習)を使って自動化することにより、専門家が不在でも信頼できるデータの 取得が可能となることが期待されている. 演者らは、放散虫2種

(*Cycladophora davisiana* と *Cycladophora sphaeris*) についてデ ィープラーニングによる自動分類の予備的な試験を行い,90%以上 の高い正答率が得られたことを第167回例会(2018年2月,愛媛大 学)で報告した.その応用的な運用を想定して,複数の種をディー プラーニングで同時に分類し,さらに各構成種の産出頻度データを 取得する手法の検討を行った.

本研究では、顕微鏡下の粒子の画像を自動的に取得できる電動 X-Y ステージ付き顕微鏡「Collection Pro_改」(マイクロサポート 社)とディープラーニング・ソフトウェア「RAPID 機械学習」(NEC 社)を連携させた新たなシステムを開発した.このシステムを用い ることで、ステージ上のプレパラートを自動でスキャンし、そこに 含まれる個々の粒子について個別に画像を取得することが出来る. それぞれの画像の粒子は、事前にディープラーニングで構築した分 類モデルにより種類が自動的に判別される.

予備実験では、乾燥した粒子をトレイに散布し、落斜光で教師デ ータ及びテストデータとして使用する画像を取得した. Actinomma boleale, Larcopyle buetschlii, Cycladophora davisiana, その他 の放散虫、砕屑粒子などのカテゴリーに区分して分類モデルを構築 したところ、教師データの比較的に多い L. buetschlii の正答率は 約 80%で、教師データの少ない A. boleale と C. davisiana は 60% 程度であった.教師データを増やすなどしてこれらの正答率を高め られれば、その判別結果からそれぞれの産出頻度を見積もることが できる. また、複数の分類モデルを多層的に使うことで、より多く の種類の分類も効率的に行うことが可能である. 現在、光学顕微鏡 での使用を想定して透過光の画像データを整備中である.

¹Attempt on automatic collection of radiolarian assemblage data based on AI (Artificial Intelligence) technology ²Takuya Itaki (GSJ, AIST), ³Yosuke Taira, Naoki Kuwamori, Hitoshi Saitoh (NEC) and ⁴Tatsuhiko Hoshino (JAMSTEC, KCC)

琵琶湖における珪藻の大型化に湖水深の変化は影響したか¹ 齋藤めぐみ(科博・地学)²・豊田和弘(北海道大・理)³

Saito-Kato et al. (2015, Jour. Micropaleontology)には、過去 30 万年間の琵琶湖における珪藻(Praestephanos suzukii(Tuji & Kociolek)Tuji、通称スズキケイソウ)の形態学的な進化の速度と 様式が報告されている。すなわち、珪藻の形態学的な進化は一様で はなく、3回の相対的に進化速度が大きい時代(約19万年前、約 16万年前、約12万年前)があり、これらを境界に珪藻の形態は階 段状に変化したと考えられる。3回のうち初めの2回の変化は、珪 藻殻の中心から放射状にのびる肋の密度の減少であり、最後の1回 は殻の最大直径の増大である。

演者らは、形態学的な進化のうち最大直径の増大に着目し、それ が湖水深の変化と関係があるかどうかを検討している。例えば、バ イカル湖の浮遊性珪藻の1種は、水温躍層下の豊富な栄養塩を用い て弱い光環境で増殖し、夏期の高温時には冷温な深層で休眠する。 このように、大型の珪藻種は小型種に比べて水深が十分に深く深層 まで光が届く貧栄養の環境において有利であることが知られている。 現在の琵琶湖は、水深 4mの南湖と水深 50m以上の湖盆をもつ北湖 で構成されており、水深 50m に達することのある水温躍層より下の 環境が通年で維持されている。一方で、過去の琵琶湖において、水 深が現在よりも浅かったならば、水温躍層下の環境が存在しない可 能性がある。

スズキケイソウの大型化は約12万年前の最終間氷期の始まりに 起こった。ボーリングコア試料を用いたこれまでの研究によれば、 花粉分析の結果から、その頃は温暖化と降水量の増加が著しかった と推定される。さらに、周辺を断層に囲まれた琵琶湖においては、 そこに流入する河川のデルタの発達史の検討から、地殻変動による 段階的な水深の増大が指摘されている。また、堆積時の水深と強い 正の相関のあるヒ素含有量は、約30万年前の層準付近で20mを超え る水深の増大に相当する増加が認められている。本発表では、これ らの既存研究を整理し、湖水深と水温躍層の変化を明らかにし、ス ズキケイソウの大型化との同時性について議論する。

¹Cell size enlargement in Lake Biwa with reference to lake level changes

²Megumi Saito-Kato (National Museum of Nature and Science), ³Kazuhiro Toyoda (Hokkaido Univ.)

A05

北海道芦別市上部白亜系蝦夷層群羽幌川層から産出した獣脚類化石¹ 鈴木 花(北大・理)²・小林 快次(北大・博)³・加納 学(三笠市博) ⁴・唐沢 與希(三笠市博)⁵・林 昭次(岡山理大・生物地球)⁶・太田 晶 (北大・理)⁷・宮地 鼓(国立アイヌ民博準備室)⁸

北海道芦別市に分布する蝦夷層群羽幌川層からは板鰓類や二枚貝 化石を多産する層厚 50cm 程の砂岩層(コニアシアン上部)が報告さ れており(高桒ら,2016),この層より2016年小川英敏氏により脊椎 骨の椎体が1個発見された.本研究ではこの化石の部位と分類群の同 定を,外部形態比較とCTスキャンによる内部構造の分析より行った.

椎体の腹側に血道弓の関節面があり,椎体の両側面の背側には横突 起の基部が残っていることから,本標本は尾椎骨の椎体であり,尾の 中間付近の椎体であると同定した. CT データによると,海綿骨の密度 と皮質骨の厚さ,骨梁の太さから,陸棲の脊椎動物の椎体であると考 えられた.またこの椎体内部の大きな空洞や椎体が糸巻状であること から,本標本は恐竜類獣脚類のものであると同定した.

本標本は全長 89mm あり,中型以上の獣脚類と考えられる.北半球の白亜紀後期の地層からは、以下に比較する5グループの中型以上の 獣脚類が知られている.本標本の高さと長さの比率(H/L比)が0.63 と前後に長いことから、テリジノサウルス類とオヴィラプトロサウル ス類が除外される.前後の関節面の縁が丸みを帯びている形質は、オ ルニトミモサウルス類と異なる.本標本は両凹型椎骨であり、両関節 面が平らなドロマエオサウルス科とも異なる.また、ティラノサウル ス上科の尾椎との比較では、形態(H/L比、関節面の丸い縁、両凹型 椎骨、深い前関節面)がほぼ一致した.椎体での同定には限界がある ものの、本研究ではティラノサウルス上科に類似すると結論付けた.

これまで日本国内の白亜紀後期の地層から産出したティラノサウ ルス上科とされる化石は、九州から東北までの計4ヶ所から報告され ており、北海道からの報告は初となる. コニアシアンの海成層からの 産出は、福島県に続き本邦2例目となり、この時代の海岸線にはティ ラノサウルス上科が南北に広がり生息していた可能性が考えられる.

¹A theropod remain from the Upper Cretaceous Yezo Group, Haborogawa Formation in Ashibetsu City, Hokkaido

²Hana Suzuki (Hokkaido Univ.), ³Yoshitsugu Kobayashi (Hokkaido Univ.), ⁴Manabu Kano (Mikasa City Mus.), ⁵Tomoki Karasawa (Mikasa City Mus.), ⁶Shoji Hayashi (Okayama Univ. Sci.), ⁷Akira Ota (Hokkaido Univ.), ⁸Tsuzumi Miyaji (Prep. Natl. Ainu Mus.)

A06

モンゴル国南ゴビ県 Khavirgiin Dzo の 上部白亜系から産出した大型竜脚類の行跡¹ 石垣忍(岡山理大)²・Mainbayar, B.³・Tsogtbaatar, Kh.⁴(IPG・蒙) ・西村龍太郎⁵・蔦永早也香⁶・林昭次⁷・實吉玄貴⁸(岡山理大)

2016 年の岡山理科大学—モンゴル科学アカデミー古生物学地質 学研究所共同調査(以下「共同調査」と略す)において,南ゴビ県東 部の Khavirgiin Dzo より非常に保存のよい大型竜脚類足印化石(単 体)が発見された.2017年の共同調査においてこの単体の足印化石 (左後足印)に連なる足印を三個,合計四個の後足印から成る連続し た行跡を発掘した.Khavirgiin Dzo は,Nemegt 層の分布する Shar Tsav から南西方約7^{*}n, Baynshire 層の分布する Bayshin Tsav から北西方 約3^{*}nに位置する.層序学的位置づけは検討中である.

連続する四足印のうち最も保存の良い足印の足印長は106cm,足 印幅 77cm である.足印長は102 cm~120 cmの範囲で変化する.前足 印は後足印によってオーバーラップされ、残存していない、複歩長は 220 cmである.全体の形状は楕円状で,先端が尖状の第1指,第2 指,第3指の爪痕が見られ,第4指痕は先端がやや鈍く突出,第5 指はさらに鈍い.これらの足印形態から印跡動物は非常に大型の竜 脚類と推定される.本産地に近い Shar Tsav をはじめモンゴルの上 部白亜系からは各種のtitanosaurid の骨化石が発見されており,また, 北米やヨーロッパで発見される titanosaurid の足印と本足印は全体 及び指印の形態が一致する.これらの事から,本行跡はこうした titanosaurid に属する印跡動物によるものと考えられる. Alexander (1976)の計算式による推定移動速度は時速 1.6 km~1.9 kmである. また,前足印を常に後ろ足が踏みつぶす歩様が推定される. 足印軸 は行跡軸に対し40 °と大きく外旋し, Gauge は中程度であるが,足 印自体が大きく行跡の幅は広い.これらのことは印跡動物の骨盤形 態が幅広で股関節面が外側へやや外旋していたことを示唆する. 爪 痕は内側に大きく屈曲している.このことから強い Gripping (外側か ら内側に向かって握りしめるような爪の動き)が復元される.

本発見は極めて大型の竜脚類が後期白亜紀の東アジアに生息して いたことの証拠であり,竜脚類の巨大化や,巨大動物を支える生態系 を考察する上で重要である.

¹Large Sauropod Trackway from the Upper Cretaceous of Khavirgiin Dzo, South Gobi Aimag, Mongolia

²Shinobu Ishigaki (Okayama Univ. of Science) • ³Buuvey Mainbayar • ⁴Khishigjav Tsogtbaatar (Inst. Paleontology and Geology), • ⁵Ryotaro Nishimura • ⁶Sayaka Tsutanaga • ⁷Shoji Hayashi • ⁸Mototaka Saneyoshi (Okayama Univ. of Science)

モンゴル・ゴビ砂漠ネメグト産地の恐竜足跡化石: 古生態学・古環境学的意義¹ 中島重大(北大・理)²・小林快次(北大・博)³・高崎竜司(北 大・理)⁴・田中公教(北大・理)⁵・Tsogtobaatar Chinzorig (北 大・理)⁶・Khishigjav Tsogtbaatar (蒙・科学アカデミー)⁷・ Anthony R. Fiorillo(ペロー自然科学博物館)⁸

モンゴル南部ゴビ砂漠のネメグト恐竜化石産地には、バルンゴヨ ット層(U. Camp.)とネメグト層(U. Camp.-L. Maa.)が露出する. この産地は、恐竜の骨化石が多産することで知られるが、足跡化石に 基づく古生態学・古環境学的な研究は存在しない、本研究では、足跡 化石が多産する両層の境界(同一層準)に焦点を当て、足跡から同定 した分類群を、両層の骨化石に基づく動物群の構成と比較した.さら に、足跡化石のサイズ分布から当時の恐竜の生態を復元した.

新たに発見した約 50 個の足跡化石は,形態からハドロサウルス 科・竜脚類・獣脚類の3タイプに分類された.割合は異なるものの, 足跡化石が示す動物群の構成はネメグト層の骨化石が示す構成と類 似する.足跡の割合は植物食恐竜が全体の約8割を占め,肉食恐竜 に比べ優勢だったと考えられる.

A08

空中写真の恐竜化石産地についての研究への利用例:モンゴル、 ゴビ砂漠西部ネメグト層化石産地の地質¹ Tsogtbaatar, Kh. (モンゴル科学アカデミー古生物学・地質学研究 所)²・渡部真人(早稲田大学国際教養学部)³

ゴビ西部の白亜紀恐竜化石産地 Bugin Tsav の地質について空中 写真を用いて分析を行った.この産地における化石含有層の地質に ついての解釈のために空中写真は有効な補助手段である.

空中写真で得られた情報は,現地での地表踏査で得られた情報と調 和的・補完的である.特に,産地に特異的な岩質:たとえば,空中写真 において認識可能な地層の色彩の違いの存在,は有効利用できる.ま た,河川成層の堆積学的形態を現地調査および空中写真の双方で補 完的に認識可能である.河川成層の場合,遠く離れた柱状間の対比は、

「鍵層」が無ければ難しく、さらに地層が構造運動で傾斜していると 思われる場合は、事態はさらに悪化する.この場合でも、空中写真を 利用することによって地層の傾斜を認識し、近距離間での柱状対比 と、各柱状間の高度の比較をともに用いることによって、層序学的な 特質や岩質分布、堆積構造を理解可能である.

Bugin Tsav, Bugin Tsav II, Gurilin Tsav が位置する Ingeni Khobur

A09

モンゴル、ゴビ砂漠西部恐竜化石産地 Khermeen Tsav (ネメグト層) の堆積相と動物相との関係:空中写真を利用した分析¹ 渡部真人(早稲田大学国際教養学部)²・Tsogtbaatar, Kh. (モンゴ ル科学アカデミー古生物学・地質学研究所)³

ゴビ西部の白亜紀恐竜化石産地 Khermeen Tsav の陸成層の岩相と そこから産出する化石動物相との関係について分析を行った.現地 での地質調査データ(柱状群とそれらの近距離対比)と空中写真に よる遠距離対比とをあわせて行った.この産地には,比較的厚い化石 産出層が露出している.下位の赤色層からは Barungoyot 層に特徴的 な恐竜化石: Bagaceratops, Protoceratopsidovum 型卵などが産出 する.一方,その上位に累重する白色層からは Nemegt 層に特徴的な 化石: Gallimimus, Therizinosaurus, Tarbosaurus, Tarchia など が産出する.さらに,それぞれからは,他脊椎動物化石(鳥類、カメ類、 ワニ類、トカゲ類、哺乳類)も産出する.

Khermeen Tsav 北部エリアおよび Khermeen Tsav II では、Barungoyot 動物群を産出する赤色風成層と Nemegt 生物相を産出する白色河川 成層とが近接して分布する.これらの露頭とその柱状を空中写真デ ータおよび地表調査データで対比した結果、異なった岩質と化石内 最も多く産出した足跡化石はハドロサウルス科のもの (ichonotaxon Hadrosauropodus langstoniに類似)で、同一箇所・ 同一層準で多く密集することもあることから、群れで行動していた 可能性が示唆される.足跡のサイズ分布から、ネメグト産地のハドロ サウルス科の個体群は、亜成体と成体で構成されることがわかった. また、同時期のハドロサウルス科足跡化石産地(高緯度環境のアラス カ・カントウェル層と島環境のスペイン・トレンプ層)と比較したと ころ、ネメグト産地のサイズ分布は、高緯度域のものと類似してお り、個体群構成が緯度の影響を受けないことを示す.一方で、島環境 のものは、小型の個体の割合が多く、島嶼化による矮小化の結果とい える.このことから、ネメグト産地のハドロサウルス科は、島環境の ような限られた空間ではなく、開放的で餌資源が豊富に存在した環 境で生活していた可能性が考えられる.

¹Dinosaur tracks at the Nemegt locality: paleobiological and paleoenvironmental implications

² Judai Nakajima (Hokkaido Univ.), ³ Yoshitsugu Kobayashi (Hokkaido Univ.),
 ⁴Ryuji Takasaki (Hokkaido Univ.), ⁵Tomonori Tanaka (Hokkaido Univ.),
 ⁶Tsogtbaatar Chinzorig (Hokkaido Univ.), ⁷Khishigjav Tsogtbaatar (MN Acad. of Sci.), ⁸Anthony R. Fiorillo (Perot Museum of Nature and Science).

盆地北東部は南の方向に地層が傾斜しており、この点を加味して柱 状を対比した.その結果、この地域に分布する Nemegt 層とされる陸 成層の産地間の対比がなされた.これら 3 産地に分布する柱状上部 に白色層は相互に対比される.

これら3産地における岩質層序は互いに類似しており,堆積環境(河川)も共通している.河川流路での堆積物の古流向は,東から西,南東から北西,南から北への流れが卓越している.この古流向の傾向は,これら3産地で共通している.

この盆地の産地に認められた岩質層序と古流向の特徴を,近隣の(より南部に分布する)類似の時代と思われる Ingeni Khobur 盆地南部 および Nemegt 盆地の産地群のそれと比較することによって,地層対 比や古環境解釈のための標識が得られるだろう.

¹ Use of aerial photography on the study of dinosaur fossil localities: Geology of Nemegt Formation in the western Gobi desert, Mongolia.

² Khishigjav Tsogtbaatar (Institute of Paleontology and Geology, Mongolian Academy of Science),³Mahito Watabe (Waseda Univ.)

容を持つこれら2つの地層は同時異相と考えられる. 下位の赤色層(風成層が卓越、他に湖沼成層)と上位の白色層(河 川成層卓越)の境界は時間境界と斜交し,その境界部において,2つ の異なった堆積環境が共存し,そこに生息する異なった種類の恐竜 群集が共存していた可能性がある.産出する恐竜分類群の類似性を 参考にしてゴビ砂漠における地層(や化石産地)の「対比」や「年 代の推定」を行う上で注意する必要がある.

Khermeen Tsav の従来の層序

Upper White Bed: Nemegt Formation: Nemegt Fauna Red Bed: Barungoyot Formation: Barungoyot Fauna

Lower White Bed: Baynshire Formation (Suite): 化石希

¹ Relationships between lithology and dinosaur fossil assemblages in dinosaur fossil locality Khermeen Tsav, western Gobi desert, Mongolia: Analysis based on aerial photography. ² Mahito Watabe (Waseda Univ.), ³ Khishigjav Tsogtbaatar (Institute of Paleontology and Geology, Mongolian Academy of Science)

ジャワ島中部の下部更新統より発見された淡水生および陸生カメ類 の化石について¹

高橋亮雄(岡山理大・理)²・エリック セティヤブディ・イワン ク ルニアワン (インドネシア地調センター)³・ウングル P. ウィボ ウォ・イヴァン Y. P. スハルヨギ (バンドン地質博物館)³・ガー ト D. ヴァンデンベルグ (ウーロンゴン大・地環)⁴

ジャワ島はスンダ陸棚の南東に位置する大陸島で、後期鮮新世に 陸化を開始して以来、大陸との接続と孤立を繰り返し現在に至ると 考えられている。この島の陸生脊椎動物相は、前期更新世にはわず かな固有種と矮小化したものを含む化石の産出にもとづき大陸から 孤立した環境で海流分散によりもたらされ、中・後期更新世には豊 富な種数からなる大陸系要素の化石の産出にもとづき陸橋接続によ り形成された、と想定されている。こうした一連の動物地理仮説の うち、前期更新世の動物相の起源は、比較的分散能力が高いと考え られるものを含む化石陸生哺乳類とそれらのアンバランスな種構成 にもとづき、一般にシワリク地域に求められている。しかしながら、 前期更新世の仮説の根拠となる化石は量ともに乏しいため、当時の 動物相を適切に理解するためにさらなる標本の充実が求められてき

A11

眠れる『恐竜』化石その1:筑波大学から半世紀以上ぶりに 再発見されたパレオパラドキシア¹ 木村由莉(科博),松井久美子(九大博・東大博),長田充弘(富 山大),猪瀬弘瑛(福島博),池田一也(土湯観光協会),Brian L. Beatty (NYIT),大林秀行(京大),平田岳史(東大),大藤茂 (富山大),新村達也(足寄博),上松佐知子(筑波大), 指田勝男(筑波大)

筑波大学の化石・岩石標本庫には、筑波大学およびその前身校(東 京高等師範学校・東京文理科大・東京教育大)で収集された約 40 万点の地質学的試料が保管されている.これらの中には、発表当時 日本最古の化石であったオルドビス紀貝形虫 Paraeoleperditia fukujiensisの完摸式標本を始め重要な標本がいくつも含まれ、大学 内外の研究者によって継続的に利用されているが、国内の標本管理 者の世代交代や管理体制の変更により標本の情報が曖昧になってい るものも少なくない.このような事例は国内外の大学や博物館で頻 繁に起こっている.その一方、長く未登録の試料や一次情報が限ら れている登録標本を専門家が偶然に目にすることで科学的価値の高 い標本が見つかり、標本庫の「宝」として公表される機会も増えた. この一例として、昨年本標本庫から束柱類の大腿骨と採集者の記し た。このような背景のもと、ジャワ島中部に分布する前期更新世の 脊椎動物化石含有層(カリグラガ層)について、カメ類に着目し化 石探索を行い、この島の初期の動物相についての知見の充実を試み た。その結果、これまでに産出が知られていたリクガメ科のアトラ スゾウガメを再確認したほか、新たに東南アジア地域に現生するイ シガメ科の2種(マレーハコガメとボルネオカワガメ)とインド東 部から東南アジアおよび中国南部にかけて広く分布するリクガメ科 の1種(エロンガータリクガメ)、およびスッポン科の化石を検出し た。これらの発見は、カリグラガ層より知られるジャワ島の前期更 新世の陸生脊椎動物相は、これまで知られている以上に豊富な種で 構成されていたことだけでなく、東南アジアにみられる現生種を少 なからず含んでいたことを示している。

¹Terrestrrial and freshwater turtle fossils found from the Lower Pleistocene of Central Java, Indonesia

²Akio Takahashi (Okayama Univ. Sci.), ³Erick Setiyabudi, ³Iwan Kuruniawan (Cent. Geol. Surv. Indonesia), ⁴Unggul P. Wibowo, ⁴Ivan Y. P. Suharyogi (Mus. Geol. Bandung), ⁵Gert D. van den Bergh (Wollongong Univ.)

たメモが入った木箱を発見したため、ここに経緯を報告する.この 化石の学術的価値の再認識を目的とし、メモに書かれた住所・日付・ 発見者名を頼りに、この化石に付随する産地情報を収集し、聞き取 り・アーカイブ・野外調査から産出層準を割り出し、加えて化石に 残っていた母岩から抽出したジルコンより年代測定を実施した.

発見当時を知る人らからのインタビューにより,「恐竜の化石」 として福島県の一部で知られていたことがわかった. 産出地点の特 定には至らなかったが,候補地を2箇所に絞ることができ,母岩の ジルコンの年代測定の結果,最も若いジルコンは15.9Maを示した. 博物館標本にとって付随する情報を残すことは,その後の研究のた めに極めて重要な行程である.

¹ The Sleeping Beauty Part 1: a desmostylian fossil re-discovered from the geological collections at University of Tsukuba.
² Yuri Kimura (NMNS), ³ Kumiko Matsui (UMUT, UMKU), ⁴ Mitsuhiro Nagata (Toyama Univ.), ⁵ Hiroaki Inose (FM), ⁶ Kazuya Ikeda (), ⁷ Brian Lee Beatty (NYIT), ⁸ Hideyuki Obayashi (Kyoto Univ.), ⁹ Takeshi Hirata (UTokyo), ¹⁰ Shigeru Oto (Toyama Univ.), ¹¹ Tatsuya Shinmura(AMP), ¹² Sachiko Agematsu (Univ. Tsukuba), ¹³ Katsuo Sashida (Univ. Tsukuba)

A12

眠れる『恐竜』化石その2:筑波大学から半世紀以上ぶりに 再発見されたパレパラドキシア¹ 松井久美子(九大博・東大博),木村由莉(科博),長田充弘

(富山大), 猪瀬弘瑛(福島県博), 池田一也(土湯観光協会), Brian L. Beatty (NYIT), 大林秀行(京大), 平田岳史(東大), 大藤茂(富山大), 新村達也(足寄動物化石博), 上松佐知子(筑波大),指田勝男(筑波大)

筑波大学の化石・岩石標本庫には、筑波大学およびその前身校(東京 高等師範学校・東京文理科大・東京教育大)で収集された約40万点 の地質学的試料が保管されているが、この標本庫から半世紀以上ぶ りに再発見された大腿骨化石が再発見された.この化石は、地元で は『恐竜』化石と呼ばれていたものの、髄腔がなく緻密骨が発達し、 球状の骨頭と扁平な骨幹、それに発達した第三転子に特徴付けられ ることから、東柱類に分類された.

次に, 東柱類の大腿骨が知られている 6 属 (Ashoroa, Behemotops, cf. Cornwallius, Desmostylus, Paleoparadoxia, Neoparadoxia)の大腿骨と 形態比較を実施した.その結果,近位に位置し,内側に突出する third trochanter, 東柱類の中では相対的に小さな greater trochanter などの特 徴が一致するものは、Paleoparadoxia だけであることから本標本は Paleoparadoxia のものであると同定された.本標本は骨頭が癒合して いるなどの特徴から、大人の Paleoparadoxia のものであると考えら れる.これまで Paleoparadoxia 属の大腿骨の特徴は、分類の混乱など の理由から十分ではなかったが、本研究によって、Paleoparadoxia の diagnosis として定義できる特徴が明らかになった。

発見者によると、この化石は『デスモスチルス』であると『東京の 大学の先生』から伝えられおそらく研究利用のために土湯温泉町の 役場に展示されていたものを持ち出したと推測される.しかし、そ の後土湯温泉町は大火に見舞われたため、大腿骨以外の産出部位を 含む当時の資料はすでに失われていた.

¹ The Sleeping Beauty Part 2: a desmostylian fossil re-discovered from the geological collections at University of Tsukuba.

² Kumiko Matsui (UMUT, UMKU), ³Yuri Kimura (NMNS), , ⁴ Mitsuhiro Nagata (Toyama Univ.), ⁵ Hiroaki Inose (FM), ⁶ Kazuya Ikeda (), ⁷ Brian Lee Beatty (NYIT), ⁸ Hideyuki Obayashi (Kyoto Univ.), ⁹ Takeshi Hirata (UTokyo), ¹⁰ Shigeru Oto (Toyama Univ.), ¹¹ Tatsuya Shinmura(AMP), ¹² Sachiko Agematsu (Univ. Tsukuba), ¹³ Katsuo Sashida (Univ. Tsukuba)

Paleoparadoxia tabatai はどこまで大きくなったか¹ 北川博道(埼玉県立自然の博物館)²

化石生物の研究にとって、対象の成長を知ることは、その対象を より正確にとらえるために重要である.本研究では、埼玉県秩父地 域産出 Paleoparadoxia 化石の比較を行うことにより、その成長につ いて明らかにしようとするものである.

Paleoparadoxiaは、日本の中新統を代表する哺乳類化石である. 埼玉県の秩父盆地からは、全身骨格2体を含む7標本が産出している.これらの中で、大野原標本、般若標本、三山標本の3標本の比較を行った.

大野原標本は頭骨から腰椎までがほぼ完全に産出しており,般若 標本は頸椎から仙骨までと,大腿骨などの一部四肢骨が産出してい る.三山標本は,臼歯の他,肩甲骨,上腕骨,大腿骨,腰椎が産出 している. 椎骨,腸骨及び大腿骨の骨端部等の骨化の程度を比較 すると,大野原標本,般若標本,三山標本の順に骨化が進んでいる 事が分かった.三山標本は大野原・般若標本に比べ,最も骨化が進 んでいるにも関わらず,両標本に比べ小さかった.また,大野原・ 般若両標本を比較すると,大野原標本がまだ下顎第3大臼歯が未萌 出の個体であり、骨化も進んでおらず、般若標本の方が、骨化が んでいるにも関わらず、残存する頸椎から腰椎までの頭-尾長はほ 同じであった.このことから、両標本が同一の性別であると仮定す るならば、パレオパラドキシアは、少なくとも第三大臼歯が生え ろう前にほぼ頭-尾方向への成長は終わり、その後は目に見えて大き くなるということは無かっただろう.

Barnes (2013)は、今まで1属であった Paleoparadoxia 属について Paleoparadoxia, Archaeoparadoxia, Neoparadoxia の3属に分けた. その中で、大型種として N. repenningi. 更に若い個体をホエタイプとして、新たに N. cecilialina を記載した. この2種の違いについては、N. cecilialinaのホロタイプは、まだ第3大臼歯が萌出していない若い個体である事から、より大きくなると推測し、をの大きさや、体のわりに頭の大きさが小さいなどの特徴をあげている.本研究の大野原標本は、N. cecilialinaのホロタイプと同程見の成長段階である.本研究からは、N. cecilialinaのホロタイプは、少なくとも、それほど大きくならないということが指摘された.

¹The growth limits of *Paleoparadoxia tabatai* ²Hiromichi Kitagawa (Saitama Museum of Natural History)
佐渡島の下部~中部中新統より産出した束柱類が示唆する巨大化¹ 川谷文子(筑波大院)²・甲能直樹(国立科学博物館,筑波大院)³

新潟県佐渡島の下部〜中部中新統の海成層からは、これまでに数 多くの海棲哺乳類化石の産出が報告されており、この中に束柱類と されるものが3例含まれている.これらはそれぞれ産出層準が異な っており、2例については主に礫岩層と砂岩層からなる浅海性堆積 層の下戸層から、もう一例は下戸層の上位で外洋性の珪質泥岩から なる鶴子層から産出している.これらは1例を除いて骨格を伴って おり、またそれぞれ推定される大きさが著しく異なっている.下戸 層の2例については、1つは同層下部の"下部"より発見された後 肢骨格であり、もう1つは同層下部の"上部"より産出が報告され た遊離した臼歯である.それぞれを比較すると、上位より産出した 個体は、下位より産出したものよりもはるかに大きいことが推測さ れ、前期中新世末から中期中新世初頭において束柱類に急速な大型 化が起こった可能性が暗示される.

一方,下戸層の上位に位置する鶴子層から産出した体骨格は,下 戸層産の大型個体よりもさらに巨大であり,先行研究ではこの個体 は体長約 5-6 m ほどに達していたと推定されている. 鶴子層は中期

A15

鹿児島県上甑島層群中甑層の前期始新世 ブロントテリウム科(奇蹄類)化石¹ 宮田和周²(福井県大・恐竜研)

鹿児島県薩摩川内市甑島列島の古第三系基底層である上甑島層群 中甑層は、哺乳類化石を産する陸成層であり、少なくとも汎歯目、 奇蹄目、齧歯目、顆節目、食肉目などの化石産出が知られる(Miyata et al., 2011)。これらはまだ正式に記載はされていないが、放射年代 値が得られた熊本県天草地域の弥勒層群赤崎層(約49.1Ma; Miyake et al., 2016)に対比され、両層共に北半球の哺乳類の放散や生層序に 関する重要な資料を提供する。奇蹄類の化石はその代表で、ここに 報告するブロントテリウム科の初期の記録は、北米においては哺乳 類の生層序時代 Bridgerian(前期始新世後期〜中期始新世前期)から 知られ、同時期のアジアでは、パキスタンから記録があるのみであ った。中甑層の異なる層準から、二種の小型で原始的なブロントテ 中新世末~後期中新世にかけて堆積したと考えられていることから、 下戸層の2例とは400万年以上の時間間隙があり、この間に日本海 において束柱類の著しい巨大化と、より沖合への生活圏の拡大が並 行して起こったことが示唆される.

日本海地域における中新世の海棲哺乳類については、近年の時代 論や堆積環境の議論の下での詳細な検討が行われていない.前期中 新世末から後期中新世初頭にかけての束柱類の巨大化と絶滅は、そ の要因となった中新世の日本海の環境変遷史を検討する上でも重要 な要素であると考えられるので、今後これら束柱類のみならず広く 海棲哺乳類化石の詳細な分類学的再検討が必要である.

¹ Gigantism of the desmostylians (Mammalia: Afrotheria) from the Early to Middle Miocene in the Sea of Japan: examples from the Sado Island.
²Ayako Kawatani (Tsukuba Univ.), ³Kohno Naoki (National Museum of Nature and Science / Tsukuba Univ.)

リウム科の化石が知られる。下位の層準から産した一種は、第四小 臼歯から第三大臼歯 (p4-m3)を伴う下顎骨、後頭部の一部、環椎、 尺骨、大腿骨、肩甲骨、肋骨、指骨などを含む同一個体の化石から 知られる。臼歯列は約 58 mm、低歯冠の ml および m2 の trigonid は 幅狭く、m3 の third lobe に稜は発達しない。同科の最も原始的とさ れる Eotitanops に似るが、小臼歯はより大臼歯化している。上位の層 準からのもう一種は、第四小臼歯 (P4) から知られ、発達した metacone や、直線的な ectoloph を持つ。パキスタンの Balochititanops や北米 Bridgerian の Palaeosyops の小型種にサイズは似るが異なる。これら は、アジアの同科の初期の放散と、放射年代値を加えたアジアの生 層序を検討する重要な資料である。

文献) Miyata et al. (2011): Vertebrata PalAsiatica, 49(1): 53-68. Miyake et al. (2016): Paleontological Research, 20(4): 302-311.

¹ The brontotheriid perissodactyls from the lower Eocene Nakakoshiki Formation, the Kamikoshiki Group, Kagoshima, Prefecture, Japan.
²Kazunori Miyata (Res. of Dinosaur, Fukui Pref. Univ.)

A16

岐阜県の中新統瑞浪層群から産出した "サイ科"の上腕骨化石の再検討¹ 村上達郎(愛媛大・院・理工)²・高津翔平(岐阜県博)³・ 鍔本武久(愛媛大・院・理工)⁴

岐阜県南東部の可児・瑞浪・岩村盆地に広がる中新統瑞浪層群からは、比較的多くの奇蹄類化石が発見されている.それらの多くが、 サイ科の骨化石とされている.ところが近年の研究で、サイ科とされていた瑞浪層群産の大腿骨化石がカリコテリウム科のものであることが示された.そのため、瑞浪層群産の"サイ科骨化石"を再検討する必要が生じてきた.

ここでは、瑞浪層群産のサイ科とされている上腕骨化石の再検討 をおこなう、産地に関する確定情報は無いが、化石に付着する堆積 物により、その産出層準は下部中新統平牧層上部と推定される.

本標本は、大型哺乳類の上腕骨で、近位端と骨幹中部の内側部が 損失している.遠位端は、近位前方に向かって押しつぶされている が、上腕骨滑車のところでしっかりと癒合している.一方、近位端 は、骨端と骨幹との接合部付近で破損していることから、まだ癒合 していなかった可能性もある.本標本は、その大きさと特徴的な三 角筋粗面を持つことから,奇蹄類のものである.また,以下の特徴 から,カリコテリウム科の上腕骨であると考えられる:三角筋粗面 が弱くて骨幹中心部より近位よりに存在する;上腕骨稜が弱い;骨 幹のねじれが弱い;肘頭窩が浅い;外側上顆が突出する.

本標本は、破損した近位端を復元して考えても、報告されている 瑞浪層群産のカリコテリウム科の大腿骨化石(おそらく成獣)より も短い.一方、カリコテリウム科では、一般的に上腕骨は大腿骨よ りも長いかまたは同程度の長さである.したがって、本標本が成獣 のものであれば、上記の大腿骨化石とは別種のものである可能性が 高い.ただし、同種の幼獣または亜成獣の可能性もある.

東アジアのカリコテリウム科は、歯や頭骨による報告のみで、体 骨格に関する情報がほとんどない. そのため、瑞浪層群産カリコテ リウム科の骨格化石は、当時の東アジアにおける同科の形態を知る ために重要である.

¹Reappraisal of a "rhinocerotid" humerus from the Miocene Mizunami Group, Gifu Prefecture, Japan

²Tatsuro Murakami (Ehime Univ.), ³Shohei Kozu (Gifu Pref. Mus.), ⁴Takehisa Tsubamoto (Ehime Univ.)

ヒッパリオン類の分類に用いられた頭骨および四肢骨における形質 の対応関係と生態的な意味(哺乳類ウマ科)¹ 渡部真人²

ウマ科ヒッパリオン類の分類には、頭骨(歯を含む)と四肢骨の 形態がしばしば別個に用いられてきた.これを統合して,それらの機 能的な意味,系統関係推定における重要性を評価・考察する必要があ る.分類のための形質で重視されてきたものは:(1)吻部のプロポ ーション;(2)Preorbital fossaの形状と位置;(3)頬歯の咬 合面におけるエナメル褶曲の数と形態;(4)第三中手骨および中 足骨のプロポーション;(5)全体のサイズ,である.

後期中新世の後期に見られる,より派生した単系統群における,これ らの形質の1個体における特徴的な組み合わせ・対応関係は,例えば *H. mediterraneum - moldavicum*群で:細い吻部=大型で眼窩に近接 したPreorbital fossa=小型のプロトコーンと単純なエナメル褶曲 =細長い中手骨と中足骨である.この単系統群は,中新世後期におい てオープン環境へ適応したと考えられてきた.しかし,吻部および顔 面部の形質は,必ずしもそれを支持しない.

吻部の狭いプロポーションは、例えば偶蹄類において選択的な食性

A18

岐阜県可児市から見つかったエオミス科の新属新種とアジアにおけ るエオミス科齧歯類の多様性¹

木村由莉 (科博・地学)²・冨田幸光 (科博・地学)²・Daniela C. Kalthoff ³, Isaac Casanovas-Vilar⁴, Thomas Mörs³

エオミス類は、現生のヤマネ類のように森林に生息していたと考 えられている小型の齧歯類であるが、歯の形態的多様性が高いこと からヤマネ類よりも多様な生息環境に暮らしていたと考えられてい る.樹上性のものが多かったと推測されるが、ドイツのメッセル産 のエオミス(Eomys quercyi)には滑空のための皮膜が存在し、漸新世 後期には齧歯類にも滑空性の皮膜をもつグループが現れたことの証 拠としてよく知られている.科レベルで絶滅したグループであるエ オミス類は、始新世に北アメリカ大陸で進化し、その後ヨーロッパ とアジアに分布を広げるが、鮮新世までには絶滅した.

アジアでエオミス類が最初に報告されたのは 1991 年と比較的最 近のことで、ほぼ同時期に、日本では岐阜県可児市の中新統瑞浪層 群中村累層からエオミス類の臼歯化石が報告され、東アジア産 Pseudotheridomys 属に近縁であると初見的な考察が示された.本研 究では、近年になり多量に見つかった東アジアのエオミス類と詳細 を示す例がある. 顔面部の形態Preorbital fossaは, その位置から現 生ウマ類の上唇挙筋, 鼻唇挙動筋の起始部であると推定される. これ は, Preorbital fossa が大きく深い群では, 鼻部唇部を引く, より発 達した筋肉を持つことを意味する. また, 第三中足骨・中手骨の細いプロポーションは, 小型の体躯を示

している.小型サイズは必ずしもオープン環境への適応とは限らない. 走行性の発達程度は、四肢骨遠位部の近位部への相対的な伸長に よって判断されるべきだ.

選択的食性・小型化とそれに伴う四肢骨プロポーションの変化は、 後期中新世後期の環境の多様性を反映したものと推定されるが、そ のような形質が「オープンで乾燥した環境」への適応であるか疑問 であり、再考が必要だろう.

¹Taxonomic characters of hipparion horses (Equidae, Mammalia): their ecological meaning

²Mahito Watabe (Waseda Univ.)

に比較することで日本産化石の分類を明らかにし、アジアのエオミス類の多様性における日本のエオミス類化石の重要性を示す.

歯根が4つあり、entoconidが後方ではなく前方に位置するposterior ectolophid に繋がるというエオミス類には珍しい形態をしているこ とに加え、最も近縁だと考えられる中央アジア固有のAsianeomys 属 よりも原始的な形態を示し、日本に固有な新属新種として考慮すべ きであると提案する. 生息年代を考慮した系統解析の結果、この日 本産エオミスは漸新世後期にAsianeomys 属と分岐したと考えられる. 同時代の本州中部は、アジア大陸とは完全に分離していなかったと 考えられているが、エオミス類のような小型哺乳類にとっては、属 レベルで大陸内部から独立した進化を行える森林環境が存在してい たと推定される. アジアにおいてエオミス類の属数は中新世前期に ピークに達し、日本産エオミスは、アジアにおいてエオミス類の多 様性が最も高い時期に生存していたことが明らかとなった.

¹Diversity of eomyid rodents in Asia with a new genus from the early Miocene of central Japan.

²National Museum of Nature and Science, ³Swedish Museum of Natural History, ⁴Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP

A19

群馬県の安中層群よりケントリオドン類化石の産出¹ 木村敏之・長谷川善和(群馬県立自然史博物館)²

群馬県西部に広く分布する中新統安中層群からは多くの海生哺乳 類化石の産出が知られている.今回報告する標本も安中層群より産 出したハクジラ類化石で保存の良い頭蓋からなる.

本標本では頭蓋はほぼ左右対称であり、鼻骨前縁には背腹方向の 浅い溝が発達する.また前上顎骨後端はこぶ状で左右ともに鼻骨に 接するなど、いわゆるケントリオドン類に特徴的とされる形態的特 徴を持つ.ただし従来のケントリオドン科の単系統性についてはこ れまで多くの研究で否定されており (Muizon, 1988; Marx et al 2016; Lambert, 2017 など), Peredo et al. (2018)はケントリオド ン科について Kentriodon 属を含むクレードのみからなる単系統群 として再定義している.

さらに本標本では長い吻部を持ち,吻正中部の空隙(mesorostral groove)は前上顎骨に覆われない,眼窩縁は背面観でくぼむ,翼状骨 洞の後眼窩葉が頭頂骨腹面に発達するなど Barnes and Mitchell (1984)及び Salinas-Márquez et al (2014)が指摘した *Kentriodon* 属を特徴づける形質の組み合わせを持つ. 本標本では翼状骨洞が顕著に発達する.これまでハクジラ類にお ける翼状骨洞の発達については反響定位や潜水適応に関連した議論 がなされてきた.また本標本では眼窩縁付近の上顎骨背面には前後 方向に伸びる顕著な稜が発達し、その形態は左右非対称で右が顕著 に強く発達する.この稜が maxillary crest と相同であるとすると 一般的なハクジラ類ではm.maxillonasolabialisが付着することか ら (Mead, 1975)、本標本でみられる顕著な maxillary crest の発達 も反響定位との機能的な関連の可能性が考えられる.

安中層群からは多数のケントリオドン類化石の産出が報告されて おり(木村ほか,2003),本標本と同一の形態的な特徴を示す標本 が複数ある.このことは当時の海洋において本種が当時の海洋生態 系において優占種であったことを示唆している.また多数産出して いる同一種と考えられる標本をあわせて検討することで,この分類 群の形態的な特徴をより明確にすることができ,本種の実像を明確 にすることが可能となるであろう.

¹A new kentriodontid from the Miocene Annaka Group, Gunma Prefecture, Japan.²Toshiyuki Kimura, Yoshikazu Hasegawa (Gunma Museum of Natural History)

広島の中新世からのヤマオカクジラの古繁殖地¹ 蔡政修(台湾大学・生命科学)²

Finding out breeding sites is definitely crucial for understanding the ecological requirements and maintaining the sustainability of populations/species for the conservation purpose of extant species. Similarly, locating the previously unknown breeding grounds of extinct populations/species is a key to providing information that can be used to develop insightful conservation policies by integrating long-term perspectives. Here I present evidence of a vanished breeding site of Parietobalaena yamaokai in the Middle Miocene of Shobara, Hiroshima, Japan. A critical and decisive feature, the open suture between the supraoccipital and exoccipital, in one specimen indicates the presence of a very young individual - under six months old and even close to a new-born calf. In addition, given the occurrence of a new-born individual and relatively abundant assemblage of Parietobalaena yamaokai, I propose that the Middle Miocene of Shobara, Hiroshima (16.1-15.6 Ma, e.g. Itahashi Formation) was a paleo breeding site for Parietobalaena yamaokai.

A21

秋田県男鹿半島鵜ノ崎海岸の中新統コンクリーションより 多数の鯨類化石を発見¹ 長澤一雄(山形南高)²・渡部 晟(元秋田県博)³・ 澤木博之(男鹿半島・大潟ジオパークガイドの会)⁴・ 渡部 均(秋田県埋文センター)⁵

秋田県男鹿半島鵜ノ崎海岸には,深海性泥岩からなる中新統西黒 沢層・女川層が緩傾斜で露出し,鬼の洗濯板状の広大な波食台を形 成している.泥岩層には球形や繭形をなす炭酸塩コンクリーション が多数発達しており(現地で小豆岩と呼称),その長径が最大9m に達するなど,国内では例を見ない大きさと分布の規模を有する. 渡部晟らは数年来コンクリーションの調査を続けてきたが,その中 に多数の化石骨が含まれていることを発見した(渡部ほか,2017). その後長澤が調査に加わり,化石の多くが鯨類であることを確認し, またいくつかの特徴を見出したので以下に概要を報告する.

1) 産出層準は西黒沢層・女川層の境界付近(12.3Ma 前後; 鹿野 ほか, 2011) で、同年代の鯨類化石は国内では多くなく、また同層 のような深海性堆積物からのまとまった鯨類化石の産出例は国内で あまりない.2) 化石は層厚数 10m の泥岩層のコンクリーション中 に産する(含化石のものを 30 点以上発見).泥岩層自体からは化石 Discovery of a paleo breeding site of extinct population/species should then help us to understand biological extinctions from a long-term perspective as conservation paleobiology aims to offer new insights into policy making for conserving endangered populations/species.

¹A paleo breeding site of *Parietobalaena yamaokai* from the Miocene of Hiroshima

²Cheng-Hsiu Tsai (Department of Life Science, National Taiwan University)

は産しない.3) 化石は断片的なものが多いが,ほとんどが鯨類と見 られる.部位はヒゲ鯨頭蓋,ヒゲ鯨下顎骨,椎骨,肋骨,吻部など だが,椎骨が連続する現地性の産状を示すものもある.4) 化石は大 型骨が目立ち,部位から推定して体長10m以上のヒゲ鯨もある.中 新世の鯨類とすれば大きい.5) 大型で内外側の膨隆が顕著な丸太状 の断面のヒゲ鯨下顎骨などが見られる.これらの化石は潮間帯にあ り,海水面が低下する春先の大潮時にしかよく観察できない.また 国定公園,ジオパーク内に露頭があるため,化石を剖出して観察で きないなどの制約がある.今後化石の形態と分類の検討,化石とコ ンクリーション形成の関係などのタフォノミーの検討とともに,露 頭の保存と化石の教育・観光的な活用など種々の課題もある.

¹Discovery of many whale fossils from the concretions in the Miocene sediments, exposed on the shore platform of the Unosaki Coast, Oga Peninsula, Akita Prefecture

² Kazuo Nagasawa (Yamagata-minami H.S.), ³Akira Watanabe (former Akita Pref. Mus.), ⁴Hiroyuki Sawaki (Guide Assoc. for Oga Peninsula-Ogata Geopark), ⁵Hitoshi Watanabe (Akita Archaeological Center)

A22

上部三畳系美祢層群の昆虫化石分類とその保存度について 大山 望(九大・理)²・前田晴良(九州大学総合研究博物館)³

デボン紀に出現した昆虫は、石炭紀には翅を獲得する.古生代に はトンボのような翅脈が複雑で折りたためない旧翅類が多く繁栄し ていた.これら旧翅類の多くは、ペルム紀末期の大量絶滅によって 勢力を大きく減少させる.一方、三畳紀に入るとハエ目やハチ目の ような翅脈が単純で翅が折りたためる新翅類が多く出現し、昆虫相 が大きく変わる.これら新参のグループは、ジュラ紀以降、社会性 の獲得や顕花植物との共進化などにより著しく多様化する.三畳紀 は中生代型の新しい昆虫が現れる転換期であり、新翅類の起源的な 属種が多く出現する.

山口県美祢市に分布する上部三畳系美祢層群からは、これまでに 14 目 (コウチュウ目、ゴキブリ目、カメムシ目、バッタ目、ハチ目、 トンボ目など)にまたがる 6000 点以上の昆虫化石が発見されている. これらは、日本最古の化石記録であり、東アジアでも有数の三畳紀 昆虫化石の産地である.美祢層群から産する昆虫化石は、サイズは 小さいが、分類基準として重要な翅の翅脈がよく保存され、中には 全身が保存された完全個体も含まれるなど、情報量が多い. そこで本研究では、日本ではまだ詳しく調べられていない三畳紀 の起源的なハチ目に特に焦点を当てて分類・同定を試みた.これま での予察的観察により、美称市歴史民俗資料館に所蔵されている標 本群からハチ目 29 標本を見いだした.そのうち、26 標本がナギナ タハバチ科の2 亜科7 属に同定された.この結果から、ゴンドワナ やシベリアの三畳系から知られていた起源的なナギナタハバチ科が、 東アジアまで分布を広げていたことがわかった.一方、美術層群で は同じ層準から陸生昆虫と水生昆虫の化石が一緒に産出するが、体 を構成する各パーツの保存度が両者の間で大きく異なっていること が分かった.この差違は両者の化石化プロセスの違いを反映してお り、詳しく分析すれば、これまでほとんど議論されなかった昆虫の 化石化過程を検証するチャンスがある.

¹ Classification and preservation of fossil insects from the Upper Triassic Mine Group.

²Nozomu Oyama(Kyushu Univ.), ³ Haruyoshi Maeda (The Kyushu University Museum)

佐賀県唐津市の新第三系野島層群より発見されたイシガメ科(カメ 目・潜頚類)について¹

平山 廉(早大・国教)²・宮園誠司(佐賀県立博物館)³ ・不動寺康弘(唐津市)⁴・河野重範(栃木県立博物館)⁵

西日本、とりわけ九州の新生代の陸成層や浅海成層からは、イシ ガメ科やスッポン科のカメ類がしばしば見つかる。その多くは断片 的な甲羅であり、属種レベルの分類は容易ではない。

2017 年 9 月 6 日、宮園と不動寺は、佐賀県唐津市肥前町の駄竹 漁港付近の海岸露頭を巡検中にカメ化石の入った転石を採集した。 当該地点は、野島層群(新生代新第三紀前期中新世)の分布域にあ り、この化石は野島層群より由来したと考えられる。なお当該地点 では野島層群の大屋層と深月層の境界が極めて近いため、化石を含 む転石がどちらの層から産出したかは現時点では不明である。

化石の母岩は明灰色の細粒砂岩であり、植物片を多量に含んでいる。保存部位は、カメの甲羅のちょうど前半部であり、背甲では緑板、腹甲では左右の外腹甲と上腹甲、および内腹甲が縫合で関節した状態で露出している。腹甲の前後長は16 cm あることから、甲羅

全体の長さは 35 cm 前後に達したと考えられる。腹甲の橋部の発達 が良いこと、外腹甲背面の隆起が浅く広いことや甲羅の大きさから、 イシガメ科のハナガメ属(Ocadia)に同定される。鹿児島県種子島 の河内層(中期中新世)から O. tanegashimenis が報告されている が、内腹甲がより大きいなどの差異があり、種レベルの比較検討が 必要である。

参考文献

平山廉・中島保寿・高橋亮維・薗田哲平・加藤敬史・河野重範、2012. 下部中新統イシガメ科の頭骨 形態と分類. 日本古生物学会2012年年会、講演演予稿集、19頁.

Takahashi, A., Oki, K., Ishido, T. and Hirayama, R. 2013. A new species of the genus *Ocadia* (Testudines: Geoemydidae) from the Middle Miocene of Tanegashima Island, southwestern Japan and its paleozoogeographic implications. Zootaxa 3647: 527-540.

¹A new specimen of family Geoemydidae (Cryptodira; Testudines) from the Neogene Nojima Group of Karatsu City, Saga Prefecture, Japan. ²Ren Hirayama (Waseda Univ.), ³Seiji Miyazono (Saga Pref. Museum), ⁴Yasuhiro Fudouji (Karatsu City), and ³Shigenori Kawano (Tochigi Pref. Museum)

モンゴル西部ゴビ・アルタイ地域に分布する最下部カンブリア系 石灰質微生物類礁の初期変遷と地球生物環境¹

足立奈津子²・杉本雄祐³・江崎洋一(大阪市大)⁴・刘 建波(北京 大)⁵・渡部真人(早稲田大)⁶・Gundsambuu ALTANSHAGAI⁷・ Batkhuyag ENKHBAATAR⁸・Dorj DORJNAMJAA(モンゴル科学ア カデミー古生物地質研究所)⁹

石灰質微生物類 (RenalcisやEpiphytonなど) は、最末期エディアカ ラ紀に出現し、カンブリア紀には、微生物類礁の主要構築者として 大繁栄した.モンゴル西部Bayan Gol地域には、エディアカラからカ ンブリア系の連続層序が分布し、石灰質微生物類礁の初期の発達を 検討可能である.本発表では、石灰質微生物類が出現する前後 (Tsagaan Oloom層のUnit 16から17; Khomentovsky and Gibsher, 1996) に 着目し、微生物類礁の構築様式や背後の地球生物環境の変遷を探る.

Unit 16下部: 分岐状ストロマトライト (高さ約5 cm) を含む小規 模礁が、ウーイド石灰岩中に発達する. Unit 16上部: 小規模スロンボ ライト礁 (幅数 m) が泥岩中に挟在する. 礁中央部では, Renalcisや Epiphytonの上方への発達が顕著で、樹状組織を呈する. 一方, 礁縁 辺部では、それらの上方への成長度・密集度が低く、斑状組織を呈

B02

北中国山東省の張夏層(カンブリア系第三統)から産する サンゴ様生物の生息環境と系統的な位置¹ 江崎洋一(大阪市大・院)²・刘 建波(北京大学)³・足立奈津子(大 阪市大・院)⁴

中国山東省に分布する張夏層(カンブリア系第三統)からは、刺胞動物のステムグループに位置付けられた"サンゴ類" (Cambroctoconus)が産する (Park et al., 2011).本発表では、サンゴ類の産状と形態的な特徴を述べ、その生息環境と系統学的な意義を考察する.

Cambroctoconus は石灰質の骨格を有し, Epiphyton 礁あるいは深部 潮下帯で形成された「サンゴ類-イシ海綿類-石灰質微生物類礁」の 構成者で,礁の居住者の性格が強い.頻繁な出芽や回春現象に起因 し,形態変異が大きく,個体が密集して産する.個体の外側のみな らず,内側からも出芽し,個体の下底部に「V字型の付着器官」を 備えている.個体の成長方向は,上方,水平方向,斜め下方など様々 である.礁は厚さ数+cmから数m規模であるが,サンゴの密集部は, 海綿類の分解産物や Epiphyton の集合に起因する「斑点状スロンボ する. Unit 17: 主にスロンボライト,稀にストロマトライトからなる 微生物類礁が,層厚約10mにわたり発達する. RenalcisやEpiphytonの 上方への成長度・密集度の違いによって,スロンボライトの樹状や 斑状組織が形成される. 礁の枠組み間には,石灰泥が充填し,生物 擾乱が顕著である. 礁中では,微小骨格化石群の生砕物がわずかに 認められる.

Unit 16 下部より下位でもストロマトライト礁は存在するものの, 石灰質微生物類は認められない.石灰質微生物類はUnit 16 上部で出 現し,同時にスロンボライト礁を構築する.この出現は,垂直方向 に発達する生痕化石の発達 (Unit 14) や微小骨格化石群の多産 (Unit 16 上部)に次いで生じた.後生動物の多様化に同調して, Bayan Gol 地域の礁の構築様式にも変化が生じている.これらの変化と海 洋環境の変化 (礁の堆積場,海洋の化学組成の変化など)との関連 性について,さらに検討を進める必要がある.

¹Initial successions of the lowest Cambrian calcimicrobial reefs and their geobiological environments in the Gobi-Altai, western Mongolia

²Natsuko ADACHI, ³Yusuke SUGIMOTO, ⁴Yoichi EZAKI (Osaka City Univ.), ⁵Jianbo LIU (Peking Univ.), ⁶Mahito WATABE (Waseda Univ.), ⁷Gundsambuu ALTANSHAGAI, ⁸Batkhuyag ENKHBAATAR, ⁹Dorj DORJNAMJAA (Inst. of Paleontol. and Geol., Mongolian Acad. of Sci.)

ライト」中に限定される. 個体は八角錐を呈し, 壁は内側にわずか に窪んでおり,多孔質である. 個体の直径は産出層準や産地によっ て変異が大きい. 小さい場合は平均 2.2 mm,大きい場合は 10 mm程度 である. 個体内部の 8 つの隅に溝が形成され,その両脇に「隔壁状 の仕切り」(合計 16 枚)が付随する. 隔壁状部は多孔質あるいは鋸 歯状である.

Cambroctoconus は、斑点状スロンボライトを形成する微生物マット中で生息し、「ろ過食者」である可能性が高い.限定された狭隘な空間内で、出芽により個体数を増やし、成長方向を調整することで生息していたと考えられる.八放射相称の体制は八放サンゴ類に特有であり、系統的に密接な関連性を示唆する.当該のカンブリア紀サンゴ類は、前期オルドビス紀には化石記録として確実な八放サンゴ類の起原のみならず、刺胞動物の「基本体制の確立」や体制間の系統関係を考える上で貴重な情報を与えている.

¹Life habitat and phylogenetic position of Cambrian coralomorph from the Zhangxia Formation (Third Series) in Shandong Province, North China ²Yoichi EZAKI (Osaka City Univ.), ³LIU Jianbo (Peking Univ.), and ⁴Natsuko ADACHI (Osaka City Univ.)

B03

Timing of collapse and recovery of land vegetation and marine extinction at the end of the Permian'

Md. Aftabuzzaman, Kunio Kaiho (Tohoku University)² · Li Tian (China University of Geoscience, Wuhan)³ · Ryosuke Saito (Massachusetts Inistitute of Technology)⁴

The largest mass extinction in the past 500 million years occurred at the Permian-Triassic transition and eliminated >90% of species in the ocean and ~70% of vertebrate families on land. However, detailed timing and relation of land vegetation collapse and marine extinction are not well known. Here we show the marine extinctions occurred between collapse and recovery of land vegetation within the end of the Permian 110±65 kyr interval. Our results on organic geochemical and paleontological analyses from Liangfengya, South China (shallow nearshore eastern margin of Paleotethys) indicate that land vegetation collapse and marine extinction started at 251.99±0.04 Ma and 251.94±0.03 Ma respectively. The land vegetation collapse and

the start of shallow marine anoxia coincided with the negative shift of δ $^{13}C_{\rm carb}$ in the C. yini zone followed by the marine extinction in the slight increase interval of δ $^{13}C_{\rm carb}$ in 50±35 kyrs after the land vegetation collapse. The recovery of land vegetation occurred at the Permian-Triassic boundary in the second decrease in δ $^{13}C_{\rm carb}$ 110±65 kyrs after the land vegetation collapse and in 60±30 kyrs after the marine extinction.

²モハメド アフタブッチャマン、海保邦夫(東北大学)
 ³リー ティアン(中国地質大学、武漢)
 ⁴齊藤諒介(マサチューセッツ工科大学)

¹ペルム紀末における陸上植生の崩壊と回復および海生生物絶滅のタ イミング

Terrestrial collapse and cyanobacteria blooming spanning

the end-Permian mass extinction

Raman Biswas, Kunio Kaiho (Tohoku Univ.) · Ryosuke Saito

(MIT) · Li Tian (China University of Geosciences, Wuhan)

Previous studies from marine sections show that terrestrial ecosystem collapse induced extensive soil erosion and widespread cyanobacterial mat occurred during the P-Tr biotic crisis in South China¹. We studied biomarkers at a non-marine section in South China, spanning the end-Permian mass extinction, for the detail investigation of the terrestrial biosphere changes. Our biomarker study shows that collapse of terrestrial higher plants and cyanobacterial

blooming coincidentally occurred followed by the $\delta^{13}C_{org}$ negative

excursion coinciding with a soil erosion event, which was followed by complete devastation of land plant during the end-Permian critical interval.

B05

南テチス海高緯度域における白亜紀セノマニアン/チューロニアン 境界のOAE2:国際深海科学掘削計画(IODP)第369次航海の予察成果¹

長谷川卓(金沢大)²·外山浩太郎(金沢大)³·L.K.0² Connor (Univ. Oxford) • B. T. Huber (Smithsonian Inst.) • R. W. Hobbs (Univ. Durham) · K. A. Bogus (TAMU) · IODP Exp. 369 乗船研究者⁴

国際深海科学掘削計画(IODP)第369次航海(EXP.369)の主要目的 の一つに、南テチス海高緯度域における海洋無酸素事変 2(OAE2) の深い理解が挙げられている.同航海では大オーストラリア湾、メ ンテレ海盆およびナチュラリスト海台の 5 サイト(U1512-U1516)に おいて掘削が成功裏に行われた. そのうちセノマニアン/チューロニ アン階(C/T)境界の OAE2 相当層準は U1513 と U1516 で回収された (Huber et al., 2018, IODP Exp. 369 Preliminary Report).

微化石年代で絞り込まれた C/T 境界付近について炭酸塩の炭素同 位体比(8¹³C)層序を構築した結果, U1516A および C において明瞭な 炭素同位体比エクスカーション(CIE)が確認され, OAE2 相当層準が 同定できた. 前後の堆積物は炭酸塩を約 30%含むが, 緑灰色粘土 で構成される CIE の主要部分は炭酸塩を全く含まない (Carbonate-free interval: CFI). 非常に高濃度で有機炭素(最大約 15%) を含む黒色層が、CFIの下部、CIEの最下部付近で確認された. れらと同様の岩相はU1513のA、Dの2 hole でも確認されている.

B06

白亜紀セノマニアン/チューロニアン期境界の 南太平洋高緯度域における環境変動 加藤禎理・長谷川卓・後藤晶子(金沢大学)²・James Crampton (GNS) Science)³

白亜紀セノマニアン/チューロニアン(C/T) 期境界では、短期間に 海洋で広域に、有機物に富む黒色泥岩(頁岩)が堆積した海洋無酸素 事変 2(OAE2)が生じたことが知られている. これは過去 100 Myr で 地球の炭素循環が最も擾乱したイベントの1つであり、世界各地の 堆積物から短期間の δ¹³C の正へのエクスカーション(CIE)が確認さ れている. OAE2 に付随した環境変動が議論されているのは、黒色頁 岩の堆積が広域に確認される北大西洋やテチス浅海域が中心である. 本研究では未だ OAE2 時の古環境に関する詳細な研究が行われてい ない南半球高緯度の太平洋沿岸域(Sawpit Gully: ニュージーランド) を、バイオマーカー(生物指標有機分子)の層序的変動から調査した.

その結果,海底の酸化還元状態を表すホモホパン指標はOAE2層 準(CIE から判別される OAE2 の層位範囲)の最下部で最大値(貧酸 素環境)を記録し、その上位でOAE2層準最上部に向かって徐々に値 が減少(酸化的環境へ変化)していった. 陸域, 海洋の両方を含み表

The high *n*-C₁₇/short *n*-alkane values and the high value C32 2α

methylehopane indicate the cyanobacterial proliferation and the stressful environmental condition, respectively, during the terrestrial higher plant collapse. Hence, the terrestrial plant collapse might have produced the stressful environmental condition inducing the cyanobacteria proliferation in the lake and the surrounding soils. The high value of the ratio of dibenzofuran/phenanthrene showing the soil erosion events and the last appearance of Gigantopteris flora²

coincidentally occurred at the negative shift of $\delta^{13}C_{org}$ suggesting the

extinction of metazoa.

¹Wang, С. and Visscher, Η. 2007. Palaeogeography, Palaeoclimatology, Palaeoecology, 252,291-303.

²Chu, D. et al, 2016. Global and Planetary Change 146, 67-88.

黒色層(U1513, U1516)の有機物組成を Joides Resolution 号に設置され ている根源岩分析装置(Source Rock Analyzer)で分析した結果, 水素 指数(HI)が 500 を超えるものもあり、これら黒色層の有機物が藻類 起源であることが判った.一方で黒色層以外の CFI 範囲(緑灰色粘 土) 中の有機炭素は、イナートケロジェンに相当するものであった.

これらの南テチス海高緯度域における特異的な OAE2 堆積物は, この海域が OAE2 に対して北半球や低緯度とは異なる独特のふるま いをしていたことを示す. Hasegawa et al. (2013, Palaeo-3)は、かつて 太平洋南縁付近にあったニュージーランドの OAE2 相当層準を調査 CIE 範囲に独特な赤色層を発見している.当時の2大大洋の南 半球高緯度で、どちらにも特異な OAE2 堆積物が見つかることは、 温室期における南極周辺海がまだまだ謎に包まれていることを示し ている. IODP EXP. 369 の航海後研究では古海洋イベントとそれら海 洋の相互作用について研究が進められる予定である.

Cenomanian-Turonian Oceanic Anoxic Event in southern high latitude of Indian Ocean: preliminary

¹Cenomanian-Turonian Oceanic Anoxic Event in southern high latitude of Indian Ocean: preliminary result from IOOP Exp. 369. ²T. Hasegawa (Kanazawa Univ.), ³K. Toyama (Kanazawa Univ. now at Univ. Tokyo), ⁴S. J. Batenburg (Univ. Oxford), H.-J. Brumsack (Institut für Chemie und Biologie Des Meeres), R. deM. Guerra (Univ. Vale Oklo Rod State Univ.), S. J. Haynes (Univ. T. F. Edvardsen (Univ. Conpenhagen), D. L. Harry (Colorado State Univ.), S. J. Haynes (Univ. Missouri, Columbia), T. Jiang (China University of Geosciences, Wuhan), M. M. Jones (Northwestern Univ.), 黑田潤一葉 (東大-大気筒戸谷町), E. Y. Lee (Chonnam National Univ.), Y. -X. Li (Nanjing Univ.), K. G. MacLeod (Univ. Missouri, Columbia), A. Maritati (Univ. Tasmania), M. J. -M. L. J. Martinez (MRRM, Univ. Bremen), M. P. Petrizzo (Univ. degli Studi di Milano), T.M. Quan (McIahoma State Univ.), C. Richter (Univ. Louisiana), L. E. Riquier (Univ. Fexas, Austin), M. L. 6. Tegliaro (Univ. Fexas, Austin), M. L. 6. Tegliaro (Univ. Yenzas, Austin), M. L. 6. Tegliada (JMSTEC), C. C. Waimman (Univ. Vienna), Z. Xu (Institute of Oceanology, Chinese Academy of Science)

層の有機物量を反映する Σααα-steranes(C27-29)量(C30 αβ hopane で規格 化、以下ΣSteranesと記す)も、ホモホパン指標と類似した変動を示し た. これは有機物の供給量が OAE2 時の海底の酸化還元状態を変化 させる支配的な要因であったことを示唆している.また、それぞれ 陸域と海洋の有機物の起源を表す C27aaa-sterane, C29aaa-sterane のこ うけいにたいするそれぞれのわりあい個々の試料における比率(以 下 C29/C27 Sterane と記す)は, OAE2 相当層準最下部から中部にかけて 急激に海洋由来物質の割合が減少し、上部で再び値は回復した. こ のことはΣSteranesの減少が海洋植物プランクトンによる一次生産 の減少を示していることを示唆する. この OAE2 層準内の一次生産 性の減少は, Hasegawa et al. (2013, Palaeo-3)で示された渦鞭毛藻類化 石不産出区間と調和的である. Sawpit Gully で観測された一次生産性 の上昇と低下のタイミングは、Pearce et al. (2009, Palaeo-3)で示された Eastbourne の微化石層序に基づく一次生産性変動と類似しており、 全球的要因が一次生産性に影響を与えていた可能性が考えられる.

¹Paleoceanography of southern high latitude Pacific across the Cretaceous Cenomanian/Turonian boundary.

²Tomonori Kato, Takashi Hasegawa, Akiko S. Goto (Kanazawa Univ.), ³ James Crampton(GNS Science)

カナダ太平洋沿岸に分布する上部カンパニアン-マーストリヒチア ン階に関する有機地球化学的特徴¹ 吉川亞理紗・長谷川卓・後藤晶子・岩瀬優也(金沢大)²・守屋和佳 (早稲田大)³・Jim Haggart (カナダ地質調査所)⁴

後期白亜紀は全球的に深層水温の低下を伴い寒冷化したことが報 告されている(Friedrich et al., 2012, Geology). しかし当時の陸 域植生や海底の酸化還元状態等の環境変化に視点を置いた研究は比 較的少ない. 本研究ではバイオマーカーを用いて古環境推定を試み た. 本研究で扱うカナダのホーンビー島に分布する上部白亜系の上 部カンパニアン-マーストリヒチアン階は先行研究 (summarized in Enkin et al. 2001, Can. J. Earth Sci.) によればビトリナイト反 射率が 0.6%未満と未熟成であり,古環境情報を保持していることが 期待される. そこで本研究は上述の上部白亜系について有機地球化 学的研究を行い,まずどのような分子が検出され,環境解読に有用 な指標の有無を調査し,予察的に古環境評価を行うことを目指す.

15 の泥岩試料についてジクロロメタンを用いて溶媒抽出を行い, 脂肪族炭化水素および芳香族炭化水素の画分について GC-MS 分析し, 同定を行なった.まず熱熟成度の指標であるαβ-C₂₂homohopanes に

B08

北海道東部浦幌町の暁新世沈木群集中の中生代遺存種と最古の化石 記録¹ 天野和孝(上越教育大・学校教育)²・ジェンキンズ・ロバート

大野和孝(上越教育ズ・学校教育)、・シェンキンス・ロハート (金沢大・理)³・栗田裕司(新潟大・理)⁴

北海道東部浦幌町の活平層の 45 産地から産出した貝化石を主体 とする沈木群集を検討した.活平層の年代は、模式地の活平から採 集された渦鞭毛藻を検討した結果、特に Eisenackia margarita が産 出したことなどから、セランディアン後期〜サネティアンの最初期 と判断された.また、本層の古水深は原鰓類化石の属構成(Amano and Jenkins, 2017)から水深 200~500m と推定される.

採集同定された貝化石中には白亜紀の遺存種として、これまでに 報告された Acila (Truncacila) hokkaidoensis, Menneroctenia plena, Pristigloma? sachalinensis以外にも Propeamussium yubarense, Myrtea ezoensis が認められた.また、遺存的な属とし て Ezonuculana, Astarte, Kangilioptera, Biplica が認められた (Amano and Jenkins, 2014, 2017;本研究). 原鰓類二枚貝や分布が 広い種の絶滅率が低いことはすでに知られているが(Jablonski and Raup, 1995; Jablonski, 1996 など),活平層でもこの傾向が見られ

B09

Lucinid bivalve fossils from Miocene hydrocarbon-seep sites in the Hawke Bay area of North Island, New Zealand¹ Kazutaka Amano (Joetsu Univ. Educ.)², Crispin T. S. Little (Univ. Leeds)³ and Kathleen A. Campbell (Univ. Auckland)⁴

Three fossil species of lucinids are recorded from lower to middle Miocene hydrocarbon seep carbonate deposits in eastern North Island, New Zealand. Three species of *Meganodontia*, *Elliptiolucina* and *Lucinoma* are proposed as new species. Of these taxa, *Meganodontia* only occurs in the Ihungia Limestone in the southern East Coast Basin (ECB), a Miocene forearc basin of the Hikurangi convergent margin. *Elliptiolucina* occurs only in the Bexhaven Limestone in the northern ECB. Based on the depth that living representatives of *Meganodontia* and *Elliptiolucina* are found, the difference in the fossil faunal distribution can be explained, because the seep deposits of the dominantly micritic Bexhaven Limestone formed in deeper water than the seeps in the sandier Ihungia Limestone. Among the lucinids, *Meganodontia* is one of the oldest records of the genus, and its より、試料のビトリナイト反射率換算値は 0.6%未満であることが 確認された.奇数炭素数の優位がみられる長鎖 *m*-alkanes や C_{29} sterane の C_{27} sterane に対する高い比率などから、陸域から供給さ れたバイオマーカーが多く、保存の良い陸起源の有機物が高濃度に 含まれていることが判った. 堆積環境の酸化還元状態を示す pristane/phytane 比が高く、また酸化的環境下では保存されない C_{35} homohopanes も確認できなかったことから酸化的な環境下での堆 積が推定される. 芳香族炭化水素画分からは高等植物に由来する retene やsimonellite、木質分解菌に由来する perylene など特徴的 なバイオマーカーや燃焼起源有機物も検出された.

今後は時代範囲を拡大し、変動を長期的に捉えていくことや、高 解像度の分析を行い環境変動に軌道周期性が見られるのか否かなど の検討を進めていきたいと考えている.

¹Organic geochemistry on Upper Cretaceous mudstones from Canadian Pacific Coast.

²Arisa Yoshikawa, Takashi Hasegawa, Akiko S. Goto, Yuya Iwase (Kanazawa Univ.), ³Kazuyoshi Moriya (Waseda Univ.), ⁴Jim Haggart (Geological Survey of Canada)

た. さらに, 深海性の底生有孔虫化石では, 白亜紀末の絶滅率は浅 海域に比べて低いことが指摘されており(Kaiho, 1994), 同様な傾 向が貝化石でも認められたことになる.

一方, Tindaria, Bentharca, Poromya, Neverita, Admete は世界 最古の化石種が活平層から産出した(Amano et al., 2015, 2016; Amano and Jenkins, 2017; 本研究). また, 最古の Buccinoidae で ある Urahorosphaera kanekoi も認められている(Amano and Oleinik, 2014). しかしながら, 中期始新世以降の化学合成群集に 知られる Bathymodiolinae やVesicomyidae の化石は見られず, 白亜 紀の化学合成群集に認められる Thyasiraや Myrteaが産出している.

¹Mesozoic relict species and the oldest fossil records in the Paleocene wood-fall communities from Urahoro Town, eastern Hokkaido

²Kazutaka Amano (Joetsu Univ. Educ.), ³Robert G. Jenkins (Kanazawa Univ.), ⁴Hiroshi Kurita (Niigata Univ.)

distribution has shrunk from worldwide in the Miocene times to only around Taiwan today. *Elliptiolucina* is the second oldest species in the genus. Since the Miocene the distribution of *Elliptiolucina* has narrowed but its habitat range has increased to both seeps and sandy environments, mainly around the Philippines.

¹ニュージーランド北島のホーク湾沿岸域の中新世のメタン湧水場 から産出したツキガイ科二枚貝化石

²天野和孝(上越教育大学),³クリスピン・リトル(リーズ大),⁴キャスリーン・キャンベル(オークランド大)

モンゴル南東部の中上部ジュラ系-下部白亜系湖成層の 堆積年代と堆積環境¹

安藤寿男(茨大・理)²・長谷川精(高知大)³・長谷部徳子(金大)⁴・ N. Ichinnorov (Inst. Paleont. Geol. MAS)⁵・太田亨(早大)⁶・長谷川卓 (金大)⁷・山本正伸(北大)⁸・李罡(南京地質古生物研)⁹・B-O. Erdenetsogt (Nat. Univ. Mongolia)¹⁰・U. Heimhofer (Leibniz Univ.)¹¹

モンゴル南東部ゴビ砂漠地域には、大規模な陸成堆積盆がいくつ も存在し、中でも中-上部ジュラ系と下部白亜系上部の特定の層準に は、厚い泥質の湖成堆積物が発達しており、大規模な湖の長期間に わたる連続的な堆積記録が保存されている.本研究は、中上部ジュ ラ系エーデムト層および下部白亜系シネフダグ層の湖成層の堆積年 代と堆積相や堆積環境を解明することを目的とする.

両層とも主に暗灰-黒灰色薄葉理頁岩, 灰-黄白-褐色薄層理苦灰岩 の互層からなり,それぞれ層厚約150m,250mほどである. 岩相の精 密周期解析,化学組成分析などから,頁岩は高水位期に,苦灰岩は 低水位期に堆積し,その互層は降水量変動に伴う湖水位変動を反映 していると推定でき,当時の気候変動の記録が保存されている.

多産するカイエビや貝形虫群集の組成から、それぞれ中部ジュラ

B11

甑島列島及び天草諸島に分布する上部白亜系姫浦層群の 古植生と古環境¹ ルグラン ジュリアン (中央大・理工)²・小松俊文 (熊大・院・先) ³・三宅優佳 (薩摩川内市)⁴・對比地孝亘 (東大・理)⁵・ 真鍋真 (国立科学博物館)⁶

姫浦層群は、鹿児島県の甑島列島及び熊本県の天草諸島などに分 布しており、非海成~海成の堆積物からなる. 甑島列島の下甑島で は、下部~中部カンパニアン階、上甑島ではマーストリヒチアン階 から多くの動物化石が産出し、近年、恐竜などの脊椎動物化石の産 出が注目を集めている. 天草諸島の姫浦層群については、上島東部 にサントニアン~中部カンパニアン階の樋島層と阿村層が分布し、 下島西部にはカンパニアン~マーストリヒチアン階が露出し、二枚 貝やアンモナイトなどを多産している. その一方で、これらの地域 から植物化石の報告はないため、古植生は解明されていなかったが、 最近になって姫浦層群相当層である長崎県の三ツ瀬層より良質の花 粉群集が報告された. 今回、甑島列島及び天草諸島の姫浦層群から も花粉群集が得られ、当時の植生や環境を解明できたので報告する. 胞子化石には、コケ類のゼニゴケ科、小葉類のイワヒバ科やヒカ 系,アプチアン期の地層であることがわかっている.そして,介在 する凝灰岩のU-Pb 年代から,エーデムト層は約165-158 Maのカロ ビアン-オックスフォーディアン期,シネフダグ層は123.8±2.0 Ma ~118.5±0.9 Maのアプチアン期前期に堆積したことが判明した. シネフダグ層の頁岩中には藻類起源有機物と粘土鉱物の互層からな る微細葉理(マイクロラミナ)が見られ,葉理の平均層厚と平均堆 積速度(4.7±2.6 cm/ky~10.0±7.6 cm/ky)から,葉理は年編である と解釈された.

モンゴル南部の湖成層の堆積は、内陸盆地のテクトニクスに加え、 ロビアン-オックスフォーディアンとアプチアン期前期において湿 潤気候が当該地域で卓越したことが関係していたのであろう.

¹Depositional ages and environments of Middle–Upper Jurassic and Lower Cretaceous lacustrine deposits in southeastern Mongolia

² Hisao Ando (Ibaraki Univ.), ³ H. Hasegawa (Kochi Univ.), ⁴ N. Hasebe (Kanazawa Univ.), ⁵ N. Ichinnorov (Inst. Paleont. Geol., MAS), ⁶ T. Ohta (Waseda Univ.), ⁷ T. Hasegawa (Kanazawa Univ.), ⁸ M. Yamamoto (Hokkaido Univ.), ⁹ G. Li (Nanjing Inst. Geol. Paleont.), ¹⁰ B-O. Erdenetsogt (Nat. Univ. Mongolia), ¹¹ U. Heimhofer (Leibniz Univ.)

ゲノカズラ科,シダ類のヘゴ科やゼンマイ科,アネミア科などが含 まれていた.花粉化石には、裸子植物が多く、球果類のケイロレピ ディア科,マキ科,マツ科等の花粉が見られ、被子植物は甑島列島 からユリ科の Liliacidites や Aquilapollenites など,天草諸島か らは Scollardia も得られた.示準化石の Aquilapollenites と Scollardia は、南日本から初報告となり、阿村層から得られた Scollardia trapaformis は、カナダ・サハリン・中国のマーストリ ヒチアン階からのみ報告されているため、今回の発見で中部カンパ ニアン期には本属が既に出現していたことが明らかになった.また、 これらの群集構成は、湿潤気候下で、マングローブが豊富な水辺環 境の古植生を示している.なお、本調査地域の中部カンパニアン階 の花粉群集を三ツ瀬層の花粉群集と比較した結果、両地域は良く似 た古環境であったことが明らかになった.

¹Paleovegetation and paleoenvironments of the Upper Cretaceous Himenoura Group on the Koshikishima and Amakusa islands ²Julien Legrand (Chuo Univ.), ³Toshifumi Komatsu (Kumamoto Univ.), ⁴Yuka Miyake (Satsumasendai City), ⁵Takanobu Tsuihiji (Tokyo Univ.), ⁶Makoto Manabe (Natl. Mus. Nat. Sci.)

B12

Cause of cooling-drought events triggered by asteroid-comet impacts¹ Kunio Kaiho (Tohoku University)², Naga Oshima (Meteorological Research Institue)³

There must have been unknown short-term global cooling-draught events by asteroid-comet impacts in the earth history. One to several year global cooling-draught events inducing vegetation devastation and biodiversity decline can be occurred by interruption of sunlight by stratospheric aerosols formed by asteroid-comet impacts to the earth. Four kind of stratospheric aerosols have been proposed as possible causes of the cooling-draught events. They are sulfuric acid aerosol originated from melt of target-rocks, soot aerosol formed by heated target-rocks, soot aerosol from global wildfires, and dust from target rocks. Sulfuric acid aerosol has been generally thought to be the main cause of the events by impacts. Here we show that the soot aerosol formed from target-rocks is the main cause of the cooling-draught events. Amount of hydrocarbon (partly changing to soot) in the impact heating target-rocks mainly controls global cooling temperature. The large variation of amount of hydrocarbon depending on impact location leads to the low frequency of the cooling-draught events by impacts compared with the previous thought. The low frequency fits to the actual frequency. The global cooling temperature estimated from the amount of hydrocarbon fits to extinction rates on the large five impacts. If the past asteroid-comets hit locations where 100–1000 km away from the impact locations, history of evolution of biota must have been different from the actual history. The chance aspect of the global cooling mechanism works from the early earth to the future earth.

¹小惑星-彗星衝突による寒冷化-干ばつ事件の原因 ²海保邦夫(東北大学),³大島 長(気象研究所)

中期中新統"雨滝湖成層"から産出する植物化石群¹ 吉川武憲(近畿大・教)²・森 繁(さぬき市雨滝自然科学館)³・ 香西 武(鳴門教育大・自然系)⁴

四国北東部香川県さぬき市に中期中新統"雨滝湖成層"がある. 本層は瀬戸内火山岩類中に挟まれる,泥岩を主体とする断片的に残 された湖成層であり,大型植物化石が多産するとともに,花粉・胞 子化石が産出する.また,年代測定の結果から14~15Maに形成され たと推測される.ここでは本層から産出する大型植物化石ならびに 花粉化石の産出状況を報告するとともに,検出された当時の古気温 についての若干の考察を加える.

本層から産出した大型植物化石は、被子植物木本類23科44属59 種、草本類4科4属4種である.これらの大型植物化石はその産状 からほぼ原地性だと推測できる.被子植物木本類の全縁率は46%で あった.一方、産出した花粉化石は、裸子植物4科10属、被子植物 木本類22科33属、草本類6科8属であった.被子植物木本類総数 を基数とした各花粉化石の産出割合は、ペカン属とコナラ属アカガ シ亜属が約20%、ニレ属ーケヤキ属、クマシデ属ーアサダ属、サワ グルミ属ークルミ属、ブナ属、フウ属が約10%~5%などであった. この7属のうちブナ属を除く6属は大型植物化石でも産出する. 本層から産出する大型植物化石は台島型植物群に,花粉化石は NP-2帯に対比できる.これらは"雨滝湖成層"の形成年代と一致す る.また,大型植物化石が原地性であることから,前述の6属の植 物は"雨滝湖"周辺に複数生息していたと推測できる.

当時の年平均気温を被子植物木本類の全縁率から推測すれば約 17℃となる.この値はコナラ属アカガシ亜属などの温暖系の花粉化 石が多産することなどに矛盾しない.この場合は当時が気温低下期 と推測できることから、本地域の当時の最暖期をさらに高温だと見 積る必要性が生じる.一方、本層からは多種の冷涼系の植物化石も 産出する.当時の気温低下に伴い本地域の植生が冷涼系のものへと 変化している途中段階であったとすれば、森林の成熟度合いが追い つかず実際の気温より高めに古気温が検出された可能性がある.こ れらについて議論できる化石資料が整っていないことなどから、現 時点では両方の可能性が残されているといえよう.

¹The Middle Miocene fossil floras from "Ametaki lake deposits" ²Takenori Yoshikawa (Kindai Univ.), ³Shigeru Mori (Sanuki City Ametaki Sci. mus.), ⁴Takeshi Kozai (Naruto Univ. Educ.)

東アジア固有針葉樹類の地理的隔離はなぜ成立したか?¹ 矢部 淳・植村和彦(科博・地学)・鄭恩境(誠信大)・金京植(韓 国全北大)²

東アジアには、現在17の固有針葉樹属が知られている。これら の多くは古第三紀以前に北半球の広い範囲に分布していたが、新生 代の気候と古地理の変化の中で分布域を縮小し、現在は属ごとに極 めて限られた範囲に分布する。

日本の古第三紀~前期更新世の地層からは、東アジア固有の針葉 樹属10属(コウヤマキ属 Sciadopitys*,メタセコイア属 Metasequoia,スイショウ属 Glyptostrobus,タイワンスギ属 Taiwania,コウヨウザン属 Cunninghamia,スギ属 Cryptomeria*, アブラスギ属 Keteleeria,イヌカラマツ属 Pseudolarix,アスナロ 属 Thujopsis*,イヌガヤ属 Cephalotaxus*)の大型化石がほぼ連続 的に産出する(*は日本に自生)。このため、日本の化石データは 各属の分布変遷と古気候条件を定点的に観測し、古地理や気候の変 化と合わせて検討するのに都合がよく、現在の分布が形成された要 因を明らかにできる可能性がある。本研究では、博物館等に収蔵さ れている標本と論文情報から、日本におけるこれら10属の化石記

B15

放散虫群集に基づいた後期中新世における日本海の古海洋環境 (IODP Exp. 346 Site U1425 & U1430)¹ 松崎賢史(東大・理)²・板木拓也(産総研)³・多田隆治(東大・理) ⁴・上栗伸一(茨大・教)⁵・黒川俊介(東大・理)⁶

For reconstruct the long-term evolution of the Paleoceanographic system of the Japan Sea several factors should be considered such as the regional tectonism, global climatic context and the Milankovitch cycles. In the Japan Sea, the Integrated Ocean Drilling Program (IODP) Expedition 346 retrieved core sediments covering the Miocene at two sites (Site U1425 and U1430). In this study, we analyzed changes in radiolarian assemblages at site U1425 and U1430 for reconstruct the paleoceanography of the Japan Sea for the late Miocene with the local tectonism, global climatic context and the Milankovitch cycles taken into account. Our data showed that the local tectonism strongly affected the sill depths of the Japan Sea connecting straits during the late Miocene. Indeed, our data inferred that the sill depths of the northern strait (between northern Honshu and Hokkaido Island) was likely ca. 1000 m for period older than 7 Ma. Our data also showed that the long eccentricity cycle (400 kyr) has probably influenced the changes in

B16

第四紀後期アラビアモンスーン残像 –IODP Exp. 355 の珪藻化石から-1 岩井雅夫(高知大・海洋コア)²

アラビア海東部で掘削された IODP Exp. 355 の珪藻化石定量分析・ Q-mode クラスター分析を行った. その結果, アラビアモンスーンに 起因すると考えられるシグナルを検出したので報告する.

U1456/U1457 のコア最上部試料珪藻殻含有量は、それぞれ 3.76x10⁴/1.58x10⁴ (valves/g-dry weight) であるが上部数十 cm で急減する.しかし、より下位の層準でこれをしのぐ産出量が認め られ、試料 355-U1456C-1H-3-W 30/31cm では 6.81x10⁵ (valves/g-dry weight) と、2 桁多い産出を示した.沿岸性のメロプランクトン珪 藻 *Paralia sulcata* (Ehrenberg) Cleve がいずれの試料でも群集の 大半を占めるが、最上部近傍ほか一部の層準では多様性が増大、

Chaetoceros 属休眠胞子や *Thalassionema nitzschioides*, 小型(<20 μm)の *P. sulcata*の増加が認められた.

アラビア海では、夏季南西モンスーンによりアラビア半島沿岸湧 昇が活発になるとともに、ヒマラヤ山麓の降水量が上昇しインダス 川からの淡水流入量が増加する.一方冬期北東モンスーンでは、ベ 録を漸新世~鮮新世末にわたって整理し、それらを含む化石群集が 示唆する古植生と古気候条件を検討した。その結果、1)漸新世~ 前期中新世まで温帯域全域に分布したが、中新世の温暖期以降、暖 温帯域に分布が限られ、その後気候変化と同調した分布変化が認め られたもの(アブラスギ属、イヌカラマツ属、コウヨウザン属)、 2)主として冷温帯~中間温帯域に分布の限られるもの(スギ属、 コウヤマキ属)、3)冷温帯~暖温帯に成立した様々な森林に伴っ て産出し、気候変化と同調しないもの(メタセコイア属、スイショ ウ属、タイワンスギ属)、の3つが認識された。

2のグループは日本列島にのみ生き残った"固有属"で、1と3 は前期更新世に日本列島から絶滅した。3のメタセコイアの絶滅に は生息域の縮小が影響した可能性が議論されている。一方、1と2 の分布変化は、主として気温の変化が作用したと推測される。後者 が日本列島に残ったのには、冷温帯気候への適応が影響した可能性 が考えられる。

¹Why do Asian endemic conifers distribute so disjunctly?
²A. Yabe & K. Uemura (NMNS), E.-K. Jeong (Sungshin Univ., Korea) • K.-S. Kim (Chonbuk Nat. Univ., Korea)

radiolarian assemblages for the late Miocene. Indeed, between 7 and 9.3 Ma, radiolarian assemblages suggested inflows of relatively "warm" water of the North Pacific into the Japan Sea during relatively higher sea-level via a probably shallow eastern strait. During the Late Miocene Cooling (5.5 -7.7 Ma), which is a global climatic event, an important increase in subarctic species is recorded in the Japan Sea, inferring a cooling because of a probable southward shift of the subarctic front at that time.

¹ Paleoceanography of the Japan Sea during the late Miocene (IODP Exp. 346 Site U1425 and U1430)

² Kenji Marc Raymond Matsuzaki (Univ. of Tokyo), ³ Takuya Itaki (AIST),

⁴ Ryuji Tada (Univ. of Tokyo), ⁵ Shin-ichi Kamukuri (Ibaraki Univ.),

⁶ Shunsuke Kurokawa (Univ. of Tokyo)

ンガル湾より低塩水が流入するとともに、離岸流によりインド沿岸 部からの堆積物供給が増加する. 珪藻群集の大半を占める P. sulcata は、インド西岸陸棚域で生産され掘削地点に供給されたも のとして解釈され、その増減は冬期北東モンスーンの強弱を反映し ている可能性が高い. 一方、P. sulcata の増減と単純に正の相関を 示さない Chaetoceros 属休眠胞子や Th. nitzschioides の増減は、 供給源の変化を示唆し、夏季南西モンスーン由来の変動を捉えてい る可能性が示唆される. この変動に同調する小型の P. sulcata は、 陸水流入が活発な低塩底生物生産域の入り江に多産するとの事例研 究 (Roelofs, 1984) があり、インダス川河口域やマヒ川河口のカン バト湾などが、本海域における供給源として想定される.

強い溶解の影響をかいくぐった残存珪藻化石は十分意味をもった 変動を示し、その第1因子は冬期北東モンスーンを、第2因子は夏 季南西モンスーンの強弱を示唆するものと解釈された.

¹Relic of the late Quaternary Arabian Monsoon -IODP Exp.355 fossil diatoms-

²Masao IWAI (KCC/CMCR, Kochi Univ.)

過去 3000 年間の東アジア夏季モンスーン強度と太陽活動との関連¹ 山田 桂・小原一馬(信大・理)²・池原 実 (高知大・コア)³・瀬戸浩二(島根大・エスチュアリー)⁴

東アジア夏季モンスーン(EASM)変動と太陽活動や ENSO との 関連が指摘されているものの,不明な点が多い.脱皮成長をする貝 形虫の殻は数日〜数週間で形成され,その化学組成は一般にその後 変化しない(Turpen and Angell, 1971).この特徴を生かし,夏季に 殻を形成する *Bicornucythere bisanensis*の成体殻の酸素同位体比を用 いて,過去 1700 年間の数百年スケールの EASM 強度を復元してき た(Yamada et al., 2016).本研究では,さらに過去 3000 年間につい て,同様の手法で EASM 強度を復元し,他地域のモンスーン変動や 太陽活動との関連を議論する.

島根県と鳥取県に位置する汽水湖の中海では、夏季の100 mm以上の降水は底層の塩分低下を引き起こす。そのため、短期間で形成され底生に生息する貝形虫 B. bisanensis 殻の酸素同位体比は、降水量と相関を示す。湖心部で採取された N2015 コアは BC800 年以降の連続した堆積物からなる。ここから採取された B. bisanensis 殻の酸素同位体比は、BC800 年以降長期的に低下した。貝形虫群集によ

B18

ヒレジャコの殻の酸素同位体組成を用いた海水温復元の信頼性およ び問題点¹

小玉智之(東北大・理)²・高柳栄子(東北大・理)³・浅海竜司(東 北大・理)⁴・阿部理(名大・環境)⁵・井龍康文(東北大・理)⁶

熱帯~亜熱帯の極浅海域に生息する大型二枚貝のシャコガイ類は, アラレ石よりなる殻を有し,その殻は酸素同位体組成に関して周囲 の海水とほぼ同位体平衡下で形成されるといわれている.また,殻 の成長速度が大きいため高時間分解能でのサブサンプリングが可能 であり,シャコガイ類の殻の酸素同位体組成から日~月単位のサン ゴ礁環境や気象変化の復元が可能と期待される.

そこで、本研究では、沖永良部島沖泊港沖(TSO)および石垣島 西方の石西礁湖内(TSI)で採取されたヒレジャコ(*Tridacna squamosa*) について、殻の酸素同位体組成を分析し、真に同位体平衡下で形成 されているかどうかについて検討した. 殻の最大成長方向に沿って 分析した TSO と TSI の殻の酸素同位体組成(δ¹⁸O_{shell})プロファイル は、いずれも海水温の季節変化とほぼ一致する周期的変化を示し、 それぞれ、2009 年 8 月~2013 年 8 月および 2010 年 2 月~2013 年 2 月に対応づけられた. 両殻の δ¹⁸O_{shell} 値は、平衡アラゴナイト(海水

B19

現生腕足動物殻の微量金属元素濃度に関する基礎的研究¹ 西尾拓哉(東北大・理)²・高柳栄子(東北大・理)³・浅海竜司(東 北大・理)⁴・新城竜一(琉球大・理)⁵・山本鋼志(名古屋大・環)⁶・ 井龍康文(東北大・理)⁷

炭酸塩骨格・殻の微量金属元素濃度(Me/Ca比)は様々な古環境指 標として用いられている.しかし、腕足動物殻の微量金属元素濃度は、 殻の保存状態を検討する際の基準としてのみ用いられており、同濃度 変化を用いた古環境解析はほとんど行われていない.その原因として、 従来の研究では、腕足動物殻の微量金属元素濃度変化に正確な時間軸 を入れられず、同濃度変化と環境および生態因子との関係を比較検討 することが困難であった点が挙げられる.そこで本研究では、まず、 腕足動物殻の微量金属元素濃度変化を時系列化するための新たな手 法を創出し、同手法を2005年と2011年に岩手県大槌湾で採取された 現生腕足動物に適用した.そして、腕足動物の微量金属元素濃度の時 系列変化と生息域周辺の環境因子(水温・塩分・海水の化学組成など) および腕足動物の生態因子(成長速度など)とを対比し、各濃度比の 変動要因について検討した.

腕足動物殻の Mg/Ca 比と酸素同位体比の間には有意な相関関係が

れば中海の塩分は徐々に低下したことから,酸素同位体比の低下は 湖内の塩分低下によると推察される.この地域的な要因を排除する ため,標準化した酸素同位体比変動を求め他地域の EASM 変動及び 太陽活動を示す大気中の Δ^{4} C と比較した.標準化した酸素同位体比 の周期や変動パターンにより,BC800 以降は3 つに区分された.Stage A (BC800~BC100)では,EASM 変動と大気中の Δ^{4} C に 200 年周 期と共通の変動パターンがみられ,東アジア全域の EASM が太陽活 動に影響を受けていたと考えられる.Stage B (BC100~AD300)で は,EASM 変動と大気中の Δ^{4} C の振幅がともに小さくなるものの, 周期やパターンの共通性はみられなかった.Stage C (AD300~ AD1800)では,他地域の EASM や大気中の Δ^{4} C との共通性は認め られず,ENSO と類似した変動がみられた.EASM と太陽活動との 関係は北緯 33 度の日射量が大きかった BC800~AD300 のみに見ら れたことから,EASM 強度は日射量の大きい時期にのみ太陽活動の 影響を受けていたと推察される.

¹East Asian summer monsoon intensity and its relation to sun activity in the last 3000 yrs.²Katsura Yamada, Kazuma Kohara (Shinshu Univ.), ³Minoru Ikehara (Kochi Univ.), ⁴Koji Seto (Shimane Univ.)

と同位体平衡で析出したアラゴナイト)の酸素同位体組成(δ¹⁸OEA) と高い相関関係を示した.よって、ヒレジャコのδ¹⁸Oshell値は、海水 温のプロキシとして有用であることが確認された.しかし、δ¹⁸Oshell 値とδ¹⁸OEA 値は完全に一致しているわけではなく、両者の差分 (δ¹⁸Oshell-δ¹⁸OEA)には、最暖月で-0.3~0.6‰,最寒月で0.1~0.9‰ に及ぶ値の違いが認められる.これらの差を温度換算すると、最暖 月は-2.5~1.2℃,最寒月は-3.8~-0.5℃の誤差が生じることが明ら かとなり、特に後者は最大で約4℃過小評価することになる.よっ て、ヒレジャコ化石の酸素同位体組成から過去の海水温を復元する 際には、これらの点を留意する必要がある.

¹Oxygen isotope records from *Tridacna squamosa* shells: Toward establishing a reliable proxy for sea surface environments

²Satoshi Kodama (Tohoku Univ.), ³Hideko Takayanagi (Tohoku Univ.), ⁴Ryuji Asami (Tohoku Univ.), ⁵Osamu Abe (Nagoya Univ.), ⁶Yasufumi Iryu (Tohoku Univ.).

みられる個体とみられない個体が認められた.また,腕足動物殻における Mg の分配係数は有孔虫の値と同程度であったが,両者から得られた Mg/Ca 比と水温の関係式はそれぞれの傾きが大きく異なっていた.これは,腕足動物殻への Mg の配置が温度だけでなく他の要素に規制されている可能性を示しており,今後さらなる検討が必要である.腕足動物殻の Mn および Fe の濃度は,全体的に低い値を示したが,稀に高い異常値を示す部位が認められた.本異常値は,有機層などの影響に因るものではなく,初生的なものであることを確認した.全ての腕足動物において,殻の炭素同位体比と Sr/Ca 比に有意な強い負の相関が認められた.両者の相関関係は Sr/Ca 比が過去の海水の炭酸系を復元する新たな古環境指標となりうることを示唆している.ただし,殻の Sr/Ca 比と成長速度の間に有意な正の相関関係が認められたため,Sr/Ca 比を古環境指標として用いる際には成長速度の効果分を補正する必要がある.

¹Variations in trace element concentrations of modern brachiopod shells ²Takuya Nishio (Tohoku Univ.), ³Hideko Takayanagi (Tohoku Univ.), ⁴Ryuji Asami (Tohoku Univ.), ⁵Ryuichi Shinjo (Univ. Ryukyus), ⁶Koshi Yamamoto (Nagoya Univ.), ⁷Yasufumi Iryu (Tohoku Univ.)

現生腕足動物殻の成長速度と年齢の推定方法¹ 高柳栄子(東北大・理)²・西尾拓哉(東北大・理)³・藤岡 大(東 北大・理)⁴・山本和幸(INPEX)⁵・井龍康文(東北大・理)⁶

近年盛んに進められている現生腕足動物を用いた生態学的研究お よび新たな古環境指標(プロキシ)の開発において,殻の成長速度お よび成長段階(年齢)の定量的な見積もりは,速度論的効果や代謝効 果などを評価する上で必要不可欠な生態因子となっている.従来の研 究では,腕足動物殻の大きさと殻年齢の関係や成長速度の見積もりは, 主に殻表面に形成されている成長線の解析によって行われてきた(例 えば,Brey et al., 1995,Peck and Brey, 1996,Baird et al., 2013).その 結果,ある現生腕足動物の種における殻の最長年齢が「50歳以上」と 見積もられた先行研究もある(Peck and Brey, 1996).しかし,最大成 長軸に沿って詳細に分析した近年の現生腕足動物殻の酸素同位体比 の知見によれば,殻表面の成長線は必ずしも特定の原因によって形成 されたもの(例えば,成長速度の季節変化を反映した年輪など)では なく,殻の成長を阻害する複数の要因によって不定期に形成されてい ることを示唆している.よって,先行研究で導出された成長曲線を用 いて見積もった成長速度および年齢は不正確である可能性が高く,両

B21

那覇新港地下における完新統サンゴ礁堆積物中の 礁性微生物被殻の深度分布¹ 藤田和彦・下地勝大・小谷野将(琉球大・理)²

沖縄本島沖で掘削された完新統サンゴ礁堆積物コア中に礁性微生 物被殻(Reefal Microbial Crust: RMC)を発見した.RMCとはサン ゴなど造礁生物化石の表面や空隙内を覆う微生物性炭酸塩岩であり, 微生物による炭酸塩鉱物の誘導沈殿により形成されたと考えられる. 1990年代にタヒチ沖の後氷期堆積物から発見されたのを機に研究 が進められ,高Mg方解石のペロイド状微小結晶群で形成されるなど 共通の特徴が明らかにされている.一方でRMCの時空分布や形成時 の環境条件についていまだ分かっていない.また沖縄産 RMC につい ては分布深度の下限や形成要因が明らかではない.そこで本研究で は、RMC を発見した場所を再掘削し、岩相層序と RMC の深度分布を 明らかにし、沖縄産 RMC の形成史や形成要因を考察した.

本研究では、那覇新港埠頭地区で掘削したコア(全長 13.1 m) の岩相を記載し、サンゴ化石を含む固結部分についてスラブ試料を 作製し、観察した.未固結部分については、鉱物組成(X線回折)・ 粒度組成・生砕物組成を調べた。原地性サンゴ化石や保存の良い有

B22

宍道湖における堆積速度と有機物の分解速度について¹ 野村律夫(島根大・教育/松江市ジオパーク推進室)²

【背景】近年,汽水域における石灰質有孔虫の殻の溶解現象に注 目してきた。殻の溶解した有孔虫の産出は,海洋酸性化のようなグ ローバルな環境変動を反映しているようにもみられるが,汽水域に 特有な地域的影響についても考慮する必要があり,複雑なプロセス が関係していると考えられる。また,石灰質殻の溶解から示される 水域の酸性化は,将来の生態系に深刻な影響を及ぼすものと考えら れ,海洋酸性化はすでに社会的な問題となっていることはよく知ら れている。しかし,閉鎖性汽水域での酸性化についてもその原因究 明が必要であろう。

これまでの堆積物コアに基づく研究から、汽水域の有孔虫殻の溶 解は、堆積速度と堆積物中の間隙水の酸性化の程度に影響している と考えている。有機物の堆積速度と明確な相関がみられ、有機物の 負荷が高いほど溶解個体の産出が多いことをすでに口頭発表した。 一方で、堆積速度のみによって比較した宍道湖の有孔虫遺骸の例で は、極めて遅い堆積速度のコアにも、溶解を示す個体を含むととも

に、多くの有孔虫個体を産出していることも確認している。

値は腕足動物の生態の理解および古環境指標に影響する生態因子を 評価するにあたり信頼性を欠くと考えられる.以上より本研究では, 日本周辺海域より採取された現生腕足動物の酸素同位体比の知見に 基づき,1)成長線を視覚的に見分ける方法の検討と,2)腕足動物殻 の成長曲線を一般化することを目的として研究を行ったので,ここに 報告する.本研究で得られた知見は腕足動物の生態に関する理解を深 化させ,腕足動物殻を用いた超長期の古環境プロキシの精度の向上に 繋がると期待される.

¹How to estimate growth rates and ages from modern brachiopod shells
 ²Hideko Takayanagi (Tohoku Univ.), ³Takuya Nishio (Tohoku Univ.),
 ⁴Hiroshi Fujioka (Tohoku Univ.), ⁵Kazuyuki Yamamoto (INPEX), ⁶Yasufumi Iryu (Tohoku Univ.)

孔虫化石について放射性炭素年代を測定した.

コアは下位から琉球層群石灰岩(深度 11.5 m以深),古土壌(深 度 11.5~10 m),サンゴ化石を含む石灰質堆積物(深度 10~3 m)が 累重する.古土壌は生砕物や保存の良い有孔虫殻(約 8000 年前)を 含む.石灰質堆積物には,深度約 8 m から原地性サンゴ化石が含ま れる.深度 7.5 m 以深ではサンゴ化石が固着生物に覆われ,深度 7 ~4.35 m(約 7500~7000 年前)では RMC に覆われ,深度 4.35 m以 浅(約 6500 年前)では再び固着生物に覆われる. RMC がみられる深 度の堆積速度は他の深度よりも速い.

本研究結果から沖縄産 RMC は特定の深度と時期にのみ形成される ことが明らかとなった.約7500~7000年前に造礁サンゴが急に累重 したことで固着生物が棲めない半閉鎖的な空隙ができ,その表面に RMC が形成されたと考えられる.沖縄産 RMC の形成には,完新世の 海面上昇に伴う造礁サンゴの累重速度が関係すると考えられる.

¹Depth distribution of reefal microbial crusts in a Holocene reef sediment core drilled at Naha New Port, Okinawa, Japan ²Kazuhiko Fujita, Shota Shimoji, Sho Koyano (Univ. Ryukyus)

この発表では、昨年、堆積物と有機物の酸化過程に注目して、殻 の溶解の検証実験をしたこと、また、湖底面からの堆積深度と²⁰Pb 及び有機物の濃度分布に明瞭な相関が認められることから、湖底に おける有機物の分解速度について言及し、その地理的分布について 報告する。

【結果】

(1) 宍道湖内では、湖岸域を除いて一定した有機物の分解曲線 が得られた。

(2)²¹⁰Pbの半減期(22.3年)に対して、有機炭素・窒素の濃度 分布より求めた有機物の分解速度は、宍道湖では平均して 2.4 倍、 中海では 3.4 倍それぞれ遅いことが求められた。

(3) 有機物の分解速度は, 宍道湖の西部と南東部で遅く(2.7 倍),湖心部に近いところで速かった(2.2倍)。

¹On the sedimentation rate and decomposition rate of organic matter in Lake Shinjiko.

²Ritsuo Nomura (Shimane Univ.)

御前崎の隆起貝層の再発見¹ 北村晃寿(静岡大学・理)²

今村明恒は、1943年の「地震(15, p. 217-224)」に公表した論文「遠 州東南地塊の傾動に就いて」で、静岡県御前崎の隆起貝層とその解釈 について、「更に確実な證跡は、穿孔貝が岩石に穿った孔の行列に依 って示される過去の汀線である、元来御前崎から伊良湖岬に至る海 岸は、概ね砂州の地である為、其の様な行列は皆無ではあるまいかと 想像していたが、御前崎の海中に突出した第三紀の岸壁には、其れが 見事に保存されている、穿孔貝の種類は数種あるらしいが、最多数を 占めているのは所謂ヒミズ(日不見)貝 *Lithophaga curta*で、・・略. 現在空中に曝されている孔の行列は、最も鮮明なものが、平均海水面 上 50 糎(cm)の高さにあり、次に稍不鮮明ではあるが、今一つ160 糎 の高さに認められる。前者は安政地震直前の汀線を示すに相違なか るべく、後者は宝永地震直前のものと推定せられる」と記した.だが、 位置図、スケッチ、写真などが記されていない.そのためか、隆起貝 層は未確認だったが、演者は波食台の一部(標高 1.05–1.35 m)で泥岩 を穿った孔の中にある二枚貝 *Penitella kamakurensis*を発見した. 御前崎周辺は、1854年の安政東海地震で1m隆起した(羽鳥、1976; 石橋、1984). だが、その痕跡は地震間沈降一1960~2015年の沈降量 は0.4m一で消されたと考えられている.一方、御前崎南西海岸には 4段の隆起海岸段丘があり、その原因を、吾妻ほか(2005)は100-200 年間隔の海溝型地震(Bタイプ地震)ではなく、再来周期のより長い 地震一「海溝型地震」と「プレート内の断層活動」の連動(Aタイプ 地震)ーによると解釈した、Fujiwara et al. (2010)は、下位の3段丘の 海浜堆積物の上限を決定し、Aタイプ地震の年代を、BC 3020-2880 年以前、BC 370-190年以前、AD 1300-1370年以前とした.なお、 最下位の隆起海浜堆積物の現標高は0.4-1.6mである.

4 個体の穿孔貝の¹⁴C 年代の暦年補正に、2 つのローカルリザーバ ー補正値(Δ*R*=109±60, -88±43 (Yoneda *et al.*, 2000; Yoshida *et al.*, 2010))を使うと、AD 1395-1505 年と 1273-1385 年となる。先行研 究と合わせて、演者は最新の A タイプ地震は、1361 年の正平(康安)-東海地震とそれに連動した「プレート内の断層活動」と推定した。

¹Rediscovery of emerged boring bivalves at Cape Omaezaki, Shizuoka, Japan
²Akihisa Kitamura (Faculty of Science, Shizuoka University)

コノドントは何をどのように食べていたのか? 仮説1 : gondolellids は筒状・円錐状放散虫を食べていた¹ 山北 聡(宮崎大・教育)²

コノドントは、三畳紀末に絶滅しており、また部分化石としての 産出がほとんどであるため、その古生態には不明な点が多い、しか し、化石として産するのが採餌器官であるので、その食性について はある程度の推測が可能で、特に分類群間で形態差の大きいP₁エレ メントに食性の違いが表れていると考えられる、演者は先に、前期 三畳紀のコノドントを例に取り、P₁エレメントがシンプルなブレー ド状の場合は柔らかい餌を食べていたのに対し、platform や mid-lateral rib が発達する場合は固い餌、たとえば殻を有する浮遊性 生物を捕食していたのではないかと指摘し、捕食対象者の候補とし て放散虫を挙げた(山北、2018).この観点を更に発展させ、ペル ム~三畳紀に優勢な、platform が発達する gondolellids のグループに ついて、その食性を検討したい.

ペルム~三畳紀の gondolellids の P_1 エレメントの platform の長さ および幅の時代ごとの変遷を見ると,筒状・円錐状の殻をもつ放散 虫である Albaillellaria および Nassellaria の殻長・殻幅と相関があるよ

C02

コノドントは何をどのように食べていたのか? 仮説2:coniform P₁ element を持つものはバンパイア¹ 山北 聡(宮崎大・教育)²

コノドントの食性については、化石として産する採餌器官、特に 分類群間で違いの大きい P_1 エレメントの形態に基づいて推察する ことが可能である. 演者の本年会の別講演では、 P_1 エレメントに platform が発達する gondolellids のグループについて議論したが.本 講演では、*Kamuellerella* 等の、前期三畳紀 Spathian に出現した、 P_1 エレメントが coniform であるグループについて検討する.

Kamuellerella の P_1 エレメントは、長大な主歯以外にはごく少数の 小歯しか持たない coniform で、切断したり粉砕したりといった消化 に資する何らかの物理作用を餌に対して施すのに適した形態ではな い.その機能としては、何かに突き刺すくらいのことしか考えられ ない、 P_2 エレメントも同様に長大な主歯をもっており、やはり突き 刺すのに適した形態である。このことから、Kamuellerella は、大き な動物の体表に取りついて、 P_1 および P_2 エレメントを突き立てて孔 をあけ、体液を吸う摂食行動を採っていた、という仮説を立てるこ とができる.Kamuellerella は、他に4対の bipenate のエレメント うに見える. 優勢種どうしの長さ/幅比の時代ごとの増減傾向が概 ね対応しており,サイズとしては platform の方が対象の放散虫より 常に一回り大きい. このことから,gondolellids は,筒状・円錐状放 散虫を P1エレメントのペアで長軸方向を合わせて挟み込み,歯列を 放散虫殻の中心線に沿って当てて殻を縦に割って食べていたのでは ないか,という仮説を立てることができる. このような捕食方法を 採った背景として,Albaillellaria および Nassellaria は,一重の殻の内 部にまとまった量の細胞質が存在し,多重の殻を持ったり細胞質が 分散していたりする Entactinaria・Latentifistularia・Spumellaria のよう な球状・平板状の放散虫に比べると,餌として優良であること,一 方で殻の頂部付近に細胞質が集中するため,補食するにはその部分 を確実に破壊して細胞質を露出させる必要があることなどが考えら れる. ただし,球状・平板状放散虫等の他の餌を食べなかったとは 断言できない.それらは,特に工夫せずとも適当に挟み込んで殻を 割ることで,ある程度は細胞質が得られるであろうからである.

¹What and how did conodonts eat ? Hypothesis 1: Gondolellids fed on radiolarians with cylindrical or conical shell. ²Satoshi Yamakita (Univ. Miyazaki)

 (S_1-S_4) を持つ. Sシリーズの bipenate のエレメントは、多くのコ ノドントで口腔中の開口部に近い部分に配置されており、口腔中に 入った餌を後方へ傾斜する密集した小歯で引っ掛けて逃さないよう にする機能を持つと考えられる.しかし、まばらであったり直立し たりする小歯を有する Kamuellerella の S₁-S₄エレメントは、このよ うな通常の機能とは異なり、吸血対象に食いついて、口腔奥部にあ る P₁・P₂エレメントを突き刺し吸血する間、姿勢を保持するのに用 いたのではないかと思われる. Kamuellerella は、M および S₀のエレ メントを欠くようであるが、これらはこの吸血行動にとって不要な いしむしろ邪魔だったのであろう.一方、Aduncodina も似た形態の coniform の P₁エレメントをもつが、こちらの P₂エレメントは、鉤 状に曲がった主歯・小歯を有する特異なものである.この P₂エレメ ントは、鉤状の歯を引っ掛けて吸血対象に取りつくことを機能とし、 Kamuellerella における S₁-S₄エレメントと同じ役割を担っていたの ではないかと考えられる.

¹What and how did conodonts eat ? Hypothesis 2: Conodonts with coniform P₁ elements were vampires. ²Satoshi Yamakita (Univ. Miyazaki)

C03

種間相互作用を伴う古生態系の非平衡安定性解析¹ 山崎和仁(神戸大学・理)²

生物間相互作用が,古生態系に及ぼす影響に関して,これまで様々 な理論・データ解析が行われてきた(e.g., Chiba, 1998; Vermei ji & Lindberg, 2000; Yoshida, 2002; Aberhan et al., 2006)。特に, 地質学的時間スケールにおいては,古生態系の非平衡性と非線形性 が,その進化・絶滅現象に大きな影響を及ぼしうると考えられる (Chiba, 1998)。そこで本研究では,主に種間相互作用の観点から, 古生態系の安定性に関する基礎研究を非平衡領域で行う。

具体的に使用する方程式は、数理生物学分野でよく使われる非線 形方程式である。この方程式は、時間とともに種数などがどう変化 するかを記述するものであり、十分に時間がたつとある種の平衡状 態に達する。しかしながら、地質学的時間スケールにおいては、系 は常に平衡状態付近にあると予想される。進化や絶滅は、この平衡 状態から別の平衡状態への遷移、すなわち非平衡領域を必ず通過す る。そこで本研究は、まず平衡状態における種数に着目し、それが 環境の変化とともにどう平衡遷移するかを解析する。

本研究では、この環境の変化を二つのパラメタAとBに集約させ

る。パラメタAは、種間相互作用がゼロの場合における平衡種数で ある。したがって、種間相互作用が存在すれば、実質的なAは減少 する。もう一つのパラメタBは、平衡状態にいたるまでの速度を種 数で規格化した量であり、適した環境ほど大きな値をとる。主な解 析結果は以下の通りである(手法の詳細はYamasaki & Yajima, 2016, 2017 など)。

(1)単位環境変化あたりの平衡種数変化量は,種間相互作用が存 在する場合,急激に大きくなる。つまり,種間相互作用は,環境変 化による影響をより増大させる。

(2)種間相互作用がある臨界値を超えると、平衡種数の"歴史依存性"が発現する。すなわち、まったく同じ環境下でも、過去の経路に依存して、平衡種数が大きく変化しうる。

(3) ある平衡種数から別の平衡種数への遷移軌道(非平衡領域内) に関して安定性解析を行った。その結果,遷移過程前半にくらべて 後半における軌道の robustness(外部摂動にたいする"強さ")が 相対的に低下することが解析的に求められた。

¹Non-equilibrium stability analysis of paleo-ecosystem ²Kazuhito Yamasaki (Kobe Univ.)

移動個体群の生物多様性変化¹ 今岡宏太(神大・理)²山崎和仁(神大・理)³

現在、生物が多種多様であるのは種分化を経てきたからであり、 そのメカニズムを解明することは、過去から現在に至るまでの生物 進化の流れを知るうえで非常に重要な古生物学的研究テーマといえ る。数理生物学の分野においても、シミュレーションに基づき、種 分化を促す要因(Kawata, 2002)、生態的中立性(Suzuki & Chiba, 2016)、生物間相互作用(Yoshida, 2002)や eco-fusion(Yoshida & Tokita, 2015)など様々な要因の影響が解析されてきた。しかし、個 体群の移動能力が種分化や生態系に及ぼす影響を解析した例は少な いため、本研究はそこに着目し研究を行った。移動個体群について も種分化を促す要因を解明することで、移動個体群を含めた生物全 体の種分化のメカニズムや、過去の放散で初期の生物がどのように して急速に種数を増加させたかを解明することにつながると思われ る。

各個体が優劣の無い対立遺伝子を持ち、遺伝的変異が突然変異の みで自然淘汰を考えない中立で確率的なモデルを作成し、多主体系 (多体系かつ各個体が意思を持って行動する系)のシミュレーショ ンを行った。生殖隔離の遺伝的機構は2つ以上の遺伝子座に着目したDobzhansky-Muller modelを考えた。また、シミュレーション結果から種多様性を定量化するために種数、元村の多様度指数、Simpsonの多様度指数を扱い、各移動速度による種多様性の大きさを比較した。

シミュレーションの結果、移動個体群の種多様性は移動速度の大 小によって変化するが、移動速度と種多様性の間には単純な比例関 係はなく、ある特定の大きさの移動速度で種多様性は最大値を示し た。このことから、ある空間において移動個体群には種多様性を最 も増加させる適切な大きさの移動速度が存在することが分かる。生 物は移動速度が小さいと近縁種が局所的に集合し、移動が促進され (Hamilton and May, 1977)、逆に移動速度が大きくなると分布が均 一になり、近縁種のとの交配機会が少なくなってしまう。よって、 本研究の「適切な」移動速度とは、その両要素のバランスがとれた 最も効率的に種多様性を増加させる移動速度である可能性がある。

¹Transition of biodiversity in movable populations ²Kota Imaoka (Kobe Univ.) ²Kazuhito Yamasaki (Kobe Univ.)

C05

¹Palaeobiogeographical significance of the Silurian and Devonian trilobites of Japan

²Christopher P. Stocker, ³Mark Williams (Leicester Univ.),
 ⁴Philip D. Lane (Keele Univ.), ⁵Derek J. Siveter (OUMNH, Oxford), ⁶Tatsuo Oji (Nagoya Univ. Mus.), ⁷Simon Wallis (Tokyo Univ.), ⁸Gengo Tanaka (Kanazawa Univ.), ⁹Toshifumi Komatsu (Kumamoto Univ.).

Trilobites are widely represented in the Silurian and Devonian strata of Japan, with taxa described from the South Kitakami, Hida Gaien and Kurosegawa Palaeozoic terranes (see Williams et al., 2014). Here we present a palaeobiogeographical review of nine trilobite groups represented in the Japanese rock succession that have received recent taxonomic revision: Illaenidae, Scutelluidae, Phacopidae, Proetida, Aulacopleurida, Encrinuridae, Cheiruridae, Calymenidae and Lichidae. For example Silurian illaenids and scutelluids show generic and species links with the Australian segment of the Gondwana palaeocontinent (Holloway & Lane, 1998, 2012, 2016); encrinurids show generic-level links between the three

Japanese terranes as well as with Australia and the South China palaeocontinent, (Kobayashi & Hamada, 1974; Strusz, 1980); whilst Devonian phacopids, and possibly proetids, suggest generic-level links with the North China palaeocontinent (Zhou et al., 1990, 2000; Kaneko, 2007; Stocker et al., 2018, in press). The markedly different patterns between the different trilobite groups may in part reflect the fragmentary biostratigraphical record of Japanese trilobites, but also appears to reflect lithofacies and palaeoecological controls. This cautions against the use of the Japanese trilobite assemblages for palaeobiogeographical assessment without reference to their autecology and lithofacies distribution.

1日本のシルル・デボン系三葉虫の古生物地理学的意義

²Christopher P. Stocker, ³Mark Williams (レスター大), ⁴Philip D. Lane (キール大), ⁵Derek J. Siveter (オックスフォード大・自然 史博), ⁶ 大路樹生(名古屋大・博物館), ⁷Simon Wallis (東京大・ 理), ⁸田中源吾(金沢大・国際), ⁹小松俊文(熊本大・理).

C06

ニュージーランド北島 Kapiti 島から産出する後期三畳紀 放散虫 - 高緯度型固有種は存在するのか?¹ 相田吉昭(宇都宮大)²・山北 聡(宮崎大)³・ 武藤 俊(東京大学)⁴・Hamish Campbell (GNS Science)⁵

ニュージーランド北島の南西海岸の沖合 5km に位置する長さ 10km,幅2kmのKapiti島は、上部三畳系の砂岩、礫岩、泥岩、砂 岩・泥岩互層からなる堆積岩類で構成されている。地体構造上、ト ーレステレーンの古期岩類であるラカイアテレーンに属するとされ てきた。Kapiti島の南端、Tahiririmango Pointの西側に露出する泥 岩卓越層中に含まれるリン酸塩コンクリーションから産出した放散 虫群集は、保存不良であるが、Betraccium および Cantalum 属を含み Ferresium や Laxtorum 属が含まれる事に基づいて後期三畳紀(late Norian)の年代を示すことが報告されていた(Blome et al.,1987)。彼ら はKapiti島の放散虫群集は北米カナダのQueen Charlotte島Kunga 層中部 Black Limestone 部層から産出する放散虫群集と類似するこ とを指摘している。1987 年以降 Kapiti島からの放散虫研究は行われ ていなかった。近年、ニュージーランドの基盤岩類の砂岩中の砕屑 性ジルコンの U-Pb 年代の解析が進展し、Kapiti島 South Bay の砂 岩からのジルコンの U-Pb 年代ピークは 203Ma, 223Ma を示す (Adams et al., 2012)。また砕屑性ジルコンの年代分布パターンの類 似性から Kapiti 島の基盤岩はラカイアテレーンではなく, ワイパパ テレーンに属すると解釈されている(Adams et al., 2009)。ワイパパ テレーンの緑色珪質泥岩から産出する三畳紀中期~後期の放散虫群 集は, *Glomeropyle* 属や *Capnuchosphaera* 属の固有種を多数含み高緯 度海域群集として特徴づけられている. 2018 年 3 月,最初の報告以 来 30 年ぶりに Kapiti 島南端部の地質調査を環境保護省(DOC)の許 可を得て実施することができた。Kapiti 島のリン酸塩コンクリーシ ョンから産出した放散虫群集について第一報を報告し,ワイパパテ レーンで特有な南半球高緯度海域に固有な属や種が含まれているの かについて紹介する。

¹ Late Triassic Radiolaria from phosphorite concretions, southend of Kapiti Island, New Zealand – Are there any high latitude endemic species?

²Yoshiaki Aita (Utsunomiya Univ.), ³Satoshi Yamakita (Miyazaki Univ.), ⁴Shun Muto (Univ. Tokyo) & ⁵Hamish Campbell (GNS Science)

First record of rudist bivalves from Cretaceous limestone in the northern part of Myanmar (a preliminary report) Sano, S. (Univ. Toyama), Iba, Y. (Hokkaido Univ.), Tin Tin Latt (Univ.Yangon), Kubota, A. (Hokkaido Univ.), Saw Mu Tha Lay Paw (Myanmar Geosciences Society),

Thura Oo (Univ.Monywa)

Rudist bivalves (Order Hippuritida) flourished in the Cretaceous carbonate platforms in the world ocean. However, they have not been known in the Indochina Peninsula, because terrestrial depositional environments were predominant there, causing the lack of information to discuss the faunal connection between the eastern Tethys and the western Pacific at that time. Here we report the first discovery of the rudists from this peninsula, and preliminary discuss its paleobiogeographical significances.

Rudists are discovered in the massive (over 100 m thick) limestone of the Ku Taung Limestone Member of the Thaungpwet Taung Formation, which crops out along the Ayeyarwady River, near Bhamo in the Kachin State in northern part of Myanmar. Its age is usually assigned to the Albian–Cenomanian, based on the

C08

北海道中央部三笠市に分布する中部蝦夷層群三笠層より産出した 日本最古の珪藻化石群集跡¹ 嶋田智恵子(秋田大)²・Robert G. Jenkins(金沢大)³・ 齋藤めぐみ(国立科博)⁴・山崎 誠(秋田大)²・田中裕一郎(産総研)⁵・ 疋田吉識(中川町自然誌博)⁶

欧米や極域では古第三紀以前の珪藻質岩が大規模に堆積しており, 保存の良い珪藻化石を用いた研究が早くから進展したが (Strel'nikova, 1974など),日本列島では地質学的背景からそうし た地層を欠く.このため著者らは地層の母岩ではなく挟在する炭酸 塩岩を試料として用い,比較的保存の良い珪藻化石群集を発見して きた(嶋田ほか, 2013, 2016, 2018).本論は,北海道中央部三笠 市に分布する中部蝦夷層群三笠層下部のメタン冷湧水性炭酸塩岩よ り,現段階で日本最古の珪藻化石群集を得たので報告する.

中部蝦夷層群三笠層は主として浅海性の堆積物であり,随伴する 大型軟体動物化石相にもとづき,最後期アルビアン期から後期チュ ーロニアン期の地質年代が示唆される(安藤・小玉,1998 など). 市内の奔別(ぽんべつ)川中流に分布する本層のシルト岩あるいは 炭酸塩団塊からは,後期アルビアン期を指標するアンモナイト化石 orbitolinid biostratigraphy (Thura Oo, 2000).

Many individuals of rudists and an oyster-like bivalve: *Chondrodonta* represent paraautochthonous occurrences in micritic lithofacies. Based on the preliminary identification, two radiolitid rudists: *Auroradiolites biconvexus* and *Eoradiolites* sp., and two polyconitid rudists: *Magallanesia rutogensis* and *Horiopleura* sp. are identified. In addition, at least two other rudist genera and nerineoid gastropods are also present. Such faunal composition is very similar to that recently reported from the Lhasa Block in southern Tibet (e.g., Rao et al., 2015). Furthermore, the presence of *Auroradiolites* and *Magallanesia* clearly indicate that this region belonged to the southwest Asian–western Pacific bioprovince at that time.

References: Thura Oo (2000) Ph D. thesis, Univ. Yangon.

Rao et al. (2015) Papers in Palaeont. 1: 345–399. *本研究に公益社団法人東京地学協会平成 29 年度調査・研究助成金を使用した ミャンマー北部の白亜系石灰岩からの厚歯二枚貝の初報告(予報) 佐野晋一(富山大)・伊庭靖弘(北大)・Tin Tin Latt(ヤンゴン大)・久保田彩(北 大)・Saw Mu Tha Lay Paw(ミャンマー地球科学協会)・Thura Oo(モンユワ大)

群集とともに、スエモノガイ科を中心とする化学合成動物化石群集 が産出する(蟹江ほか、1993).同一の露頭から、著者のひとり Jenkins によってメタン冷湧水性炭酸塩岩試料が採取され、一部が 珪藻化石分析用に供された.

珪藻化石群集は小型円盤状と大型(=長い)円筒状の2種が多産 し、双極状の Hemiaulus や小型円盤状の Basilicostephanus などが 随伴する.先行研究で記載された南極海堆積物のアルビアン期群集 (Gersonde and Harwood, 1990)や後期白亜紀の化石記録のなかに 本論の主要2種に該当するものはなく、これらについては新種ある いは新属の可能性も視野に、今後の検討を進める必要がある.中生 代の珪藻化石記録は、自明ながら新生代のそれに比べると乏しく、 三笠層から得られた本論の珪藻化石群集は、初期珪藻の全球規模の 進化的適応放散を理解する上で貴重であり、意義深い.

¹Albian diatom assemblage from the Mikasa Formation, Mikasa area, northern Japan. ²Shimada, C. (Akita Univ.), ³Jenkins, R.G. (Kanazawa Univ.), ⁴Saito-Kato, M. (National Museum of Nature and Science), ²Yamasaki, M. (Akita Univ.), ⁵Tanaka, Y. (AIST), ⁶Hikida, Y. (Nakagawa Museum of Natural History).

C09

西太平洋域における新生代浅海生物多様性変動¹ 安原盛明(香港大)・岩谷北斗(香港大)・Gene Hunt (Smithsonian Inst.)・岡橋久世(香港大)・加瀬友喜(神奈川大)・林広樹(島 根大)・入月俊明(島根大)・Yolanda M. Aguilar (Marine Geological Survey, Philippines)・Allan Gil S. Fernando (Philippines Univ.)・Willem Renema (Naturalis Biodiversity Center)²

熱帯域においては年代のよく決定された化石記録が乏しいため, 新生代における大規模な生物多様性パターンについては,特に西太 平洋域においては,あまり理解が進んでいない.本公演では, Indo-Australian Archipelago 生物多様性ホットスポットに焦点を 当て,新生代を通じての西太平洋域における種多様性の時空変化を 明らかにすることを目的とする.データとしては熱帯だけではなく 中高緯度域にも広く分布し,非常に豊富に化石として保存される微 化石の一種である貝形虫を用いた.低緯度,中緯度,高緯度の種多 様性を比較した結果,全ての緯度で類似して種多様性の変動がみら れた.始新世〜漸新世で低かった多様性が前期中新世から鮮新・更 新世まで増大し続け,その後現在に向かって減少する.新生代にお ける生物多様性の緯度勾配は比較的平坦で,熱帯から中高緯度域へ の減少のような単純なパターンは示さない.このような結果は, 普 遍的な種多様性緯度勾配として知られる熱帯で種多様性が最大にな るようなパターンとは矛盾する.このような相異なるパターンは, 地域的な要因(プレートテクトニクス,地形変化)が西太平洋域の 生物多様性形成に重要な役割を果たしていることを示唆する.

¹English title: Cenozoic dynamics of shallow-marine biodiversity in the Western Pacific

²Author list in English: Moriaki Yasuhara (HKU), Hokuto Iwatani (HKU), Gene Hunt (Smithsonian Inst.), Hisayo Okahashi (HKU), Tomoki Kase (Kanagawa Univ.), Hiroki Hayashi (Shimane Univ.), Toshiaki Irizuki (Shimane Univ.), Yolanda M. Aguilar (Marine Geological Survey, Philippines), Allan Gil S. Fernando Philippines Univ.), and Willem Renema (Naturalis Biodiversity Center)

ベトナム北部シーファイ峠に分布する上部デボン系の コノドント生層序¹ 稲田稔貴(熊本大・院・自)²・小松俊文(熊本大・院・先)³・ 浦川良太(サンコーコンサルタント株)⁴・前川匠(熊本大・水循環 センター)⁵・高嶋礼詩(東北大・博)⁶・グエン・ダック・フォン(VIGMR)⁷・

ザン・ディン・フン (VNMN)⁸

ベトナム北部ハーザン省(Ha Giang Province)のシーファイ峠 (Si Phai Pass)には、デボン系〜石炭系が分布している.上部デボ ン系を主体とするトクタット層(Toc Tat Fm)の下部は、フラスニア ン階とファメニアン階からなり、ケルワッサー事変やフラスニアン/ ファメニアン境界(F/F境界)を挟んでいる.本研究では、シーフ ァイ峠におけるトクタット層の下部で地質調査を行い、コノドント 化石を用いて詳細な地質年代の推定や生層序を確立することを研究 の目的とした.

調査地域のトクタット層は、厚さ数 cm~50cm 程度の層状の灰色 石灰岩を主体としており、赤褐色や灰緑色のマールや珪質泥岩の薄 層を頻繁に挟む.層状石灰岩の多くは、タービダイトと半遠洋性の 堆積物からなり、厚さ0.1~3m ほどの石灰角礫岩やスランプ層を伴

C11

タイ国西部 Nong Prue 地域に分布するチャート角礫岩から産する ペルム紀および三畳紀放散虫とその産出意義¹ 指田勝男(筑波大)²・Sirot Salyapongse (Mahidol Univ.)³

タイ国西部の Kanchanaburi 北方に位置する Nong Prue 周辺にはシ ルル・デボン系とされる石灰岩,チャート,砂岩,泥岩等よりなる Bo Phloi 層 (Bunopasu, 1981) が広く分布する. 演者らは本層のチャ ートから後期ペルム紀~中期三畳紀放散虫を報告した(指田ほか, 1998; Sashida et al., 2017). 最近演者らは Nong Prue 地域の再調査を 行い,北東部に分布するチャート角礫岩を採取し,放散虫化石の抽 出を試みた.その結果,採取した4試料から中期・後期ペルム紀, および中期三畳紀の放散虫化石を得ることができた.本報告では得 られた放散虫化石を紹介するとともにその産出意義について述べる.

チャート角礫岩はNong Prueの北東方約5km に位置する小高い山 並の中腹に露出する.礫岩層の走向・傾斜は北西・南東方向の走向 で南に30°程度傾斜し,層厚は10m 程度と思われる.礫岩層と下位 および上位の地層との関係は露頭条件が悪く不明である.チャート 角礫は一般的に長径2~3cm 程度で、淘汰が悪く、稀に握り拳大の 角礫も含まれる.チャート以外の角礫は含まれない.基質は細粒~ う. これらの地層は、炭酸塩プラットフォームの斜面や海盆縁辺で 堆積したと思われ、炭酸塩岩からはコノドントやオストラコーダ、 テンタキュリトイドなどの微化石を多産する.

石灰岩試料からは、上部デボン系のコノドントが少なくとも5属 29 種産出した.その中にはフラスニアン階最上部に特徴的な Palmatolepis linguiformis やファメニアン階の基底を特徴づける Pa. triangulalis などの上部デボン系のインデックスとして重要なコノド ントが含まれていた.これらの指標種の初産出層準に基づいて、下 位から Pa. nasuta 帯, Pa. linguiformis 帯, Pa. triangulalis 帯, Pa. minuta minuta 帯, Pa. glabra prima 帯, Pa. marginifera 帯の6帯を区分するこ とができ、フラスニアン階上部からファメニアン階中部にかけて、 国際対比が可能なコノドント帯を確認することができた.

¹Upper Devonian conodont biostratigraphy in Si Phai Pass, Northern Vietnam.

²Toshitaka Inada (Kumamoto Univ.), ³Toshifumi Komatsu (Kumamoto Univ.), ⁴Ryota Urakawa (Suncoh Consultant Co., Ltd.), ⁵Takumi Maekawa (Kumamoto Univ.), ⁶Reishi Takashima (Tohoku Univ.), ⁷Nguyen D. Phong (VIGMER), ⁸Doan D. Hung (VNMN)

粗粒なチャート起源の砂岩で,新鮮な部分は暗緑色を呈する.今回 の処理は数 cm 大に砕いたチャート角礫岩(約300~500g)を一試料 として酸処理を行った.採取した4試料はほぼ同様の放散虫を産す る.放散虫の保存状態は良好ではないが,以下のようなペルム紀お よび三畳紀の放散虫が得られた.すなわち*Pseudoalbaillella globosa*, *P. fusiformis, Follicucullus porrectus, F. scholasticus, F.* spp., *Albaillella levis, Ishigaum* sp. *Triassocampe deweveri, T. coronata, T.* sp. *Pseudostylo sphaera* sp. 等である.ペルム紀放散虫は中期ペルム紀の *P. globosa* ~*Fo. scholasticus* 群集および,後期ペルム紀の *Albaillella levis –A. excelsa* 群集(Aichison et al., 2017)の放散虫動物群に相当する.三畳 紀放散虫は中期三畳紀の Anisian を示す *Triassocampe coronata* 帯,お よび *T. deweveri* 帯(Sugiyama, 1997)に比較される.本チャート角礫 岩の産出は中期三畳紀以降に古テーチス海の閉塞に伴う急激な浅海 化あるいはチャート層の破壊を起こすようなイベントがあったこと を示唆している.

¹ Permian and Triassic radiolarians from brecciated chert distributed in the Nong Prue area, Western Thailand and their significance.

² Katsuo Sashida (Tsukuba Univ.), ³Sirot Salyapongse (Mahidol Univ.)

C12

ネバダ州 Crittenden Springs の含アンモノイド石灰岩から産出した スミシアン亜期(前期オレネキアン期)のコノドント化石¹ 前川 匠(熊大・水循環センター)²・James F. Jenks(ユタ州ウエ ストジョーダン)³・重田康成(国立科学博・地学)⁴

ネバダ州北東部に位置する Crittenden Springs は、古くから前期 三畳紀アンモノイド化石を多産する石灰岩(いわゆる Meekoceras beds)の存在が知られており、アンモノイドを用いた生層序学的な 研究が行われてきた.それらの含アンモノイド石灰岩からは、コノ ドント化石の産出が報告されているが、それを用いた分類学的・生 層序学的研究は近年ほとんど行われていなかった.本研究では、同 地域の石灰岩からコノドント化石を抽出して種同定及び生層序区分 を行ってテチス海やパンサラッサ海の同時代の地層と比較した.

調査地に露出する含アンモノイド石灰岩は,層厚0.5~1 m,幅2~3 m ほどのブロック状となって点在しており,周囲の地層と岩相や走向傾斜が異なることから,異地性の石灰岩ブロックであることが示唆される.本研究では,比較的層厚がある2つの石灰岩ブロックを対象とした.それらは,下部~中部はMeekoceras属やOwenites属などの中部スミシアン亜階のアンモノイド化石を含み,上部にス

ミシアン亜階上部を示す Condensoceras youngi を含む.また、中 上部間に Anasibirites 属のアンモノイドを含むレンズ状の石灰岩 が挟まれる.コノドント化石は全体的に保存状態の良いものが多く、 下部から中部では Conservatella conservativa や Guangxidella bransoni が、レンズ状石灰岩と上部からは Scythogondolella milleri が、上部からは Novispathodus pingdingshanensis が産出 した.また、スミシアン亜階に特有な Nv. ex gr. waageni は、下部 から上部まで連続的に産出した.このことから、含アンモノイド石 灰岩の下部~レンズ状石灰岩までは、Nv. ex gr. waageni 帯の中~ 上部に相当し、上部は Nv. pingdingshanensis 帯に相当すると考え られる.これは、南中国や西南日本の下部三畳系から報告されたス ミシアン亜紀のコノドント生層序と類似しており、テチス海東部~ パンサラッサ海東部までを、アンモノイドとコノドント化石を用い ることで詳細に対比可能なことが判明した.

¹Smithian (early Olenekian) conodonts from the ammonoid bearing limestones of the Crittenden Springs, Nevada

²Takumi Maekawa (Kumamoto Univ.), ³James F. Jenks (West Jordan, Utah), ⁴Yasunari Shigeta (National Museum of Nature and Science)

ジュラ・白亜系境界と放散虫の進化系統1

松岡 篤 (新潟大・理)²

ジュラ・白亜系境界 (JKB) は、カンブリア系より上位の地質系 統のなかで、国際境界模式層断面とポイント (GSSP) が未決の状態 にある唯一の系境界である.国際層序委員会 (ISC) は、2020 年ま でにすべての階境界について GSSP を確定することを目指している. このような状況の中で、2018 年7月のパリでの IPC 5 では候補セク ションにおける成果の公表が期待されている.

国際白亜系層序小委員会の Berriasian ワーキンググループ(WG) は、JKB の定義として Calpionella alpina 帯の下底を用いることを 2016年6月に決定した.しかしながら、カルピオネラ(石灰質浮遊 性微化石)をJKBの定義として使用することには大きな問題がある. それは、カルピオネラの産出がヨーロッパ地域を含む狭い地域の浅 海層に限られているからである.したがって、カルピオネラの生層 序基準面そのものによるJKB の認定は、アジアのほとんどの地域、 オセアニア、環太平洋地域および太平洋の海洋域では行えないこと になる.このことは、カルピオネラの分布域以外では、JKBの認定 に必ず別の副次的な指標が必要であることを意味している.

カルピオネラよりもはるかに分布範囲が広い放散虫は多い.中低 緯度のさまざまな水深の海成層から得られ,JKB 近傍の生層序学的 検討に有用な属としては,Alievium,Archaeodictyomitra, Cinguloturris, Complexapora, Crococapsa, Doliocapsa, Emiluvia, Eucyridiellum, Hemicryptocapsa, Hsuum, Loopus, Mirifusus, Neorelumbra, Pantanellium, Protunuma, Podocapsa, Pseudodictyomitra, Ristola, Tethysetta, Thanarla, Vallupus, Xitus, Zhamoidellum などがあげられる.これらのうち,JKB との関連で特に重要なタクサである Loopus - Pseudodictyomitra およ び Vallupus 類の進化系統に関する検討結果について報告する.

2017 年 10 月に新潟で開催された InterRad 15 では、中生代 WG の 会合において、JKB にかかわる意見交換を行った. これを受けて InterRad でも JKB 問題について対処することになった. 2018 年 12 月にスイス・ジュネーブで開催される JK2018 に向けて、Baumgartner, Gorican および松岡が Scientific Committee のメンバーになっている. JK2018 では、放散虫にかかわるセッションを開催する予定である.

¹Jurassic/Cretaceous boundary and evolutionary lineages of radiolarians. ²Atsushi MATSUOKA (Niigata University)

フランス Vocontian Basin の上部白亜系統合層序¹ 西弘嗣(東北大・博物館)²・Babu Ram Gyawali(トリブバン大)³・ 高嶋礼詩(東北大・博物館)⁴

フランス南東部の Vocontian 堆積盆地には白亜系下部〜上部が広 く分布する。同地域の白亜系は保存良好な大型・微化石を多産する ことから、テチス地域を代表する層序として国際的にも重要視され てきた。実際, Aptian/Albian 境界や Albian/Cenomanian 境界の GSSP は、同地域で設定されている。また、この地域の白亜系は海洋無酸 素事変を特徴づける黒色頁岩が挟まれることから、白亜紀の古環境 研究も盛んに行われてきた。このように同地域についてはステージ 境界付近および黒色頁岩を頻繁に挟む Aptian〜Albian 区間について は詳細な統合層序が設定されてきたが、上部白亜系についての層序 学的検討はほとんど行われてこなかった。

今回,我々は Vocontian Basin 南東部地域の4 つのセクション
 (Vergons, Angles, Moriez, Lambruisse) に露出する Upper Abian~
 Upper Turonian の区間において、石灰質ナノ化石、浮遊性有孔虫化石、炭素同位体比を検討し、統合層序を確立した。石灰質ナノ化石
 については、およそ 135 種が同定され、11 の化石帯 (BC26, UC0)

C15

山中層群石堂層及び秩父盆地新第三系白沙層の チャート礫・珪質泥岩礫より産する微化石¹ 大関仁智・清水紀和・上松佐知子・指田勝男(筑波大学)²

関東山地の秩父帯中軸部には下部白亜系山中層群(Hauterivian~ Cenomanian?)と秩父盆地新第三系(中新統下部~中部)が分布して いる.山中層群は下位より白井層,石堂層,瀬林層,三山層に区分 され(例えば,松川・富島,2009),石堂層における層間礫岩や三 山層における瀬林層との間の基底礫岩が知られている.一方,秩父 盆地新第三系は秩父盆地層群として下位より白沙層,富田層,子/ 神層,小鹿野町層,秩父町層に区分され(例えば,高橋・柳沢,2004), 白沙層と基盤岩であるジュラ紀付加体との間には基底礫岩が存在す る.これらの礫岩層がチャート礫を含むことは以前から知られてい るが,このようなチャート礫・珪質泥岩礫から産出する微化石につ いてはこれまでほとんど報告されていない.

演者らは山中層群石堂層及び三山層と秩父盆地新第三系白沙層中 の礫岩層よりチャート礫・珪質泥岩礫を採集し、微化石の抽出を試 みた.その結果、山中層群石堂層の層間礫岩層中の礫8試料、犬木 及び前原に露出する新第三系白沙層基底部の礫4試料から年代決定

C16

日本における過去 20 年間の新第三系放散虫層序学の進展¹ 本山 功(山形大・理)²・上栗伸一(茨城大・教育)³

日本における新第三系放散虫層序学は、石油探鉱への応用を目的 として 1950 年代に端緒を開き、その後目覚ましい発展を遂げてきた. 本講演では、本山(1999a, b)によるレビュー以降の、日本を含む北 西太平洋における年代決定ツールとしての新第三紀放散虫化石層序 学の歩みについて紹介し、その応用としての放散虫化石を用いた本 邦新第三系の対比・年代論の研究例をレビューする.

この20年間を振り返ると,放散虫化石層序と古地磁気層序との直 接対比が進められ年代決定ツールとしての成熟度が増し,それによ って陸上セクションの層序対比や年代決定精度が格段に高められた 躍進の時代だったといえる.すなわち,第一に,深海掘削コアに基 づいて中部中新統にまで遡って古地磁気層序との直接対比がなされ, それによって化石帯と生層序イベントの数値年代が精度良く求めら れた.第二に,北西太平洋,カリフォルニア沿岸海域,日本海など の異なる海域の地域的な放散虫化石層序の研究が進んだこと,そし て,第三に,改訂された放散虫化石帯が陸上の新第三系セクション の対比に適用されるようになったことを指摘できる.これらの進歩 ~UC9) と 26 の生基準面を見出し,浮遊性有孔虫化石については, Ps. ticiensis, Pa. appenninica, Th. Globotruncanoides, Th. Reicheli, R. cushmani, W. archaeocretacea, Hel. Helvetica, M. schneegansi の各化石 帯を識別することができた。これらの化石層序と炭素同位体比を組 み合わせた結果,イギリスの English Chalk の上部白亜系において定 義された炭素同位体比曲線のピーク全て (Albian/Cenomanian Boundary Event, Mid-Cenomanian Event I, II など)を本地域の白亜系の 炭素同位体比曲線のピークと詳細に対比することが可能となった。 Vocontian 堆積盆地の上部白亜系は、大型化石も多産することから、 今後、大型化石も組み合わせることにより、テチス地域の標準層序 として重要となる可能性が高い。

¹Integrated stratigrahy of the Upper Cretaceous sequence in the Vocontian Basin, SE France.

²Hiroshi Nishi (Tohoku Univ.), ³Babu Ram Gyawali (Tribhuvan Univ.), ⁴Reishi Takashima (Tohoku Univ.)

に有効な放散虫化石やコノドント化石を得ることができた。得られた放散虫化石にはAlbaillellaやFollicucullusなどのペルム紀を示すものや、中期三畳紀のAnisianを示すEptingium manfredi,また中期ジュラ紀を示すHexasaturnalis hexagonus が含まれる。また、石堂層の 層間礫岩層中のチャート礫・珪質泥岩礫と大木における白沙層の基底礫岩層中の珪質泥岩礫からは前期三畳紀の角状コノドントが得られた。

検討を行った各礫岩層中の礫種や得られた微化石及びその示す年 代が互いに類似することは、山中層群や秩父盆地新第三系が堆積し た当時,現在関東山地を構成するジュラ紀付加体がすでに後背地と して存在していたことを示すものである.

¹Microfossils from chert and siliceous mudstone pebbles from the Lower Cretaceous Ishido Formation of the Sanchu Group and the Shirasu Formation of the Chichibu Neogene formations, Saitama Prefecture, Central Japan

²Masanori Ozeki, Norikazu Shimizu, Sachiko Agematsu, Katsuo Sashida (Tsukuba Univ.)

とともに、分類学的研究により学名の整理や新種の記載がなされ、 低次から高次分類群におよぶ分類体系の見直しも進められてきた. また、最近とくに日本周辺海域において第四紀放散虫化石帯の研究 が活発化している点が注目される.

過去 20 年間の日本の陸上セクションにおける新第三系放散虫化 石層序の研究は、北は北海道から南は沖縄県に至る広域から多数報 告されている.とくに新第三系の主要な分布域に一致する関東・信 越・東北・北海道で数が多い.本州の日本海側と北海道における研 究はすべて中部中新統かそれ以新の地層を対象としているが、太平 洋側では下部中新統を対象とした研究も少なくない.中部中新統か それ以新の研究のほとんどでは本山(1999a)かそれ以降の化石帯が 用いられており、数値年代に関しては、CK95 に基づくものが大半で あり、ATNTS2004 に基づくものは2、3 編に限られる.

¹A review of Neogene radiolarian biostratigraphy in Japan during the last two decades

²Isao Motoyama (Yamagata Univ.), ³Shin-ichi Kamikuri (Ibaraki Univ.)

北海道北東部に分布する中新統の層序学的整理と 渦鞭毛藻シスト化石層序による対比の試み¹ 林 圭一²・廣瀬 亘³・川上源太郎⁴(道総研 地質研究所⁵)

北海道北東部オホーツク総合振興局管内には、広く海成の中新統 が分布している.これらの中新統は、古くから地質・岩相層序の検 討が行われているが、調査時期の違いなどから地域ごとに異なる地 層名が設定されており、統一的な層序対比が進んでいないのが現状 である.また、これらの中新統の地質年代について、珪藻化石によ る生層序学的検討が行われているものの(例えば、小泉、1988;渡 辺ほか、2018)、全ての地層から珪藻化石が産出するわけではない ため、詳細な地質年代対比には至っていない.

本研究では、網走地域の比較的連続性のいい中新統で珪藻化石と ともに検討された渦鞭毛藻シスト化石帯(林ほか,2018)と、北海 道北東部の中新統である車止内層、能取層、登以加層の各地層につ いて群集を比較し、それぞれの地層の生層序学的対比を試みた。

毛当別川流域で連続的に資料を採集した登以加層からは中期中新 世後期~後期中新世前期に対比される Capillicysta fusca 帯~ Spiniferites hexatypicus 帯の群集が産出した.この群集は網走地域に

C18

鹿児島県喜界島の上部新生界石灰質微化石層序¹ 千代延俊・山﨑誠(秋大・国資)²・松田博貴(熊大・理)³・ 鳥井真之(熊大・CWMD)³・佐々木圭一(金院大)⁴

鹿児島県喜界島は琉球列島の最も東側に配列する島の一つであ り、沖縄本島中部以北では唯一,泥岩を主体とする島尻層群早町層 が分布し、その上位をサンゴ礁性堆積物からなる琉球層群が広く覆 っている.この早町層では浮遊性有孔虫化石および石灰質ナンノ化 石が調査され前期更新世に対比されている(Huang, 1966;西田, 1973).ところで、琉球列島の沖縄島中南部には、石灰質泥岩およ び砂岩からなる知念層が島尻層群と琉球層群の間に共在されている. この知念層は層位学的にも岩相的にも両層群の中間的な性格を有し ており、琉球列島周辺海域が泥質物が堆積する環境から、礁性堆積 物が堆積する環境へと変化を遂げた時期や要因を解明するため重要 な堆積物とされてきた(中川ほか,2001;佐藤ほか,2004など).近 年は、その地質年代や層位関係などが明らかになり、島尻層群から 知念層への変化は本島で同時期に起きたものではなく、地域によっ て時期が異なることが明らかになってきた(小田原ほか,2005;千代 延ほか,2009;藤田ほか,2011).一方で、知念層の分布は沖縄島南 分布する鱒浦層および網走層上部と同じ群集であり(林ほか,2018), 少なくとも毛当別川セクションの登以加層は, 鱒浦層および網走層 と同時代の地層と考えられる.

一方,北見市卯原内ダム周辺のセクションに分布する車止内層および北見市端野付近の能取層からは産出数が少ないものの,前期中 新世に対比される Spiniferites spp.-Tuberculodinium rossignoliae 帯~ Cleistosphaeridium ancyreum-Lejeunecysta hyalina 帯の渦鞭毛藻シス ト化石群集が産出した.これは能取湖周辺地域の常呂層と同一の化 石群集である.また,車止内層の一部層準からは,Spinidinium? tripylum の産出があり,常呂層下部および津別層から産出する漸新 世末の群集 (栗田ほか, 1998;林ほか, 2018)とも類似する.

これらの渦鞭毛藻シスト化石による層序対比の結果,北海道北東 部の中新統について,統一的な地質年代対比による地層の統合・整 理の可能性が示された.

¹Re-examination of a regional stratigraphic correlation of the Miocene sequences by dinocyst biostratigraphy in Northeastern Hokkaido, Japan ²Keiichi HAYASHI, ³Wataru HIROSE, ⁴Gentaro KAWAKAMI (⁵Geological Survey of Hokkaido, HRO)

部に限られ、島尻層群から知念層、琉球層群への堆積時期および過 程に関しては琉球列島全域では解明されるに至っていない.このよ うな状況のもと、2017 年豪雨災害による斜面崩壊で、喜界島の島尻 層群層町層の上位に知念層に相当する岩相をもつ地層が発見された (松田ほか、2018).

そこで、これまで化石帯の詳細な区分がなされていない喜界島に分 布する早町層および琉球層群に、今回発見された知念相当層を加え て、石灰質ナンノ化石および浮遊性有孔虫化石層序を検討した.そ の結果、喜界島に分布する島尻層群が約3.0~1.7 Ma、知念層が約 1.7~1.4 Ma に相当することが明らかとなった.この地質年代に相当 する層準は、南部九州宮崎地域~沖縄本島にかけて広く分布してお り、本報告では南西諸島間での島尻層群~知念層相当層への環境変 化のタイミングの相違を地域間対比から紹介する.

¹Upper Cenozoic calcareous microfossil biostratigraphy in the Kikaijima Island, Kagoshima, Japan

²Shun Chiyonobu, Makoto Yamasaki (Akita Univ.), ³Hiroki Matsuda, Masayuki Torii (Kumamoto Univ.), ⁴Keiichi Sasaki (Kanazawa Gakuin Univ.)

C19

オウムガイ類の殻形態の多様性は比表面積に制約される¹ 生形貴男(京大・理)²

アンモノイド (Ammonoidea) と狭義のオウムガイ類 (Nautilida) は、頭足類の中で比べれば互いに近縁なわけではないが、どちらも 外殻性であり、浮力を得るための気房部を備えている.いずれの系 統でも多様な殻形状が見られるが、遊泳性ないしは遊泳底生であっ たと考えられることから、特にアンモノイドにおいて、殻の静水力 学的形状特性や流体力学的形状特性が注目されてきた.静水力学的 形状特性を単位体積当たりの形成殻の表面積(比表面積)で、流体 力学的形状特性を単位体積当たりの進行方向への殻体投影面積(比 投影面積)によって評価した場合、両者の間にはトレードオフの関 係が成立し、どちらかを犠牲にしなければ片方の機能特性を向上さ せられないようなパレートフロントが存在する.アンモノイドには、 水の抗力を受けやすいが重くなりにくい形状から、形状抵抗を小さ くしやすいが重くなりやすい形状、さらには重くなりやすくかつ抵 抗も受けやすいようなものまで様々な殻形状の種が見られる.

本研究では、6,000種以上のアンモノイドに加え、250種以上のオウムガイ類について、文献写真等から Raup の3パラメータを計測

し、各種の形状近似モデルに基づいて比表面積と比投影面積を計算 するとともに、両者のトレードオフが作り出すパレートフロントか らの距離も見積もった.現生のオウムガイ3種は、いずれもほぼパ レートフロント上の比表面積最小側の端に位置し、殻が重くなりに くい形状に最適化されているようであった.一方, 化石オウムガイ 類は、アンモノイドと比べると、特にパレートフロントに近いとこ ろに分布するわけではないものの、比表面積が小さいものがほとん どであり、比投影面積が小さいものは少なかった. つまり、遊泳時 の抗力を小さくするより, 殻が重くならないことを優先しているよ うであった.以上のように、オウムガイ類の殻形態の多様性も、ア ンモノイド同様、相反する二つの機能特性によるパレート最適だけ では上手く説明できない. しかし, アンモノイドと比べて, オウム ガイ類では、系統・時代を問わず、浮力の確保がより重要であった ことが示唆される.アンモノイドよりもオウムガイ類の方が形態空 間における分布が狭い範囲に限られているが、これは比表面積を大 きくしすぎないという制約で良く説明できそうだ.

¹Constraint of specific surface area on nautilid conch ²Takao Ubukata (Kyoto Univ.)

ジグザグを持つ腕足動物 Vinlandostrophia ponderosa の適応戦略¹ 椎野勇太(新潟大・理)²・土田貴史(新潟大・理)³・

オルドビス紀における生物間の相互作用や環境の細分化は、オル ドビス紀大放散と呼ばれる生物種の爆発的な多様性増大イベントを もたらした.中でも、オルティス目(Order Orthida)に属する腕足 動物は、このイベントを特徴づける海洋無脊椎動物であり、記載分 類学・層序学的な研究を通して、多様性のテンポとパターンに関る 情報の蓄積が進んでいる.しかし、なぜオルティスの仲間が適応放 散を遂げたのか、といった生態的特性に言及した研究は少ない.そ こで本研究では、オルティス目の1種である Vinlandostrophia

ponderosa を題材に、古生態の復元を試みた.特に、殻形態と濾過摂 食水流との関係に注目し、模型と水槽を用いた流体力学的研究を行った.

V.ponderosa の中空模型を用いて流水の可視化実験を行った結果, 本種の殻形態は,受動的に渦様回転流を形成できる機能を持ってい たことが明らかになった.この渦様旋回流は,背殻と腹殻のどちら が上流であっても形成されており,本種の受動的濾過水流であった 可能性がある.形態測定学的にみた本種の殻形態は,殻内側の左右

C21

ウミホタル上目貝形虫の背甲超微細構造¹ 山田晋之介(国福大・医)²

現生貝形虫類には、カイミジンコ上目 (Podocopa) とウミホタル 上目 (Myodocopa) の2グループが存在しており、前者は強く石灰 化された背甲を持つため、豊富な化石標本が報告されているのに対 し、後者は背甲の石灰化が弱く、化石標本が産出することは稀であ る. それゆえ、背甲構造に関する研究の数はカイミジンコ上目に比 べ、ウミホタル上目では著しく少なく、背甲構造における基本的な 知見においてさえ、未だ統一的な見解は得られていない.

本研究では、静岡県静浦港にて採集した Euphilomedes japonica を用いた電子顕微鏡(SEM・TEM)観察の結果に基づいて、背甲超微 細構造とその形成について論じた.電顕観察の結果から、本種の背 甲構造は他の節足動物の外骨格と同様に、4つの層(上クチクラ・ 外クチクラ・内クチクラ・膜層)からなることが判明した.背甲の TEM 観察の結果、外クチクラではキチン-タンパク線維の積層が、内 クチクラには同線維の網目構造が発達している様子が確認できた. 背甲割断面を SEM で観察すると、これらの有機質基質の構造の違い に対応して、外クチクラには平滑な石灰質面が、内クチクラには無

C22

Truncatoflabellum gardineri 骨格に認められる破損・修復痕を用いた 沖合軟底質上でのイシサンゴの捕食圧の解明¹

徳田悠希(鳥取環境大)²・石黒泰弘(鳥取環境大)³・江﨑洋一(大 阪市大)⁴・千徳明日香(クイーンズランド大)⁵

サンゴ礁域に生息するイシサンゴでは、魚類や棘皮動物などによ る被食について詳細に研究されている.しかし、沖合軟底質上に生 息するイシサンゴ(目全体の約25%に及ぶ)の被食状況や捕食圧に 関する研究は非常に少ない.そこで、本研究では自由生活性の単体 イシサンゴ Truncatoflabellum gardineri の骨格に認められる破損と修 復の痕跡から、沖合軟底質上におけるイシサンゴの被食状況の解明 を試みた.熊本県天草市牛深沖水深 80-120 m で採集された 1273 個 体のうち、338 個体(約27%)の骨格で破損と修復の痕跡が確認され た.とくに破損については、以下の4つの破損状況が認められた. (1)ロー反口軸に対して直交方向に骨格が破損、(2)隔壁及び壁上 部の一部欠損、(3)ロー反口軸に対して平行方向に骨格が切断、(4) 骨格の断片化. T. gardineri で認められた骨格の破損は全て直線状に 破壊されており、複数回の破損と修復が確認される個体も存在した. に螺旋状の触手冠を収める空間構造を持っている.つまり本種は, 螺旋状の触手冠を使って渦様回転流から効果的にエサを濾過摂食で きる適応形態であったと考えられる.また,本種に特徴的なジグザ グコミッシャーを人為的に欠落させた模型を用いて実験を行った結 果,元々の模型よりも渦様回転流が速く回転した.このことから, ジグザグコミッシャーは,殻内側で生じる流れを弱化させる機能を 備えていたといえる.

オルドビス紀の腕足動物を題材にした群集生態学的研究によれば, V. ponderosa は、特定のニッチに制約されず、オポチュニスト的な産 出傾向を示す.つまり V. ponderosa は、底質や流体の化学的組成な どの特異的な環境要因に依存せず、殻内側の濾過水流を安定させる 形態機能によってロバストな適応戦略を実現できたのかもしれない.

¹ Adaptive strategy of orthid brachiopod *Vinlandostrophia ponderosa*: A likely function of zig-zag commissure

² Yuta Shiino (Niigata Univ.), ³ Takafumi Tsuchida (Niigata Univ.)

数の多面体状の石灰質結晶が観察された.ウミホタル上目の多くの 種は、石灰化が全く行われていない、あるいは非晶質炭酸塩により 弱く石灰化された背甲を持つが、本種の背甲クチクラは方解石を含 有していると考えられる.脱皮後の個体の背甲を経時的に観察した 結果、脱皮直後から非晶質炭酸塩からなる球晶が最外部に積み重な り、経時に伴って球晶が同心円状に成長し、隣接する球晶と接触し て成長が停止した結果、多面体状結晶がクチクラ内に確認されるこ とがわかった.また、球晶の析出と有機質基質の網目構造の合成は、 脱皮直後から同時に進行することも明らかになった.

本種は海底堆積物の表層を這う底生種である.ウミホタル上目の 他の種よりも背甲が強く石灰化されており、その堅牢な背甲は底生 生活に適応的である.ウミホタル上目貝形虫には、遠洋種・半底生 種・底生種が確認されているが、同上目の持つ背甲構造の多様性は、 これらの様々な生活様式への適応に貢献している.

¹Carapace ultrastructure of the myodocopan ostracods ²Shinnosuke Yamada (IUHW, School of Medicine)

T. gardineri の生息水深は暴浪時波浪限界以下であり、物理的営力が 小さい環境である.このような環境において、骨格を直線状に破壊 するためには、骨格を対称的かつ直線的に挟むように力を加える必 要がある.そのことから、鉗脚を有する十脚類などの生物により骨 格が破壊された可能性が高い.

単体サンゴにおける骨格の破損と修復は、古生代の沖合軟底質上 に生息した四放サンゴにおいても認められる.しかし、その骨格の 破損では骨格の断片化が顕著で、骨格の破断面も曲線状や波状を呈 し、*T. gardineri* で認められるような直線状の形状ではない.四放サ ンゴの捕食者は、貝類などを噛み砕き捕食する魚類が推測されてお り、扁平な歯で押しつぶすように骨格が破壊されたため、断片化が 著しいと考えられる.

沖合軟底質上に生息する単体サンゴは、古生代から現在まで"高 次捕食者"の被食者であるが、単体サンゴの主要な捕食者は中生代 における十脚類の多様化とともに大きく変化した可能性が高い.

¹Skeletal damages and repairs of a solitary azooxanthellate scleractinian *Truncatoflabellum* ²Yuki Tokuda, ³Yasuhiro Ishiguro (TUES), ⁴Yoichi Ezaki (Osaka City Univ.), ⁵Asuka Sentoku (The Univ. of Queensland).

「東北大学に所蔵されている中新統産ウミニナ科貝類化石」¹ 高橋宏和(筑波大学・附属駒場高等学校理科)²

戦前から戦後にかけて、矢部久克を始めとする、東北大学の数多 くの研究者らにより、新生代貝類化石の記載・報告がなされてきた。 今回、私がかつて東北大学を訪問した際に、観察・撮影をさせて 頂いた中新統産ウミニナ科貝類化石について若干見解を述べたい。 東北大学において、新種として記載・報告された中新統産ウミニ ナ科(巻貝)の主なものには、以下の種が上げられる。 Telescopium schencki (Hatai and Nisiyama, 1949) Vicarya callosa japonica Yabe and Hatai, 1938 Vicarya callosa martini Yabe and Hatai, 1938 Vicarya yatsuoensis Yabe and Hatai, 1938 Vicaryella tyosenica Yabe and Hatai, 1938 Vicaryella nipponica Yabe and Hatai, 1938 Vicaryella jobanica Kamada, 1960 Menkrawia notoensis (Masuda, 1956) Cerithideopsilla tokunariensis (Masuda, 1956) Batillaria toshioi Masuda, 1967

Telescopium schencki の模式標本はいくぶん摩耗されており、同 じ産地より Oyama (1950) により記載された本種のシノニムである T. nipponicumの方が保存良好で、こちらを副模式標本に指定したい。 Vicarya callosa martini は V. yokoyamai の変異の中に入るもの、

V. yatsuoensisは八尾地域のみ産する不完全な標本をもとにしたもので、同地域で多産する V. yokoyamai との類似性が指摘される。

Vicaryella tyosenica は螺肋の発達に大きな変異が見られるのが 特徴で、*V. jobanica* も小型で同様な装飾を伴う。*V. nipponica* は 実際は2個体のみで、*V. atsukoae* (0tuka, 1934)に極めて類似する。 Yabe and Hatai (1938)によって図示された標本の1つは、備北地域 における所謂 "V. bacula" (=Menkrawia ishiiana)に同定される。

Menkrawia notoensisには縫合下のとげの数に地理的変異がある。 Cerithideopsilla tokunariensisの模式標本は、1978年の宮城県 沖地震の影響により、所在が確認できなかったが、螺肋や縦肋の発 達具合や縫合下の溝の浅さから、本属に含めるかは要検討である。

¹ Remarks on the Miocene Potamidid molluscan fossils stored in the Tohoku University.

² Hirokazu Takahashi (Univ. of Tsukuba, High School at Komaba).

東シナ海の表層コアから見積もられた堆積速度と底生有孔虫群集¹ 辻本 彰・野村律夫(島根大・教育)²

産業革命以降の人間活動による環境変化が地球規模で問題となっている.このような近年の環境変化を堆積物に記録された履歴から 復元する試みは、沿岸海域や陸域を中心に盛んに行われているが、 人間活動の影響が直接及びにくい遠洋域では、未だ限られた海域に おいてしかなされていない.そこで本研究では、北部沖縄トラフ海 域の水深 1,297m 地点(GH11-2022)および沖永良部島周辺の水深 1,118m,940m (GK14-693,755)地点で得られた表層コア試料を用い、 ²¹⁶⁹b・¹³⁷Cs による堆積速度の測定、海洋環境復元のための底生有孔 虫群集の分析を行った.

^{210°}b の濃度変化から、GH11-2022 コアでは深度 10-15cm の間に、GK14-693 コアでは深度 8 cm 以深で、GK14-755 コアでは深度 10-11 cm にそれぞれ堆積の不連続が見られたが、それより上位ではほぼ安定 した ^{210°}b の濃度変化が確認された.そこで、^{210°}b の濃度変化をもと に各 コアの堆積速度を見積もると、GH11-2022 コアでは 0.072cm/year、GK14-693 コアでは 0.030cm/year、GK14-755 コアで は 0.056cm/year の堆積速度が得られた.

P02

長崎県壱岐島の微化石と堆積物分析に基づく 完新世の環境変化¹

佐々木聡史(島根大・総理)²,入月俊明(島根大・総理)³,卜部 厚志(新潟大・災害・復興科学研究所)⁴,瀬戸浩二(島根大・EsReC) ⁵,林広樹(島根大・総理)⁶,酒井哲弥(島根大・総理)⁷

2011年の東日本大震災以降,太平洋沿岸域のみならず,日本海沿 岸域においても津波堆積物の調査が盛んに行われている.このよう な研究の一環として,佐々木ほか(2017)は,長崎県壱岐島の芦辺港 で掘削された完新世ボーリングコア堆積物中の微化石群集を予察的 に報告した.本研究では,微化石分析の試料数を増やし,さらに堆積 物のCNS元素分析を行い,これらの結果を統合して堆積環境の時間・ 空間的変遷と相対的海水準変動の復元を行った.

コアについて半割,記載,土色測定を実施した後,7 ccのキュー ブを連続的に使用し,試料を採取した.試料は貝形虫・有孔虫分析, 粒度分析,CNS元素分析に使用し,2本のコアの合計24層準から得 られた貝殻及び木片を用いて,AMS法による¹⁴C年代測定を行った.

結果として, 調査層準の年代は,約9000-3000 cal yr BP であった. これまでに約110種の貝形虫と8種の浮遊性有孔虫が認められた. これらの群集解析,粒度・CNS 元素分析の結果に基づくと、次の

GH11-2022 コアの底生有孔虫は、下位では主に Chilostomella oolina, Epistominella exigua, Uvigerina asperula などの石灰質 設有孔虫が多産出したが、コア深度 5cm 付近から石灰質設有孔虫が 減少し、コア深度 4.0cm より上位では膠着室設有孔虫が 50~60%を 占めるようになった.一方、GK14-755 コアの底生有孔虫群集は、最 表層付近では Marsipella や Rhabdamminaのような棒状膠着質有孔虫 が比較的多く産出したが、膠着質有孔虫比を見ると、表層付近でも 10%以下であり、GH11-2022 コアの構成有孔虫種とは異なっていた. 一方、Chilostomella oolina の深度分布を見ると、上位で減少傾向 を示すといった共通変化が認められた.

このような有孔虫群集の変化は、陸源性元素である²³⁶Raの増加層 準と一致しており、東シナ海の遠洋域において、過去100年程度の 間に、陸現物質の供給変化による底層環境の変化が生じている可能 性が示唆された.

¹Sedimentation rate and benthic foraminiferal assemblage from surface sediment cores in East China Sea

²Akira Tsujimoto, Ritsuo Nomura (Shimane Univ.)

ような堆積環境の変化が復元された.約9000-8200 cal yr BP (コア 深度 19.5-18 m) では低塩分に生息する貝形虫が産出し,全有機炭素 濃度が高いことから,エスチュアリーの泥底であった.約8200-7700 cal yr BP (コア深度 18-16 m) では内湾性貝形虫種が増加し,低塩 分種が産出しなくなることより,海面が急上昇し,閉鎖的内湾環境 に変化した.約7700-3800 cal yr BP (コア深度 16-9 m) では,貝 形虫の種多様度が増加し,浮遊性有孔虫の産出個体数も増加するこ と,暖流系種が多く確認されたことから,湾が開放的になり,対馬暖 流の影響が強化された.また,約5300 cal yr BP に一時的に全有機 炭素濃度と浮遊性有孔虫の急増が認められた.約3500 cal yr BP (コ ア深度 9-8 m) では,貝形虫の砂底種が増加し,陸上高等植物起源の 有機物の増加や全有機炭素/全硫黄の比が高いことから,海面の停滞 あるいは低下により水深が浅い酸化的な沿岸砂底環境に変化した.

¹Holocene environmental change based on analyses of microfossils and sediments in Iki-island, Nagasaki Prefecture, southwestern Japan. ²Satoshi Sasaki, ³Toshiaki Irizuki (Shimane Univ.), ⁴Atsushi Urabe (Niigata Univ.), ⁵Koji Seto, ⁶Hiroki Hayashi, ⁷Tetsuya Sakai (Shimane Univ.)

P03

IODP Exp. 371の成果速報:タスマン海域の微化石¹ 松井浩紀(高知大・海洋コア)²・R. Suther land (Victoria Univ. of Wellington)³・G.R. Dickens (Rice Univ.)⁴・ P. Blum (Texas A&M Univ.)⁵・IODP Exp. 371 Scientists⁶

約5千万年前に太平洋プレートの運動方向が変化し、付随して伊 豆-小笠原-マリアナ海溝とトンガーケルマデック海溝でプレート の沈み込みが始まったと考えられている.しかしながら沈み込み開 始の原因や過程について詳細は未だ明らかでない.統合国際深海掘 削計画(IODP)第371次航海はトンガーケルマデック海溝の沈み込み 開始に伴う変動現象の解明,さらに古第三紀の古気候変動の復元を 目的として2017年に掘削を行った.

南西太平洋タスマン海域においてSites U1506~U1511の計6地点 の堆積物が回収され、微化石生層序と古地磁気層序による詳細な年 代モデルが決定された.それぞれ最下部の年代は中期始新世~後期 白亜紀に相当し、堆積速度は0.5~2.0 cm/kyr であった.始新世以 降は主に石灰質堆積物であり、暁新世や白亜紀は粘土が優占した.

詳細な年代モデルと共に底棲微化石に基づく古水深の変遷が推定 され,複数地点で始新世における浅海化が明らかとなった. さらに 地震波断面における短縮変形構造が始新世以降に形成されたことも 判明した.検層・コアデータを用いた今後の研究により変動過程の 詳細な解明が期待される.

タスマン海域ではこれまで深海掘削計画(DSDP)第21次,第90次 航海が行われ,主に新第三紀を対象とした古気候変動が復元されて きた.本航海で新たに得られた古第三紀の堆積物から,本海域にお ける古気候・古海洋研究の進展が期待できる.特にSiteU1507の後 期漸新世~後期始新世(石灰質堆積物),SiteU1511の中期始新世 (珪質堆積物)において明瞭な微化石生層序,古地磁気層序が認定 されており,高精度年代モデルの構築が可能である.微化石の保存 状態は必ずしも良好ではないが,続生作用の評価と併せて古環境復 元に用いることができる.中期始新世温暖期や古第三紀の短期的温 暖化イベント(hyperthermals)を主要な研究対象として,南半球中高 緯度域における新知見が得られる見込みである.

¹IODP Exp. 371 preliminary results: Microfossils in Tasman Sea ²Hiroki Matsui (Kochi Univ.), ³R. Sutherland (Victoria Univ. of Wellington) • ⁴G. R. Dickens (Rice Univ.) • ⁵P. Blum (Texas A&M Univ.) • ⁶IODP Exp. 371 Scientists

ペルム紀放散虫 Albaillellaria にみられる二形性の形態的特徴¹ 伊藤 剛(産総研・地質調査総合センター)²・ 松岡 篤(新潟大・理)³・馮 慶来(中国地質大武漢)⁴

ペルム紀放散虫 Albaillellaria 目には、通常型(normal type)と膨張型(swollen type)からなる二形性を持つものが知られている(Ishiga, 1991). 膨張型は、通常型に比べ、頂部(apical portion)が著しく膨らんでいることにより特徴づけられる. しかしながら、膨張型は一般的に産出頻度が低く、詳細な形態的特徴などは明らかになっていなかった.

筆者らは、沖縄県伊江島の琉球層群中に含まれる下部ペルム系赤 色チャートブロックから、Albaillellaria 目に属する Albaillella sinuata の膨張型個体を数多く得た(Ito and Matsuoka, 2015). これらの個体 を用いて形態測定を行い、その形態的特徴を明らかにしたので、こ こに報告する.

通常型と膨張型の頂部の膨らみを定量化したところ、二峰性分布 を示した.通常型と膨張型の中間的な個体は少なく、2 つの型は明 瞭に区分されるといえる.また、膨張型は通常型に対して殻の全長 が短いが、殻の底部の幅には明らかな差はみられない.

P05

秋吉帯ペルム系錦層群中のマンガン炭酸塩岩から産した放散虫化石 の微細構造

中川孝典²・脇田浩二³(山口大学・創成科学)

山口県東部と島根県西部には秋吉帯ペルム系の錦層群が分布している.山口県東部に位置する周南市鹿野地域の錦層群は、主として 塊状砂岩からなり、珪質頁岩やチャートを伴う.島根県六日市地域 の珪質岩と泥岩からは、前期から中期ペルム紀を示す放散虫化石の 報告がある(Ishiga *et al.*, 1986).

本研究で扱うマンガン炭酸塩岩の産出位置は、周南市鹿野地域中のHara and Kiminami (1989)によってメランジュとされている範囲に露出している. 珪質泥岩中に層状に挟在しており、層厚約20 cm ×層長約1 mで両端は断層で切られている.マンガン炭酸塩岩は前期ペルム紀後期の年代を示す放散虫化石群集を含んでいる. 前期ペルム紀を代表する Pseudoalbaillella をはじめとして、多くの種の放散虫化石が含まれている. 放散虫化石の保存は極めて良く、放散虫化石の微細な構造を観察することが可能である. 前期ペルム紀後期の放散虫化石はこれまで保存の良好な放散虫化石試料が少ないことが背景にあり、本研究で得られた放散虫化石は特に

P06

北海道中軸南部様似地域に分布するチャートからの 放散虫化石の産出とその年代¹ 小安浩理・廣瀬亘(道総研・地質研究所)²

北海道中軸南部に分布するイドンナップ帯幌別川コンプレックス に含まれるチャートは、ユニットごとに異なる放散虫年代を示すと されている(Ueda et al., 2001; 植田, 2010). 一方,幌別川コン プレックス分布最南部に相当する様似地域では、これまでチャート の放散虫化石群集を検討した例がなく、堆積年代や帰属に不明な点 がある.そこで様似地域において、チャートの堆積年代に基づくユ ニット対比を目的として、放散虫化石群集を検討した.

検討対象としたチャートは露頭長約15mの層状チャートのブロッ クである. チャート層境界は概ね明瞭で、単層厚は5 - 10 cm であ った. また、単層間には珪質泥岩がしばしば挟在し、ブロックの西 側では部分的に厚層化する.

放散虫化石の保存は不良から中程度であるが、産出量は中程度ないし豊富であった.産出した個体のほとんどは分類が困難な球状無 棘放散虫であったが、Dictyomitra, Stichomitra, Protostichocapsa, Thanarla, Syringocapsa などの塔状放散虫を確認した. 形態の検討に加え、Albaillellaria 目の系統における二形性の発達を 明らかにするため、先行研究における膨張型の産出を纏めた. 二形 性の最も古い記録はペルム紀前期のサクマーリアン期である. ペル ム紀の Albaillellaria 目には大きく 2 つの系統 (Albaillellidae 科と Follicucullidae 科) が存在するが、その両方の系統から膨張型の産出 が報告されている. したがって、Albaillellaria の二形性は、異なる科 にも共通する現象であるといえる. 形態的には、比較的単純な構造 をもつ属 (*Imotoella* 属, *Follicucullus* 属, *Longtanella* 属など)では 膨張型の報告例が乏しい傾向がみられる.

Albaillellaria の二形性は生殖世代による可能性も指摘されており (Ishiga, 1991), 古生代におけるプランクトンの生殖戦略を考える 上でもさらなる研究が期待される.

¹ Morphological characteristics of dimorphism of the Permian Albaillellaria (Radiolaria)

²Tsuyoshi Ito (Geol. Surv. Japan, AIST), ³Atsushi Matsuoka (Niigata Univ.), ⁴Qinglai Feng (China Univ. Geosci., Wuhan)

Pseudoalbaillella の進化系列のミッシングリンクとして極めて重要なデータである.また,産した放散虫化石には,長さが1mm 程もある Pseudoalbaillella などがあり,それらは新種と考えられ,前期ペルム紀後期の放散虫化石の実態について新たな知見を与える.

今回産した化石群集の Pseudoalbaillella 属をはじめとして、エ ンタクチナリア目やラテンティフィストラリア目の構造を詳細に観 察し、作成したスケッチを提示する.様々な角度から撮影した SEM 画像とスケッチから、微細構造について示す.

¹The fine structure of Early Permian radiolarian from manganese carbonate rocks of Akiyoshi accretionary complex.

²Nakagawa T. (Yamaguchi Univ.), ³Wakita K. (Yamaguchi Univ.) Ishiga, H., Watase, H. and Naka, T., 1986, Permian radiolarians from Nishiki Group in Sangun-Chugoku Belt, Southwest Japan. Earth Sci. (Chikyu Kagaku), 40, 124-136.

Hara, A. and Kiminami, K., 1989, Ancient Trench Fill and Trench Slope Basin Deposits: an Example from the Permian Nishiki Group, Southwest Japan. Sedimentary Facies in the Active Plate Margin, 557-575.

これらの放散虫化石は年代を直接的には示準しないが,白亜紀中 期以降に典型的に産出する放散虫である.一方,空知層群や蝦夷層 群などで産出が報告されている,前期白亜紀型(ベリアシアン期~ アプチアン期)の放散虫や,後期白亜紀(チューロニアン期)以降 に多産する放散虫を確認できなかった.以上から,検討したチャー トの堆積年代を,アルビアン期~セノマニアン期と推定する.

植田(2010)によれば,幌別川コンプレックスでチャートブロッ クを含むのはルテンベツユニットとソガベツユニットとされる.そ れぞれのユニットにおける遠洋堆積物の堆積年代は前期白亜紀の後 期,アルビアン期〜セノマニアン期とされ,包含されるチャートブ ロックもほぼ同年代に堆積したと考えられる.本研究の結果に基づ くと,放散虫化石群集を検討したチャートはソガベツユニット中の チャートブロックに対比される可能性が高い.今後,チャートの放 散虫化石に着目することで,本地域におけるユニット区分が可能に なると考える.

¹A report on the radiolarian age of a chart block in the Samani area, southern part of the central Hokkaido.

²Hiromichi Koyasu, Wataru Hirose (Geological Survey of Hokkaido)

X線 micro-CT による Glomeropyle 属放散虫の形態と内部構造 Glomeropyle bispinosa と Glomeropyle sp. の比較研究¹ 児矢野愛海(開智未来高校)²・金子優樹(真岡高校)³・ 佐藤遼祐(佐野高校)⁴・篠崎愛恵(宇都宮東高校)⁵・ 岸本直子(摂南大・理工)⁶・相田吉昭(宇都宮大・農・地質)⁷

両極性分布を示す Glomeropyle 属放散虫の各種は、厚い外殻内に 種に特有な内部骨針の配列を有することから、その配列パターンや 構造を解明する事で、正確な種の同定や進化系列を明らかにするこ とができる。ニュージーランド北島・南島の下部~中部三畳系の半 遠洋性泥岩層から産出する種がこれまで8種記載されている。これ までの研究から未記載の形態種がさらに10-13種ほど存在すること が報告されている。Glomeropyle 属放散虫の全種について、その内 部構造を解明する研究プロジェクトの一環として、今回 Arrow Rocks、オルアテマヌ層 Unit 6 から産出する late Anisian の Glomeropyle bispinosa と Glomeropyle sp. 3 について、X線マイク ロ CT 装置を用いて内部構造の解析と両種の比較研究を行なった。

G. bispinosa は球状の外殻を持ち,歯状に発達した pylome を持つ。殻の頂部に2本の Spine が突出し,もう1本の Spine が pylome

P08

X線マイクロ CT による Glomeropyle 属放散虫の内部構造 - Glomeropyle grantmackiei と G. mahinepuaensis の比較研究 ¹ 鈴木桜子(宇都宮大・農学研究科・地質)²・ 相田吉昭(宇都宮大・農・地質)³・岸本直子(摂南大・理工)⁴

Glomeropyle 属は殻の外部形態と内部骨針の構造に多様性を持つ 三畳紀の両極性分布を示す放散虫である.本研究では当時の南極海 域に位置したニュージーランド南島 Bull Creek から産出する Glomeroyple grantmackiei,北島 Arrow Rocks 島から産出する Glomeropyle mahinepuaensis, Motutapu 島から産出する Glomeropyle sp.2 の3種について,X線micro-CT装置を用いて非 破壊で3次元形状データを取得し、3D解析ソフト(OsiriX MD, Molcer Plus)を用いてレンダリングし3Dモデルとすることで,内部 骨針の構造と配置パターンの詳細な解析と比較を行った。

G. grantmackiei は外形はなし形で,厚い外殻と内側に薄い内殻の 2 重構造の殻を持ち,外殻から 7本の Spine が突出する形態を示す。 内部骨針の形状は median bar(MB), 3 本の apical ray(3AR), 4 本の basal ray(4BR)で構成され, AR-BR 骨針間を繋ぐ複数の弧状のアー チ(Arch)が複雑に構成されている。1本の BR が外殻の開口部

P09

内部骨針を持つ放散虫 *G. grantmackiei*のAr*イオンビーム加工 を用いた走査電子顕微鏡(SEM)による微細立体構造の解析¹ 植竹勇介(日本電子株式会社)²・山本康晶(日本電子株式会社)³・ 朝比奈俊輔(日本電子株式会社)⁴・相田吉昭(宇都宮大学)⁵

Glomeropyle 属は前~後期三畳紀の放散虫で、球状~長球状の厚 い外殻の内部に種固有の骨針を持つことから、内部骨針の構造を知 ることは種分類の信頼性を高める上でとても重要である。しかし、 内部骨針は厚い殻に覆われているため、直接、光学顕微鏡や SEM で 解析することは難しい。さらに、SiO₂からなる全長数 100 µm 程度の 微細な骨格は、機械的に脆いため断面加工することが困難であるこ とから、殻が破損して内部骨針がむき出しになっている個体を探し て解析しなければならなかった。今回、内部骨針を SEM によりナノ オーダーで解析するため、外殻の Ar^{*}イオンビーム加工を試みた。 Ar^{*}イオンビーム加工は試料に機械的な応力を与えないため、脆い試 料を加工するのに適している。また、ブロードな Ar^{*}イオンビームを 試料へ照射するため、幅 1 mm 以上の加工が可能である。

本研究は Glomeropyle grantmackieiの5個体について、内部骨針の解析を行った。Ar*イオンビーム加工にはクロスセクションポリッ

下方に伸びる。内部骨針は8本の骨針(Apical Ray 4本, Basal Ray 4本)と Median Bar(MB)で構成され, 殻の長軸の上方に位置している。 G. sp. 3 は長球状の外殻で歯状に発達した pylome を持つ。内部骨針 は7本の骨針(AR 4本, BR 3本)と MB で構成され, 殻長軸上の上方 に斜交して位置している。殻の外側に7本の Spine が存在し, 3本 は殻上部から突出し,残りの4本は下方へ伸び pylome を構成する。 また BR から伸びる Arch 下部で特異なリングを形成している。これ まで解明した 8種と比較すると, G. bispinosa の外部形態は G. galagala と類似しており, 内部構造においても進化系統的に関連す る可能性がある。それに対し G. sp. 3 は内部骨針の配列や固有なリ ングが特異的であり, どの種とも異なる特徴を持つ。

¹The morphology and internal structure of the radiolarian genus *Glomeropyle* by using X-ray micro-CT: comparative study of *Glomeropyle bispinosa* and *Glomeropyle* sp.

² Ami Koyano (Kaichimirai High School), ³Yuki Kaneko (Moka High School), ⁴Ryosuke Sato (Sano High School), ⁵Manae Shinozaki (Utsunomiya Higashi High School), ⁶Naoko Kishimoto (Setsunan Univ.), ⁷Yoshiaki Aita (Utsunomiya Univ.)

(pylome)に向かって下方に長く伸び,3本のArchと結節する部位 が中間部と下方部に2箇所存在することが明らかになった。本種は 南半球高緯度海域群集を代表する固有種であり,従来報告されてい た北島Arrow Rocksから産出するG. grantmackieiの個体と内部構 造が同一であることが本研究で確認された。

また G. mahinepuaensis は小型のなし形で,厚い外殻と内側に薄 い内殻の2 重構造を持ち,外殻から7本の Spine が突出する。内部 骨針はMB,4本のARと4本のBRと複数のArchによって構成され ている。G. grantmackiei に比べてArch の構造が単純である。

Glomeropyle sp.2 は逆三角形で平板状の形態を持ち,三角形の両端から突出した 2 本の Spine を持つ。MB は長軸からずれた位置にあり,3 本の AR,4 本の BR を持つ。2 本の Spine はそれぞれ AR,BR から直接接続する。

¹ Internal structure of the radiolarian genus *Glomeropyle* by using X-ray micro-CT: comparative study of *Glomeropyle grantmackiei* and *Glomeropyle mahinepuaensis*.

²Sakurako Suzuki (Utsunomiya Univ.), ³Yoshiaki Aita (Utsunomiya Univ.), ⁴Naoko Kishimoto (Setsunan Univ.)

シャ^M IB-19530CP (JEOL Ltd.)を用いた。また、内部骨針の SEM 観察には高い分解能と深い焦点深度を両立する JSM-7200F (JEOL Ltd.) を用いた。*G. grantmackiei* の内部骨針は 3 本の Apical Ray (AR) と 4 本の Basal Ray (BR)、それらを接続する一本の Median Bar (MB) から構成されることが確認できた。一本の BR はパイローム (開口) 方向へ長く伸びており、そこから AR や BR に弧状の Arch が接続して いた。これらの骨針は数 µm 程度の太さで、骨針表面には続成作用が 原因と考えられる数 100 nm 程度の結晶粒が見られた。また、本種の 中心付近からパイロームへかけて円柱状の空間が存在し、複雑な Arch がその空間を避けるように発達していた。

本解析結果はX線マイクロCTで報告されていた結果と一致しており、本種のような微細な立体構造を有する試料をSEMで詳細に解析するにはAr⁺イオンビームによる加工が有用であることが示された。

 1 Analysis of *G. grantmackiei* with fine three dimensional internal structures with Ar^+ ion beam processing by using scanning electron microscope (SEM)

²Yusuke Uetake (JEOL Ltd.), ³Yasuaki Yamamoto (JEOL Ltd.), ⁴Shunsuke Asahina (JEOL Ltd.), ⁵Yoshiaki Aita (Utsunomiya Univ.)

放散虫化石群集に基づく東赤道太平洋における 前期/中期中新世境界付近の海洋環境変遷¹ 上栗伸一(茨城大・教育)²・Ted Moore (ミシガン大)³

本研究の目的は,前期中新世から中期中新世の放散虫化石群集 に基づいて,東赤道太平洋の海洋環境変遷史を復元することである. 研究試料には統合国際深海掘削計画(IODP)によって掘削された過 去800万年間にわたる堆積物を使用した.掘削地点は東部太平洋の U1335地点(5°18.735'N,126°17.002'W,water depth 4328 m) であり,前期中新世には東赤道太平洋に位置していた.岩相は主に 石灰質軟泥より成り,保存の良い放散虫化石を含む.これらのコア 試料から合計70試料を採取し,Sanfilippo et al.(1985)に準じた 方法で試料処理を施した後,検鏡用のプレパラートを作成した.

本研究では合計230の種・グループが産出した. これらの群集は, 太平洋低緯度の標準微化石層序の示準種を含むので、Sanfilippo and Nigrini (1998)によって提唱された化石帯区分を使用することがで き, RN2からRN5の4化石帯に区分することができた. GTS2012による と前期/中期中新世境界はC5Cn. 1nの最上部に設定されているので, U1335地点の189.6 mcd に境界をおくことができる. U1335 地点のコアから,合計45の出現・消滅事件を確認すること ができた.そのうち17の事件が前期/中期中新世境界付近(16.5 ~15.5 Ma)で、8の事件が中期中新世中期(13.7~13.4 Ma)で認 められた.これらのことから2つの時期にfaunal turnover が起き たことが分かる.しかし始新世/漸新世境界のそれに比べると小さ な変化であるといえる.種多様性は前期中新世で比較的低く,中期 中新世で比較的高い.このことから漸新世中期で減少した種多様性 は中期中新世になって回復したことが分かる.この種多様性の増加 は、群集の均衡度が高くなったことが原因であると考えられる.

放散虫群集はクラスター解析によって大きく4つのグループに分けることができた. (古) 生物地理に基づくと,クラスターA は湧 昇,クラスターB1 は寒冷水塊,クラスターB2 は温暖水塊,クラスタ ーC は貧栄養水塊の指標であると判断される. これら4グループの 産出頻度の変遷から,4つの時期(16.7,14.6,14.1,13.5 Ma)に 海洋環境が変化したことが推測された.

¹Paleoceanographic changes across the early/middle Miocene boundary in the eastern equatorial Pacific ²Shin-ichi Kamikuri (Ibaraki Univ.), ³Ted Moore (Michigan Univ.)

P11

石垣島で採取されたサンゴ化石による中期完新世の古環境復元¹ 奥平早香(東北大・理)²・浅海竜司(東北大・理)³・高柳栄子(東 北大・理)⁴・阿部理(名大・環境)⁵・井龍康文(東北大・理)⁶

完新世は第四紀のなかで比較的安定して温暖な時期であったこと が知られている.近年,中期完新世のなかで地域的かつ短期的に寒 冷化するイベントがあったことが報告されているが,その原因やメ カニズムは明らかにされていない.観測記録のない時期の気候変動 を理解するうえで,炭酸塩を用いた地球化学的アプローチは有用で ある.そのなかでも、造礁サンゴ骨格のδ¹⁸0値とSr/Ca比を組み合 わせた分析は,海水温と塩分を同時に復元できる点で重要である. 加えて造礁サンゴは年輪を形成するため正確な時系列データを提供 し,月単位の解析によって季節変動を捉えることが可能である.サ ンゴ化石は陸上に露出すると続生作用を被りやすいが、海水中に存 在する場合は骨格の化学組成の初生値が保存されやすい.よって, 放射性同位体による正確な生息年代決定により,現生試料と同じ正 確さで環境復元を行うことが可能である.これらの利点から,サン ゴ化石の環境解析は先述した完新世の気候イベントを捉え,その原 因やメカニズムの解明に貢献できると考えられる. そこで本研究では、北西太平洋に位置する琉球列島の石垣島石西 礁湖北部 (24°34N, 124°3E) で採取された造礁サンゴ (Porites sp.) の骨格コア試料を使用して、完新世の古環境記録を得ることを目的 とする. 試料は水深約6mの海水に没した化石サンゴ群体であり、 放射性炭素年代決定測定により、生息年代は4530±30yBP (2 σ) で あることを確認した. 全長 138 cmのコア試料を平板状に整形し、撮 影した軟 X線写真から98本の年輪が確認された. 骨格の年平均伸長 速度は9.0 mm/yr と見積もられた. 化学分析測線を骨格の最大成長 軸上に選定し、平板状試料表面から0.7 mm 間隔で粉末サンプルを採 取した. これは月単位 (1 r 月/試料)の時間分解能に相当する.本 講演では、検討したコア試料の δ^{16} の時系列データを示し、中期完 新世 (約4500 年前)における海水温と塩分の解析と従来報告された 古気候記録との比較から琉球列島周辺の海洋環境を議論する.

¹Reconstruction of paleoclimate in the mid-Holocene by a fossil coral from Ishigaki Island

²Sayaka Okuhira (Tohoku Univ.), ³Ryuji Asami (Tohoku Univ.),
 ⁴Hideko Takayanagi (Tohoku Univ.), ⁵Osamu Abe (Nagoya Univ.),
 ⁶Yasufumi Iryu (Tohoku Univ.)

P12

日本海でのイシサンゴの分布制限要因は水温である ー山陰沖イシサンゴ相の成立過程の解明-1

同前万由子(大阪市大)²・徳田悠希(鳥取環境大)³・江﨑洋一(大阪市大)⁴・鈴木 淳(産総研)⁵・池原 研(産総研)⁶・片山 肇 (産総研)⁷・板木拓也(産総研)⁸

従来、最終氷期以降の日本海における大型底生生物の分布に関す る網羅的な研究は少ない.そこで、本研究では、山陰沖イシサンゴ 遺骸群集の解析から、現在の山陰沖イシサンゴ相の成立過程の解明 を試みた.地質調査所(現産業技術総合研究所)が実施した GH86-2 航海で K型グラブ採泥器を用いて採取した山陰沖 286 地点(水深 27-1570 m)の底質試料の内、74 地点でイシサンゴが認められ、10 科 23 属 33 種が識別された.これらのイシサンゴは山陰沖の水深175 m 以浅でのみ確認され、そのイシサンゴ遺骸群集の年代幅は約6000 年であった.山陰沖で確認されたイシサンゴは全て東シナ海・太平 洋においても生息しており、これまで水深 0-1048 m、水温 6.3-24.3℃ の地点で採集されている.また、GH86-2 航海での泥温測定により、 山陰沖では凡そ水深150 m 以深で水温が6℃以下となり、さらに水 深 300 m 以深では水温 0-1℃なることが明らかとなっている. 山陰 沖の 6℃以上の水温域とイシサンゴの生息分布が一致するため,山 陰沖のイシサンゴの分布は水温が大きな制限要因となっていると考 えられる. 一方で,北太平洋では水温 0-1℃の極低温域に適応した イシサンゴも存在するが,山陰沖の極低温域ではイシサンゴが確認 されなかった.南方系の極冷水域に生息する種が山陰沖の極冷水域 に分散するためには,対馬海峡を通過する必要がある.対馬海峡に 連なる東シナ海は水深が浅く,冬季でも水温が 15℃程度と比較的高 温である. このため日本海への流入には極低温耐性とともに高温耐 性が必要となるが,このような温度耐性を有するイシサンゴは知ら れていない.以上のことから,山陰沖のイシサンゴ相は,対馬暖流 の流入再開後,日本海の強い閉鎖性と日本海周辺の地形的特性,日 本海の水塊構造,イシサンゴの温度耐性等の各要素が組み合わさり, 成立したと考えられる.

¹Spatiotemporal successions of azooxanthellate scleractinian fauna off San'in district. ²Mayuko Dozen (Osaka City Univ.), ³Yuki Tokuda (TUES), ⁴Yoichi Ezaki (Osaka City Univ.), ⁵Atsushi Suzuki (AIST), ⁶Ken Ikehara (AIST), ⁷Hajime Katayama (AIST), ⁸Takuya Itaki (AIST).

秋吉石灰岩層群で見られる前期/後期石炭紀境界直後の 生物礁の構築様式と微生物類の作用¹ 増井 充²・江﨑洋一(大阪市大・理)³・長井孝一(元 琉球大)⁴・ 杦山哲男(福岡大・理)⁵・足立奈津子(大阪市大・理)⁶

前期/後期石炭紀境界(MP境界)は、後期デボン紀の大量絶滅 によって衰退していた生物礁が、再構築され始めた年代である.秋 吉石灰岩層群で見られる M/P境界直後(バシキール世)の礁には、 多様な骨格生物や微生物類が存在するが、微生物類の役割に焦点を 当てた研究例は少ない.本発表では、M/P境界直後の礁を構築する 骨格生物と微生物類の相互関係に注目し、礁の構築様式を検討する.

当該年代の礁環境は、外洋側から、下部礁縁、上部礁縁、礁嶺、 外側礁原、内側礁原、背礁斜面の 6 つに区分される (Nagai et al., 1999). 礁嶺や背礁斜面では層孔虫様生物とケーテテス、外側礁原で は四射サンゴ類とケーテテスが、礁の主要構築者としての役割を担 っている.上部礁縁における礁の主要構築者は群体四射サンゴと層 孔虫様生物で、被覆者として床板サンゴが多い.層孔虫様生物内の 空隙には、Girvanella (直径 20-50µm の未分岐フィラメント状)や有 孔虫類が生息し、空隙を二次的に活用している.また、微生物類に

P14

大分県豊後大野市三重町高屋の石灰岩の生層序とその構造帯帰属の 再検討¹ 杦山哲男(福岡大・理)²・佐藤裕一郎(豊後大野市在住)³・

外山哲男(福岡人・理)・佐藤裕一郎(壹倭人野市在住)) 麻生昭雄(戸高鉱業社)⁴

三重町高屋の尾平山の南麓には、東西方向の配列で北から黒瀬川 帯シルルデボン系奥畑層と秩父帯ペルム紀付加体の内山層が分布し ており、内山層の要素とみなされていた塊状石灰岩が知られている。 今回高屋の石灰岩と奥畑層との境界付近を詳しく調査した結果、 奥畑層と高屋の石灰岩の間に厚さ 20m程度の砂泥互層が挟まれて

いることが明らかになった。この砂泥互層の上位の砂岩層からは、 ウミユリ片や腕足類化石が発見され、その上位は粗粒石灰質砂岩を 挟み、粗粒のウミユリ片に富む層状石灰岩を挟み厚さ 60m の高屋の 石灰岩に累重している。

高屋の石灰岩は上部層と下部層に区分でき、その境界付近には石 灰岩角礫岩や古カルスト堆積物が挟まれている。下部層の石灰岩礫 岩からは四放サンゴ化石が産出し、これまでに Paleosmilia, Dibunophyllum, Siphonodendoron, Aulinaが識別された。これらは 南部北上帯の鬼丸統から知られている。上部の石灰岩は灰白色で、 よる穿孔も見られる.一方,内側礁原における礁の主要構築者は層 孔虫様生物で,コケムシから成る層のほか,ミクライトから成る薄 層が頻繁に挟在する.薄層は,微生物類による穿孔や,樹状フィラ メント状の Ortonella による被覆によって形成される.被覆・穿孔作 用は同一時間面上で生じており,層孔虫様生物の成長停止期を反映 している.一方で層孔虫様生物が卓越する下部礁縁では,微生物起 源の薄層が少ない.これは,内側礁原は水深が浅く,干上がりや土 砂の巻き上げに起因する成長停止が生じ易いためと考えられる. 以上のように, MP 境界後の生物礁は,層孔虫様生物をはじめと

以上のように、MAP 現外後の生物幅は、層れ虫禄生物をはしめど する礁の主要構築者、床板サンゴ・コケムシなどの被覆者による礁 の枠組み形成作用の増大と、微生物類による被覆や充填作用、穿孔 などの"破壊"作用が繰り返されることで構築されている.

¹ Organic reef structures and their microbial roles immediately after the Early/Late Carboniferous boundary in the Akiyoshi Limestone Group, Southwest Japan

² Mitsuru Masui, ³ Yoichi Ezaki (Osaka City Univ.), ⁴ Koichi Nagai (formerly Univ. of the Ryukyus), ⁵Tetsuo Sugiyama (Fukuoka Univ.), ⁶Natsuko Adachi (Osaka City Univ.)

厚さ2-3mのウミユリ片密集層が発達しており、その特徴的な岩相 の分布から石灰岩の走行方向が東西方向であることが明らかになっ た。上部層の基底付近からは有孔虫の Semistaffellaや、バシキー ル世基底を示すコノドント化石の Declinognathodus noduliferus が識別された。上部層からは四放サンゴの Petaraxis が産出した。

この結果,奥畑層と断層で接する砂岩泥岩互層と高屋の石灰岩は, 整合一連の関係にあると推定される。現在腕足類については別途研 究中であるが、少なくとも石灰岩は陸棚上の浅海に形成されたマウ ンド起源と推定され、秩父帯に一般的な海山起源の異地性石灰岩体 ではない。下部層のサンゴ化石群は、黒瀬川帯湯鶴葉層や南部北上 帯の鬼丸層に共通する。これらは奥畑層と同様に黒瀬川帯の要素と みるべきか、ペルム紀付加体に陸棚側の堆積物が混在したものと見 るべきか、さらに詳しい化石内容の検討が必要である。

¹Reexaminations on biostratigraphy and attribution to tectonic belt of the limestone in Takaya, Miemachi, Bungoono City, Oita Prefecture.

²Tetsuo Sugiyama (Fukuoka Univ.), ³Yuichiro Sato (Bungoono City), ⁴Teruo Aso (Todaka Mining CO., LTD.)

P15

下部デボン系福地層の深海性介形虫群¹ 田中源吾(金沢大・国際基幹教育院)²

岐阜県高山市奥飛騨地域には、古生界の化石を多産する堆積岩を 含む飛騨外縁帯が分布している.なかでも、奥飛騨温泉郷福地は、下 部デボン系の福地層が分布し、黒色の石灰岩や泥岩から、刺胞動物、 軟体動物、棘皮動物、節足動物等の化石群を豊富に産出する.これ まで講演者は、福地層の中部より、ラグーン~浅海に生息する介形 虫類を発見し、それらの種の多くが、同時代の南中国のものと共通 していることを文献調査により明らかにしてきた.そして、当時の 飛騨外縁帯に生息していた浅海性の介形虫群が、南中国と強い結び つきを持った生物地理区に生息していたと考察した.

今回, 演者は福地層の上部 (Kuwano, 1987 によって介形虫群が予 察的に報告された Loc. 26 付近)の黒色石灰岩より,多数の介形虫 化石群を抽出した.現在同定中のものもあるが、ヨーロッパや中国 での先行研究より、これらの種の殆どは、スロープ~深海性である と考えられる.このうち,幾つかの種は未記載種で、局所的な分布 を示すと考えられる.一方、<u>Kirkbyella</u><u>spinosa</u>(Blumenstengel) や<u>Obotritia</u><u>carinata</u>(Reynolds)等は、南中国からゴンドワナ大 陸北縁部にかけて広く分布する.しかしながら,これらの種は,北 中国(タリム盆地)やシベリア,アムリアやローレンシアからは報 告されていない.生物地理学的に分布が広い深海性の介形虫種を見 ても、当時の飛騨外縁帯の介形虫群が,南中国やオーストラリアも 含めたゴンドワナ大陸の北部と関連性を持ち,北中国やローレンシ アとは異なった生物地理区を構成していたと考えられる.

介形虫類の多くは、生涯底生であるため、分散能力に乏しい.現 生の沿岸性介形虫類の主たる移動法は、海流による受動的な分散で ある.深海性介形虫類の分散方法については不明な点が多いが、深 海底の海流による可能性も否定できない.詰まるところ、介形虫化 石は、海洋底層水の循環を復元するのにも有効であるかもしれない.

引用文献

Kuwano, Y. 1987. Early Devonian conodonts and ostracodes from central Japan. Bull. Nat. Sci. Mus, Tokyo, Ser. C, 13 (2), 77-105.

¹Deep-water ostracods from the Lower Devonian Fukuji Formation ²Gengo Tanaka (Kanazawa Univ.)

長崎県対馬舟志湾における過去約3,000年間の 古環境変化と貝形虫群集¹ 藤原勇樹(島根大・総理)²,入月俊明(島根大・総理)³,瀬戸浩二 (島根大・エスチュアリー研)⁴,香月興太(島根大・エスチュアリー研)⁵,山田 桂(信州大・理)⁶,Jin-Young Lee (KIGAM)⁷

長崎県対馬は、日本海の西の入り口である対馬海峡に位置し、完 新世の対馬暖流の消長やそれに伴う沿岸生物の変遷を復元するため に最適な場所である.そこで、本研究では、対馬北東部、上対馬町 の舟志湾(水深約23m)において、マッケラス柱状採泥器を使用し、 全長約300 cm の16SS1Cコアを採取した.16SS1Cコアは採取時にコ ア最上部が変形したため、それ以外の約280 cm を対象に、記載、土 色測定、¹⁴C年代測定、帯磁率測定、粒度分析、CNS 元素分析、貝形 虫化石分析、貝形虫殻の微量元素分析などを行った.

コアは全体を通して上方細粒化傾向を示す塊状シルト層で構成され、¹⁴C年代測定の結果、コア最下部の年代は約3,000年前であった. 帯磁率測定の結果、コア下部では一貫して値が低く、約650年前から値が急増し、コア最上部まで高い値を示した. 堆積物の CNS 元素 分析の結果も同様に、約650年前の層準を境に全有機炭素、全イオウ

P17

遊泳性三葉虫 Pricyclopyge gallica (Tjelnvik, 1956): 複眼の形態解析¹

新垣裕康・鈴木雄太郎(静大・理)2

Pricyclopyge 三葉虫は、側方に突出するドーム状複眼が特徴的であり、その広い視野は腹側も視野範囲に収めることから、海柱で遊泳生活を行うことに適している.一方で、視野範囲以外の視覚性能については理解が深まっておらず、最下部 Floian 統産 P. gallica の複眼構造の形態解析をおこない、視覚性能の理解を深めることを目的とした.

複眼は、個眼の配置密度とレンズサイズの双方によって、受容できる 外界の光情報の質が決定される.そのため、配置密度に対応する個眼の 配列様式と輪郭形状、そして入射光量に影響するレンズサイズについて 検討した.

輪郭形状については、個眼では一般的な六角形輪郭とは異なった 四・五・七角形輪郭の個眼(71/全2283個)が"柄杓状"に分布し ており、前方では柄杓の柄の部分が背/腹を分断するように中腹に位 置した.この前方での分断はレンズサイズの特徴とも対応していた. 個眼レンズのサイズ(226/全2283個: ϕ 97-227 μ m)については、 ϕ 146-165 μ mを最低頻度レンジとする二極化傾向が認められ、このレ 量の減少がみられた.貝形虫分析の結果,約90種の貝形虫種が産出 し、全層準を通じて内湾泥底の水深 20-50 m で多産する Krithe japonica が優占した.コア下部では Amphileberis nipponica や Nipponocythere bicarinata などの湾央から外洋環境に生息する貝 形虫種が多く、コア上部へ向け Bicornucythere bisanensis や Pistocythere bradyi などの閉鎖的で浅い湾奥泥底種が増加したこ とから、舟志湾では相対的海水準の低下があったことが示唆された. また、本研究で初めて K. japonicaの殻の微量元素分析を行い、Mg/Ca 比を求めた結果、変動が認められ、これは対馬暖流の古水温変動と 関連している可能性が高い.

¹Paleoenvironmental changes and ostracode assemblages during the last ca. 3,000 years in Shushi Bay, Tsushima Island, Nagasaki Prefecture, southwest Japan.

²Yuki Fujihara (Shimane Univ.), ³Toshiaki Irizuki (Shimane Univ.), ⁴Koji Seto (ERC, Shimane Univ.), ⁵Kouta Katsuki (ERC, Shimane Univ.), ⁶Katsura Yamada (Shinshu Univ.), ⁷Jin-Young Lee (KIGAM)

ンジの個眼の分布は、非六角形個眼の"柄杓状"分布に重なる.また、 これら特異な輪郭の個眼によって、個眼配列の屈曲や消失/挿入が多 く生じることが明らかとなった.つまり、この"柄杓状"分布は視覚 特性を決定する個眼の配置密度とレンズサイズの双方を局所的に乱 す境界となっており、*P. gallica* は前方背側、前方腹側、後方の三領 域に視野特性が分化していた可能性が示唆された.

三次元的な遊泳生活において、進行方向の視野情報の取得は極めて重 要である.後方領域は個眼配列の屈曲や消失が目立つ一方で、前方領域 では整然とした配列である.レンズサイズの二極化傾向も前後で異なり、 後方は不明瞭であるのに対し、前方では背腹で顕著であった.前方の背 /腹側は配列様式・サイズが大きく異なり、背側は大きい個眼が対数螺 旋状に配置する.一方、腹側は小さい個眼が格子状に配置する.このよ うな複眼前方の構造差は飛行するハエ・ハチ・トンボで認められる.こ のような構造的特徴をもった光受容系によって、自らの飛行状態を自己 受容することで、素早く複雑な動きを行うことができる.

Structural characteritics of compound eye in swimming trilobite, *Pricyclopyge gallica* (Tjelnvik, 1956)

²Hiroyasu Arakaki, Yutaro Suzuki (Shizuoka Univ.)

P18

南部北上帯下部三畳系(上部オレネッキアン階) 大沢層産の新種嚢頭類¹ 永広昌之・佐々木理・鹿納晴尚(東北大・総合学術博)²

南部北上帯の下部三畳系稲井層群大沢層は、世界最古の魚竜化石 Utatsusaurus を産することで著名である.また、後期オレネッキアン期の Columbites-Subcolumbites 化石群に属する 25 属におよぶ多様なアンモ ノイドを産し、P/T境界での大量絶滅事変からの海洋生物の多様性回復 過程を考える上で重要である.筆者らは、歌津館崎北方の大沢層から、 わが国からはじめての嚢頭類(Thylacocephala)3 属 3 種を記載したが (Ehiro et al., 2015)、さらにいくつかの新たな資料を得たので報告する.

大沢層からの既知の嚢頭類は、Ankitokazocaris bandoi Ehiro and Kato, Kitakamicaris utatsuensis Ehiro and KatoおよびOstenocaris sp. で, K. utatsuensisは少なくとも300個体産する. これらは甲皮の長さが2~4 cm程度の小型の標本である.新たに得られたものは、Concavicarididae 科のConcavicaris属の新種, Kitakamicarisと同じMicrocarididae科に属する 新属・新種,およびOstenocarididae 科のOstenocaris? sp.である. Concavicaris 属の新種は、数個体得られているが、最も大きいものでも甲皮の長さが13 mmで、嚢頭類では最小の部類である。甲皮上のほぼ全面に微細なpit状の点 が多数ランダムに分布する。Microcarididae科の新属・新種は、やや大型で、 甲皮の長さは7 cmを超える。*Kitakamicaris*と同様の縦方向の肋が発達する が、前部1/3の肋が数次にわたって分岐する点や大きなサイズで同科の他の 属と明瞭に異なる。以上2種は既知の3種と同じ産地・層準から得られてい る。新たなOstenocaris? sp.の産地は約500m南方にあたり、層準は少し下 位と考えられる。甲皮の長さは7.7 cmに達し、やや大型で、既知の Ostenocaris sp.とは形態も異なっているが、背部の保存が悪く、この属の 形態的特徴の一つである背部後端部の屈曲を確認することができない。

今回の新たな資料を加え、大沢層の嚢頭類フォーナは少なくとも5属からなることとなった. 嚢頭類は、シルル紀(カンブリア紀?)から後期白亜紀まで棲息したが、その総属数は30属に満たない. 年代別では三畳紀の嚢頭類の属数が最も多いが、中でも、一つの産地・地層から産する属数としては大沢層が突出しており、その多様性が注目される.

¹New species of Thylacocephala from the late Olenekian Osawa Formation, South Kitakami Belt, Northeast Japan

²Masayuki Ehiro, Osamu Sasaki and Harumasa Kano (The Tohoku University Museum)

茨城県涸沼の完新統より得られたトゲノコギリガザミ化石¹ 加藤久佳(千葉県立中央博物館)²・池澤広美(ミュージアムパーク 茨城県自然博物館)³

茨城県涸沼の涸沼川の川底から得られた,ノコギリガザミの化石 について報告する.化石は涸沼の下流側の水深約4~7mの川底から, シジミ漁の混獲物として多数の海生二枚貝類化石とともに引き上げ られた.化石のマトリックスは部分的に石灰質コンクリーション化 したシルトで,全体として保存良好で長距離を移動した形跡はない. 周辺には完新統の厚いシルトが分布するが,採取地点の川幅の狭窄 部では澪状に水深がきわめて大きくなることから,これらの化石は 川底のシルトから削り出された可能性が高い.

ノコギリガザミの鉗脚指節の殻片を使い、AMS 法による¹⁴C 年代 測定を行ったところ、4,930±30 yrBP および 3,910±30 yrBP の測定 値が得られた.この年代は、阿須間ほか(1998)による涸沼形成ス テージでは、涸沼の入り江が最も広くなった「海進最盛期」とその後 の海退期に位置づけられる.

ノコギリガザミ属はインド-西太平洋の熱帯~亜熱帯域を中心に 広く分布し、中新世以降に9種の化石種が知られる(Schweitzer et al.,

P20

ヤマトタマヤスデ Hyleoglomeris japonica の球体化防御姿勢: "うごき"が関わる節足動物の形づくり¹ 臼井彩佳・鈴木雄太郎(静大・理)²

節足動物には、体をきつく屈曲させることで弱点となる軟体部を 硬い外骨格で完全に覆い隠す球体化防御姿勢を採用する種類が多く 知られている.この防御姿勢をとることによる危機回避効果は極め て高く、三葉虫をはじめとして多足・鋏角・甲殻・六脚亜門の高次 系統グループにおいて各々独自に、そして度々獲得している.この ことは、骨格体制の大きく異なる系統間において、球体化を可能と する仕組みが共有されていることを示唆する.甲殻亜門ハマダンゴ ムシにおいては、脱皮後の硬化タイミングの差と感覚毛が関与する ことによって、球体化に必要な部位形状が調節されることが示唆さ れた.本研究は、多足亜門ヤマトタマヤスデ Hyleoglomeris japonica の球体化防御姿勢の形態解析にもとづいて、ハマダンゴムシと同様 に脱皮による硬化タイミングの差と球体化を認識する感知機構が介 在するかを検討する.球体化時に肥大した第2背板に覆い 被さる側部裏側に凹凸構造が存在した.凸状構造については、第3

P21

陸水性続成作用が珪長質砕屑岩より産する腕足動物化石に与える 影響の定量的評価¹

藤岡大(東北大・理)²・高柳栄子(東北大・理)³・山本鋼志(名古 屋大・環)⁴・井龍康文(東北大・理)⁵

腕足動物化石の殻に記録された初生的な古環境記録が,埋没後の 続成作用によりどの程度改変しているのかを正確かつ定量的に評価 することは,超長期の古環境復元のために必須である.しかし,従 来の続成判定は,どの産状の腕足動物化石に対しても,殻の同位体 組成(δ^{13} C, δ^{18} O)・金属元素濃度・CL像・SEM像から,殻の保存 状態の良し悪しを"総じて"定性的に判断するに留まっており,続 成作用に対する,物理的(温度・圧力),化学的(地層水の組成), 地質学的条件(母岩の組成)の貢献分を,個々に(=分離して)評 価するには至っていない.この問題を解決するためには,同一種を 対象として,現生個体と続成環境の推定が可能な地層から産する化 石の組織・化学組成を比較検討し,続成作用が進行するにつれ組織・ 化学組成が,どのように変化するかを定量的に評価する必要がある.

本研究では、秋田県峰浜の天徳寺層上部の砂質礫岩層より産した 腕足動物化石 2 種 (*Terebratalia coreanica*, *Laqueus rubellus*) の δ^{13} C・

2010). 現生ノコギリガザミ属は、長らくScylla serrata 1種とされることが多かったが、形態および遺伝子解析から、アミメノコギリガザ ミ(S. serrata)、アカテノコギリガザミ(S. olivacea)、トゲノコギ リガザミ(S. paramamosain)、ミナミノコギリガザミ(S. tranquebalica) の4種に分類されるようになった(Keenan et al., 1998). これらの現 生種は、色斑や背甲や鉗脚の微小な棘といった化石では確認しにく い形質で分類されており、更新世以降の化石は、ほとんどが旧来の 分類に基づくノコギリガザミS. serrataとして報告されてきた. 今回 の化石は、現生種を4種とする近年の分類に基づくものであり、ノコ ギリガザミ属の完新世における古生物地理を考える上で重要な記録 である.

¹Fossil record of *Scylla paramamosain* from Holocene deposits in Hinuma, Ibaraki Prefecture.

²Hisayoshi Kato (Natural History Museum and Institute, Chiba), ³Hiromi Ikezawa (Ibaraki Nature Museum)

~5 背板で過剰な覆臥を防ぐストッパー機構として,また第6より 後方の背板では第2背板のS字溝に嵌まり込むスタッキング機構で あった.さらに,これら凹凸咬合形質では咬合の際の接触を感知す る感覚毛が凹部に備わっていた.ヤマトタマヤスデの球体化は,第 3より後方の背板全ての裏側が第2背板の表面構造との対応関係を 持っており,咬合部位の全てが接触の是非を感知することが球体化 姿勢の成立に必要であることが示された.このことは,ハマダンゴ ムシで示唆されたように,硬化後ではなく脱皮直後の背板の硬化タ イミング差を利用して,背板の未硬化時に咬合調整を行っているこ とを意味する.ヤマトタマヤスデの属するヤスデ綱の脱皮様式も, 先に硬化した第2背板に合わせたような跡の付き方と合致する.脱 皮成長と感覚毛は節足動物門にとっては外適応的な特徴であり,こ れらを各分類群独自の骨格体制に組み込むことで球体化防御姿勢が 成立していることが強く支持された.

¹Design of an arthropod-form with capability to roll up into a defensive sphere: a case study in diplopod *Hyleoglomeris japonica*. ²Ayaka Usui, Yutaro Suzuki (Shizuoka Univ.)

δ¹⁸O, 金属元素濃度, CL 像・SEM 像を測定・観察し, 両種の現生 個体の測定・観察結果と比較した. 検討した化石は陸上の露頭から 採取した, 陸水続成作用を被った試料であった.

その結果,現生個体の δ^{13} C 値と δ^{18} O 値から化石の続成作用の検 討に適した部位を特定することができた.現生試料の δ^{13} C 値・ δ^{18} O 値,Mn 濃度,CL 像, 殻組織はそれぞれ,変動幅小(<0.8‰),低 い (2–29ppm),ほぼ無発光,明瞭な繊維状であったが,化石試料 は,変動幅大(最大 5.4‰, 2.3‰)で有意な正の相関,高い(>400ppm), 不定形な橙色の強発光,不明瞭・被破壊であった.すべての測定結 果を数値化し,相関関係を検討した結果,Mn 濃度と殻組織の被破 壞率(AFR)の間に有意な正の相関がみられた.本相関から推定さ れる続成の進行度合と化石の δ^{13} C 値・ δ^{18} O 値の変化が調和的である ことから,Mn 濃度とAFR の変化が珪長質砕屑岩層における陸水続 成作用の程度の定量的評価に有用な指標となると期待される.

¹Quantative evaluation of influence of meteoric diagenesis on fossil brachiopod shells from siliciclastic rock

²Hiroshi Fujioka (Tohoku Univ.), ³Hideko Takayanagi (Tohoku Univ.), ⁴Koshi Yamamoto (Nagoya Univ.), ⁵Yasufumi Iryu (Tohoku Univ.)

福井県大野市九頭竜地域の手取層群産アンモノイドと 海成上部ジュラ系の分布の再検討¹ 酒井佑輔(大野市教育委員会)²・後藤道治(福井恐竜博)³・ 中田健太郎(福井恐竜博)⁴・佐野晋一(富山大)⁵

福井県大野市九頭竜地域の手取層群では、Bathonian-Oxfordian の海成層において、アンモノイド群集帯4帯が設定されている。そ のうち、中期Oxfordianの*Kranaosphinctes matsushimai*群集帯 の模式地・模式層は、山原坂層(前田、1952)とされてきた(Sato and Westermann、1991). しかし、アンモノイド化石を多産する 長野ダムサイト付近の層序(長野頁岩層)の山原坂層への帰属には 疑問が呈されている(佐野ほか、2013). 筆者らは、最近、九頭竜 地域の複数地点からOxfordianを示すアンモノイドの産出を確認し た.本研究では、新情報に基づき、山原坂層および長野頁岩層を含 めた、海成上部ジュラ系の層序対比について再検討を行った.

Oxfordian を示すアンモノイドは、従来、石徹白川左岸の山原坂 (山原坂層),長野頁岩層,真名川上流部の中島に露出する黒当戸層 からの産出が知られる (Sato, 1962;佐藤, 2008;佐野ほか, 2013 など).長野頁岩層からは、K. matsushimai, Dichotomosphinctes

P23

北海道根室地域の上部白亜系根室層群 ノッカマップ層の貝類化石年代¹ 岡村省吾(熱原釧路(株))²・松原尚志(北教大釧路)³

はじめに:北海道東部の釧路〜根室地域および白糠丘陵地域には根 室層群と呼ばれる上部白亜系〜下部古第三系が広く分布している。 本層群からはアンモノイド類やイノセラムス類などの大型化石を産 し、また、火山岩や火砕岩を挟有することから、多くの古生物学的・ 生層序学的・年代層序学的研究がなされてきた(*e.g.* Nagao & Matumoto, 1940; Yoshida, 1958; 浅野, 1962; 松本, 1970; Matsumoto & Yoshida, 1979; Kaiho & Saito, 1986; Shibata, 1986; Okada *et al.*, 1987; Nifuku *et al.*, 2009; Shigeta *et al.*, 2015; Amano & Jenkins, 2017)。しかしながら、その多くはK-Pg 境界と関 連する本層群の中〜上部を主な対象としている。本研究では、根室 地域に分布する根室層群最下位のノッカマップ層の貝類について、 分類学・生層序学的観点から検討を行った。その結果、本層の年代 について新たな知見が得られたのでここに述べる。

調査地・試料:本研究の調査地は根室市牧の内の通称「シキウス海岸」である。ここではノッカマップ層の粗粒玄武岩岩体と溶岩また

P24

¹千葉県君津市川谷に露出する中部更新統柿ノ木台層から産出する 化学合成化石群集と共産する巣穴と自生炭酸塩

²間嶋隆一(横浜国大), 越智眞弓(横浜国大), 三浦美佐(横浜国大), 人見真紀子(横浜国大), 斎藤 猛(横浜国大), 並木勇樹(横浜国 大), 大塚悠佑(横浜国大), 清水秀倫(横浜国大), 野崎 篤(平塚 市博物館), 宇都宮正志(産総研), 楠 稚枝(横浜国大), 佐藤 圭 (京大), 西田 梢(茨城高専), 河潟俊吾(横浜国大), 和仁良二(横 浜国大), 中村栄子(横浜国大)

千葉県君津市川谷地域に露出する上総層群柿ノ木台層(中部更新 統)から産出する化学合成化石群集は、有孔虫の酸素安定同位体比変 動に基づく年代モデルより707.5Ka~697.5Ka と 688.9Ka~667.2Ka の2つの層準から産出する.川谷地域の化学合成群集は、巣穴起源の 自生炭酸塩と共産する.巣穴内部と周囲の堆積物からは十脚甲殻類の 爪化石が産出し、少なくともその一部は、スナモグリ類に同定された. また、巣穴周辺の基質からは過去の湧水場から頻繁に報告されている 糞化石 Palaxius が産出した.

自生炭酸塩が沈殿した巣穴を観察した結果,巣穴内部は geopetal 構造状に晶出したアラゴナイトの針状自形結晶からなり,壁面付近の kiritaniensis, Ochetoceras sp., Peltoceratoides sp. など, K matsushimai 群集帯を構成するアンモノイドの産出が確認されて いる(下野谷・高橋, 1990; Sato and Westermann, 1991; 佐藤, 2008 など).本研究では新たに,洞ヶ谷上流部の林道朝日線に露出 する山原坂層より Ochetoceras sp.および Peltoceratoides sp.などが, 水谷左岸より Kranaosphinctes sp.が発見され,これらの地点にお いても Oxfordian 海成層の分布が確実となった.

山原坂と長野ダムサイト間の層序対比については、研究者ごとに アンモナイト産出層の層位関係の解釈が異なる.今回、両地域間に 位置する水谷左岸においても山原坂層とは異なる Oxfordian の海成 層が確認され、山原坂、水谷、長野の各地には独立した岩相層序が 存在し、それぞれは断層で境されているものと考えられる.今後、 新産地および追加標本の発見により、層序対比の検証が期待される.

 ¹ Distribution of Oxfordian marine deposits of the Tetori Group based on recent discoveries of Late Jurassic ammonoids in the Kuzuryu area, Ono City, Fukui Prefecture, central Japan
 ² Sakai, Y. (Ono City Board of Education), ³ Goto, M. (FPDM), ⁴ Nakada, K. (FPDM), ⁵Sano, S. (Univ. Toyama)

はシルに挟まれた層厚約 30m の砂質シルト岩層が連続的に露出している。貝類化石は 9 層準で確認でき、このうち、比較的多産する 2 層準から標本採取を行った。

結果と考察:全層準を通じて双叉状肋型の Sphenoceramus schmidti (Michael)が産出した。また、1層準からはGigantocapulus giganteus (Schmidt)が得られた。これらの産出から、本層は Maeda et al. (2005)の定義による Sphenoceramus schmidti帯の基底部(下部カン パニアン上部)に対比される。この対比は本層のK-Ar 年代(Shibata, 1986)や石灰質ナンノ化石年代(Okada et al., 1987)とも調和的で ある。

釧路-根室地域の根室層群の大型化石は地質図幅説明書等でしばしば報告されているものの、アンモノイド類やイノセラムス類を除けば記載・図示を伴った研究は極めて少ない(Tashiro & Otsuka, 1980; Suzuki *et al.*, 1982; 上野・松井, 1983)。今後は、これらの大型化石についても様々な観点から研究を進めていく必要がある。
 ¹Molluscan age of the Upper Cretaceous Nokkamappu Formation of the Nemuro Group in the Nemuro area, eastern Hokkaido, Japan
 ²Shogo Okamura (Netsugen Kushiro Corp.), ³Takashi Matsubara (Hokkaido Univ. Educ., Kushiro)

基質部では高 Mg カルサイトが,壁面から離れるとドロマイトが卓越 し、この順に自生炭酸塩の炭素安定同位体比は次第に重くなった (-56.61‰~-37.05‰).これらの事実から、巣穴を作った生物は湧 水場特有の環境に強く依存したスナモグリ類,あるいはそれに近縁な 種と考えられる.巣穴内部のアラゴナイトの沈殿は溶存酸素に枯渇し た海水で起こった嫌気的メタン酸化により、また基質中の高 Mg カル サイトとドロマイトは、有機物分解によるリン酸イオン濃度の上昇と 硫酸イオンの枯渇などの間隙水の変化により沈殿したと考えられる.

¹Authigenic carbonates and burrows associated with cold-seep-depended assemblage from the middle Pleistocene Kakinokidai Formation, Kazusa Group, Chiba Prefecture.

²Ryucihi Majima^a, Mayumi Ochi^a, Misa Miura^a, Makiko Hitomi^a, Takeshi Saito^a, Yuki Namiki^a, Yusuke Otsuka^a, Hidenori Shimizu^a, Atsushi Nozaki^b, Masayuki Utsunomiya^c, Chie Kusu¹, Kei Sato^d, Kozue Nishida^e, Shungo Kawagata^a, Ryoji Wani^a, Eiko Nakamura^a. (a: Yokohama Natn. Univ. b: Hiratsuka City Mus. c: AIST. d: Kyoto Univ. e: Ibaraki Coll., Natn. Inst. Tech.)

ナノインデンテーションおよび圧縮強度試験を用いた 二枚貝の殻層構造における力学的優位性に関する検討¹ 吉村太郎(慶應義塾大学理工学部)²・武末翔吾(慶應義塾大学 理工学研究科)³・中山正光(慶應義塾大学理工学研究科)⁴・ 佐々木猛智(東京大学総合研究博物館)⁵

貝殻は主に炭酸カルシウムの結晶により構成され、多くの場合、 微小な結晶の集合体が 3-4 層に重なり合って、一つの殻を形成して いる. それぞれの殻層は、異なる結晶構造・成分・成長方向・配向 性を有しており、その複合構造を力学的観点から評価する研究はこ れまでほとんど見られない.本研究では、貝殻の有する複合構造の 優位性を明らかにし、生態との関係性を解く手掛かりとすべく、材 料学的手法を用いて、現生二枚貝の貝殻における力学的特性の評価 を試みた.

第一に、成長軸に沿い切断した殻層の断面に連続的にナノインデ ンテーション試験を試みたところ、殻層ごとに異なる硬度およびヤ ング率を示すことが明らかとなった.さらに、貝殻の中間層が最も 硬度・ヤング率に富んだグループ(I類)と最も内側に真珠層を有 するグループ(II類)に大別される傾向が認められた、イタヤガイ

P26

Silurian Graptolites of the Co To Islands, Northeast Vietnam Muhammad Aqqid Saparin, Mark Williams, Jan Zalasiewicz (University of Leicester), Toshifumi Komatsu (Kumamoto University), Adrian Rushton (The Natural History Museum, London), Doan Dinh Hung (Vietnam National Museum of Nature)

The lower Palaeozoic graptolite-bearing strata of Vietnam have been noted since the time of the French colonial era, yet most of the assemblages are yet to be illustrated. More recently, Vietnamese and Japanese geologists have examined the Vietnamese lower Palaeozoic succession in detail, including the Co To Formation that crops out over 40 islands and islets of the Co To Archipelago in NE Vietnam. The Co To Formation is more than 1000 m thick and regionally has been considered to be of Late Ordovician and Silurian age, though only strata of Silurian age have been recognised in our study. Newly collected graptolites such as *Spirograptus turriculatus*, *Torquigraptus* proteus, *Monograptus* priodon, *Oktavites spiralis*, *Oktavites excentricus* and *Monoclimacis subgeinitzi* identify strata that are lower Silurian (Llandovery Series)

P27

神奈川県川崎市に分布する下部更新統飯室層から産出したタイ科魚 類化石¹

宮田真也(城西大・化石ギャラリー)²・樽 創(神奈川県博)³ ・籔本美孝(北九州自然史博)⁴

タイ科魚類は37 属148 種が知られているスズキ目魚類の一群であ る (Nelson, 2016). 化石も知られており,欧州の始新統,コーカサ ス地域やオーストラリア南部の中新統などからの産出報告がある (例えば, Day, 2002; Bannikov and Kotlyar, 2015).本邦では, 中新世以降の化石が報告されており,神奈川県三浦郡の中新-鮮新 統三浦層群逗子層,静岡県掛川市の更新統掛川層群土方累層,石川 県金沢市の大桑層,鹿児島県西表市の形之山層などから報告されて いる (例えば,三井, 2011; 大江・新谷, 2006; 松浦, 1996; 籔本・ 上野, 1996).本講演では,神奈川県川崎市宿河原の多摩川河床に 分布する下部更新統上総層群飯室層から産出したタイ科魚類化石に

ついて検討を行った. 飯室層は木片や軽石片が点在する塊状青色シルトまたは砂質シルトからなり(高野, 1994),堆積年代については,西久保テフラおよび登戸 - Kd17 テフラを挟在することから1.39Ma 前後と推定され 類やマルスダレガイ類などの海生二枚貝の多くが前者であり、イガ イ類などは後者と言える.

次に、殻全体の外側からの加圧に対する力学的特性を検討すべく、 圧縮強度試験を行った.これは貝殻の両側から圧縮し、破壊される までの耐久圧力を測定する.主にホタテガイ(I類)・シナハマグ リ(I類)・ムラサキイガイ(II類)・タイラギ(II類)の4種に ついて、それぞれ生きた状態と殻のみの標本を用いて検討を行った. I類については、生きた状態と殻のみの試料の強度に有意差が生じ たのに対し、II類では個体が生きているか否かは強度には比較的に 影響が小さいことが明らかとなった.

以上の結果を踏まえ、貝殻は殻層の組み合わせが、殻全体の強度 を形成する一因として由来していると考えられる.今後、軟体動物 の外骨格の耐久性に関する機能形態学と生体鉱学に関する既存の知 見を踏まえ、新たに捕食圧の観点から殻強度の定量化を試みたい.

¹Examination of mechanical advantage in shell layer structure of Bivalve using nanoindentation and compressive strength test ²Taro Yoshimura (Keio Univ.), ³Shogo Takesue (Keio Univ.), ⁴Masamitsu Nakayama (Keio Univ.), ⁵Takenori Sasaki (Tokyo Univ.)

and further constrain the biostratigraphical age of part of the Co To Formation to the *Torquigraptus proteus* Subzone of the *Spirograptus turriculatus* Biozone, and the *Oktavites spiralis* Biozone, both of the Telychian Stage. The material likely includes at least one new graptolite species.

る (鈴木・村田, 2011; 高野, 1994). 堆積環境は貝形虫の Pontocythere subjaponica - Buntonia hanaii 化石群が認められる ことから内湾の湾中央~湾口環境の 40-50m 以浅であることが推定 されている (Ozawa and Ishii, 2014).

化石は体の前部と鱗が保存されており,頭部骨格の上部と肩帯の 骨格の一部が認められる.体長は保存されている部分は97mmで,神 経頭蓋の長さは約60mmである.

本種は鱗が櫛鱗であること、副蝶形骨に隆起が認められること、 大きな上後頭骨突起があり、眼窩中央部の上まで延びることなどの 特徴からタイ科魚類に属するものと考えられる(赤崎、1962; Jhonson, 1980). 上総層群からのタイ科魚類化石は初めての報告で あり、日本近海域におけるタイ科魚類の生物地理や進化、更新世の 太平洋沿岸の魚類相を議論する上でも重要である.

¹A fossil sparid fish from the Lower Pleistocene Iimuro Formtion, Kawasaki City, Kanagawa Prefecture, Japan.

²Shinya Miyata (Josai Univ.), ³Hajime Taru (Kanagawa Pref. Mus. Nat. Hist.), ⁴Yoshitaka Yabumoto (Kitakyushu Mus. Nat. Hist. Hum. Hist.)

モロッコ産 Zarafasaura oceanis (長頚竜類)の頭骨とその意義¹ 中谷大輔(長崎市教育委員会・恐竜博物館準備室)²

モロッコ王国の上部白亜系(Maastrichtian)からは、海棲爬虫類化石 が多産している.長頚竜類はエラスモサウルス科の Zarafasaura oceanis が同地域の固有種として報告されている.

平成 27 年度に佐賀県は、ユマニテク短期大学の十津守宏准教授より 頭骨を含む極めて保存状態の良いエラスモサウルス科化石の寄贈を受け 佐賀県立宇宙科学館で登録、保管することとなった.本標本はモロッコ 王国の Oulad Abdoun 盆地北部に位置する Sidi Daoui 地域から産出したと され、化石表面および各部位の間に残された母岩より、Zarafasaura oceanis のホロタイプと同じ地域から産出したと考えられる.本標本は頭骨と頚椎 の大部分が保存されている.寄贈時には頭骨と頚椎が分離しており それらの産状を示す客観的な証拠が得られなかったことから、全ての部位 を同一個体として扱うことができなかった.そこで、本研究では下顎骨と 頭蓋骨が関節した状態で保存されている頭骨について、分類学的検討を 行った.

頭骨は3次元的に復元されているが、外側の部位はほぼ完全な状態で 保存されており、ほとんど変形していない. 歯は細長く、下顎結合部が 比較的短いなど,一般的なエラスモサウルス科と共通する形質が認められた.また,前眼窩部が頭骨長の30%程度で,側頭窓が大きく,左右の細長い 鱗状骨が側頭窓の前後長の1/2の位置で頭頂骨と接していることから Zarafasaura oceanis に同定した.これまでに Zarafasaura oceanis の頭蓋骨は 2 点が報告されているが,後眼窩骨や頬骨,鱗状骨などの保存状態が悪く 各要素の関係性については不明瞭であった.本標本では、それらの要素が ほぼ完全な状態で保存されており,各縫合線の位置も確認できた.また 頭頂骨と鱗状骨の縫合部の保存状態も良好であることから, Zarafasaura oceanis に特徴的な大きな側頭窓の形態も明らかとなった.

一般的に同種と認められる長頚竜類の頭骨が、複数個体で保存されていることは少なく、種内の個体変異についてはあまりよくわかっていない. Zarafasaura oceanis は比較的に発見されている個体数が多く、頭骨の保存状態も良好なものが多い.よって、本標本のように保存状態の良い頭骨は Zarafasaura oceanis における骨学的な理解を深めることに役立つだけでなく、個体変異を理解する上でも有益だと考えられる.

¹A skull of *Zarafasaura oceanis* from Morocco and paleontological significance. ²Daisuke Nakatani (Nagasaki city board of education • Dinosaur museum preparations room)

P29

鹿児島県甑島列島に分布する上部白亜系姫浦層群の地質年代¹ 三宅優佳(薩摩川内市)²・堤 之恭(科博)³・御前明洋(北九州市 博)⁴・ルグラン ジュリアン(中央大・理工)⁵・對比地孝亘(東大・ 理)⁶・小松俊文(熊大・院・先端)⁷

九州の南西部には、上部白亜系の姫浦層群が広く分布している。 地質年代の指標となる化石を多産するため、白亜系の生層序や国際 対比の上で重要である.しかし、本研究の調査地域である甑島列島 の姫浦層群については、非海成層を挟むことや地質構造が複雑なた め、詳しい地質年代が合意されていなかった.そこで本研究では、 軟体動物などの大型化石と微化石を用い、地質年代を検討し、さら に凝灰岩中のジルコンを抽出して、U-Pb 年代の測定を行った.

田中・寺岡(1973)によると調査地域の姫浦層群は、下位から、B ~G層の6累層に区分されている.C層は主に上部サントニアン階~ 下部カンパニアン階を示すアンモナイトの Eupachydiscus haradai や、イノセラムスで下部カンパニアン階の指標である Sphenoceramus orientalis, "中部"カンパニアン階の Sph. schmidti などを含む浅海成の砂岩や泥岩から成っている.さらに、上部白亜 系の放散虫化石が C層と E層で比較的多産し、C層からは"中部" カンパニアン階に特徴的な Amphypyndax pseudoconulus が産出し, E層からは、A. stocki や Dictyomitra koslovae, D. multicostata などで構成されるサントニアン階~"中部"カンパニアン階の放散 虫群集が含まれている.

C層とF層の酸性凝灰岩で、LA-ICP-MSを用いてジルコンのU-Pb 年代を調べた結果、ジルコンのU-Pb年代の加重平均は、それぞれ 82.5±1.0 Ma(95% conf.; MSWD = 1.9)と70.0±0.5 Ma(同; MSWD = 1.17)であった.以上の結果、調査地域における姫浦層群の年代は、 少なくとも下部カンパニアン階〜下部マーストリヒチアン階であり、 下部カンパニアン階と"中部"カンパニアン階の境界はC層中に、 カンパニアン階とマーストリヒチアン階の境界はF層中にあると考 えられる.

¹Geologic time of the Upper Cretaceous Himenoura Group on the Koshikishima Islands in Kagoshima Prefecture.

²Yuka Miyake (Satsumasendai City), ³Yukiyasu Tsutsumi (Natl. Mus. Nat. Sci.), ⁴Akihiro Misaki (Kitakyushu Mus. Nat. Hist. Hum. Hist.), ⁵Julien Legrand (Chuo Univ.), ⁶Takanobu Tsuihiji (Tokyo Univ.), ⁷Toshifumi Komatsu (Kumamoto Univ.)

P30

鹿児島県上甑島に分布する姫浦層群から発見された恐竜化石

對比地孝亘(東京大・院・理)²・三宅優佳(薩摩川内市)³・ 小松俊文(熊本大・院・先)⁴・真鍋真(国立科学博物館)⁵・ ルグラン ジュリアン(中大・理工)⁶

鹿児島県薩摩川内市の甑島列島に分布する姫浦層群の恐竜化石と しては、これまで下甑島鹿島付近のカンパニアン中期の堆積物から 獣脚類、竜脚類、及び角竜類のものと考えられる遊離歯が知られて いた.この度、上甑島に露出する、より上位のマストリヒチアンの 堆積物から新たに恐竜の化石が発見されたため、ここに報告する.

上甑島でこれまで発見されている標本は、獣脚類の遊離歯及び Hadrosauroidea のものであると考えられる部分的な大腿骨である. 遊離歯は、鋸歯が発達していること、断面が紡錘形であるなど、獣 脚類内で広く分布する形質を持っており、より詳細な分類学的同定 は困難である.大腿骨標本は、近位端(大腿骨頭)から第四転子の 下までの約70 cmの部分からなる.小転子は大転子から区別され発 達しているが、これらの間には深い裂け目は存在しない.第四転子 は大きく発達し、その外縁はゆるい弧状を呈する.特にこの第四転 子の形態は、本標本が Hadrosauroidea の中でも, Bactrosaurus と より派生的な分類群からなるクレードのものであることを示唆する. 保存されている部位に基づくと、大腿骨全長は約120 cmと推定され、 これは北米の Edmontosaurus のものと同様の大きさの、 Hadrosauroidea の中では比較的大型の種類に由来する可能性が高い.また、Hadrosauroidea の世界的な層序学的分布を考えると、そ の中でも特に Hadrosauridae に属する可能性があるが、その確認に ついては今後の追加標本の発見を待つ必要がある.本邦におけるマ ストリヒチアンの恐竜類の化石記録は現在のところ非常に乏しい. 特に甑島列島には、下位のカンパニアンの堆積物も保存されている ことを考えると、今後この地域の化石記録は、白亜紀末期の大量絶 滅前の恐竜類の多様性変遷の理解に貢献することが期待される.

¹Dinosaur remains discovered in the Himenoura Group on Shimokoshikishiima Island, Kagoshima, Japan ²Takanobu Tsuihiji (Univ. of Tokyo), ³Yuka Miyake (Satsumasendai

City), ⁴Toshifumi Komatsu (Kumamoto Univ.), ⁵Makoto Manabe (National Museum of Nature and Science), ⁶Julien Legrand (Chuo Univ.)

手取層群の脊椎動物相はどのぐらい多様なのか¹ 佐野晋一(富山大学大学院理工学研究部(都市))²

「手取竜(Tedorosaurus asuwaensis)」の発見以来,手取層群の 脊椎動物化石の研究史は50年を数えるが,近年,恐竜化石の発見を 機に,多様な脊椎動物相の存在が注目を集めている.手取層群の脊 椎動物化石研究の現状を概観し,脊椎動物相の特徴を把握すること を目的に,論文等で報告された脊椎動物の体化石のリストの作成を 試みた.この結果,暫定的なものではあるが,手取層群の脊椎動物 相として,現在のところ,少なくとも,板鰓類2種,新鰭類5種, 両生類3種,トリティロドン類1種,哺乳類7種,カメ類13種,有 鱗類11種,コリストデラ類3種,ワニ類1種,翼竜類4種,獣脚類 10種,鳥類1種,竜脚類2種,鳥脚類6種の計69種が知られてお り,このうち23種が新種として記載されていることがわかった.

手取層群の脊椎動物相は、トリティロドン類とアルバノペトン科 両生類の存在、ワニ類と比較的多様なコリストデラ類の両方の存在、 カメ類の顕著な多様性、哺乳類、有鱗類、恐竜類の多様性、魚類の 多様性が小さいことにより特徴づけられる.手取層群に産する脊椎 動物化石の各グループの種数を、中国東北部の熱河生物群やイギリ

P32

骨髄骨を用いたオルニトミモサウルス類の性成熟期の検討¹ 小平将大²・林昭次²・Chinzorig Tsogtbaatar³・Koen Stein⁴・ Khishigjav Tsogtbaatar⁵

(岡山理大², モンゴル科学アカデミー古生物学地質学研究所^{3.5}, ベルギー王立自然史博⁴)

オルニトミモサウルス類は白亜紀に生息した獣脚類恐竜である. 骨化石から性成熟期を推定することは困難なため,その生活史については未解明な部分も多い. 産卵期における鳥類の雌の骨内部には, 骨髄骨が形成される. 骨髄骨はいくつかの恐竜類からも報告されており,性成熟期を推定するのに有効な指標と考えられている. モン ゴル,白亜系ネメグト層(マーストリヒチアン)から産出した2個体のオルニトミモサウルス類(大腿骨 HMNS2006-04-189;以下A個体,大腿骨・腓骨 HMNS2006-04-356;以下B個体)に骨髄骨 が保存されていることが明らかとなった.本研究ではそれらの骨髄 骨を記載し,皮質骨中の骨組織変化と骨髄骨に基づきオルニトミモ サウルス類の性成熟期の推定をおこなった.

A 個体の大腿骨と B 個体の脛骨の髄腔内に見られた組織は、鳥類 の骨髄骨に見られる woven bone が骨内膜層の内層に形成されると

P33

山口県下関市の関門層群下関亜層群(前期白亜紀後期)から産出し た国内初のデンドロウーリトゥス卵科の卵殻化石¹ 今井拓哉(福井県恐竜博、金沢大・自然科学)²・東 洋一(福井県 大・恐竜研、福井県恐竜博)³・湯川弘一(福井県恐竜博)⁴・ 高橋文雄(美祢市化石館)⁵・山根謙二(美祢市文化財保護課)⁶・ 篠田健二(美祢市文化財保護課)⁷・清水好晴⁸

卵殻化石は、絶滅動物の繁殖生態を理解する上で重要である。国 内の恐竜卵殻化石は、福井県勝山市、石川県白山市、兵庫県丹波市 の下部白亜系から記載報告されている。本発表では、福井県立恐竜 博物館、福井県立大学恐竜学研究所、美祢市化石館の共同調査によ って確認された、卵殻化石を報告する。国内初のデンドロウーリト ゥス卵科の卵殻化石で、下関亜層群で初となる恐竜化石である。

試料は、山口県下関市の綾羅木川上流に分布する関門層群下関亜 層群(アプチアン~アルビアン)から1965年に採集された、卵殻化 石計8点である。直径は1cm~7cm、卵殻の厚さは約3.7mmで、表 面には凹凸が見られず、卵殻の断面形態はDendrospherulithic 形態型 と一致する。以上の観察から、本試料がデンドロウーリトゥス卵科 (Dendroolithidae)に属することがわかる。加えて本試料は、微細に スの Wealden 動物群など,後期ジュラ紀~前期白亜紀の幾つかの著 名なラガシュテッテンのものと比較した結果,手取層群には他のラ ガシュテッテンに知られるほとんど全てのグループが存在しており, かつ,現在知られている種数も他地域のものにほぼ匹敵する規模に 達することがわかった.

近年,熱河生物群と手取生物群は同時期,かつほぼ同緯度に生息 したにもかかわらず,両者の動物相に共通属がほとんど認められな いことから,前期白亜紀の東アジアにおいて古生物地理学的な分化 が生じていた可能性が指摘されている.今後,東・東南アジア各地 の下部白亜系から知られる脊椎動物相の多様性やその構成要素を比 較することにより,アジアにおける当時の古(生物)地理や古気候 の復元,さらには中生代陸上生態系の進化の解明に貢献できるもの と期待される.

(参考) Matsumoto and Evans (2018) PLoS ONE 13(1): e0189767. Sano (2017) Mem. Fukui Pref. Dinosaur Mus. 16. 1-15

¹Vertebrate diversity of the Early Cretaceous Tetori Biota from Japan, the state of the art.

²Shin-ichi SANO (Grad. Sch. Sci. Tech., Univ. Toyama, Japan)

いった特徴と一致したため、骨髄骨であると同定した. すべての標本における皮質骨の組織は、骨成長が速い動物に観察される fibro-lamellar tissue を示した. 血管走向はすべての標本において骨の 内層から表層にかけて変化し、薄層状・網状から長軸状へと変化した. 成長停止線は、A 個体の大腿骨では7本、B 個体の大腿骨・脛 骨では8本、腓骨では9本観察することができた.

「皮質骨の組織変化に基づき復元した成長曲線」と「骨髄骨」か ら、本研究で使用したオルニトミモサウルス類は2歳まで急成長し、 3-6歳で性成熟を迎えた後に成長速度が低下することが明らかにな った. 先行研究のように皮質骨の組織変化のみで性成熟期を推定す ると,骨髄骨の存在を加味して解釈した性成熟期よりも5年遅くなる. 従って骨髄骨を用いていない先行研究は、恐竜類が性成熟を迎える 年齢を実際の数値よりも多く見積もっている可能性が考えられる.

¹Medullary bone tissue suggests reproductive timing in Ornithomimosauria (Dinosauria, theropoda)

²S. Kodaira, ²S. Hayashi, ³T. Chinzorig, ⁴K. Stein, ⁵K. Tsogtbaatar (²Okayama Univ. Sci., ^{3,5}Inst. of Paleontology and Geology, Mongolian Academy of Sciences, ⁴Royal Bel. Inst. Nat. Sci.)

発達した気孔の網目状構造が、部分的に規則性を持って走行してい る点が特徴である。

デンドロウーリトゥス卵科の卵化石からは、Kundrát ほか (2005) がテリジノサウルス類、Araújo ほか (2013) がメガロサウルス類の 胚化石を記載している。このことから、下関亜層群でのこれらの恐 竜の巣化石や骨格化石の発見が期待される。また本試料は、韓国中 西部の京畿道華城市に分布する Sihwa 層 (アルビアン) 産のデンド ロウーリトゥス卵科と、卵殻の厚さや、走行に規則性のある気孔の 網目状構造などといった特徴が共通している。下関亜層群と Sihwa 層という、堆積した年代、盆地が近い地層から似た卵殻化石が産出 したことから、前期白亜紀後期には両地域に近縁な恐竜が生息し、 繁殖を行っていた可能性が示唆される。

¹First dendroolithid fossil eggshells from the Shimonoseki Subgroup, Kanmon Group, (late Early Cretaceous), Shimonoseki, Yamaguchi, Japan. ²Takuya Imai (FPDM, Kanazawa Univ.), ³Yoichi, Azuma(Fukui Pref. Univ., FPDM), ⁴Hirokazu Yukawa (FPDM), ⁵Fumio Takahashi (MFM), ⁶Kenji Yamane (Mine City), ⁷Kenji Shinoda (Mine City), ⁸Yoshiharu Shimizu

トリのクチバシ角質部の層構造から予想する クチバシの成長様式¹ & (名士・彊)²・杉本奏伸(名士SRセンター)³・日

浦野雪峰(名大・環)²・杉本泰伸(名大 SR センター)³・田上響(福 岡大)⁴・松本涼子(神奈川県博)⁵・河部壮一郎(福井県大)⁶・大 橋智之(北九州博)⁷・藤原慎一(名大博)⁸

吻部の骨とそれを覆う角質の鞘で構成されているクチバシは、多 様な形態に応じて機能も様々であるため、生物の行動生態と密接に 関係している.更にクチバシは、カメやトリの他、多くの絶滅動物 でも独立に獲得された器官であり、絶滅動物の行動生態を復元する 際にはその形態や機能を正しく理解する必要があるが、角質部は化 石に残りにくく、クチバシ全体の形態を化石から知ることは難しい. そのため、化石として残る骨が持つ情報のみから角質部を正確に復 元し、クチバシの形態を知る必要があるが、現在のところ明確な根 拠に基づいたクチバシの復元法が提唱されていないばかりか、現生 のトリやカメのクチバシですら、角質部の詳細な構造や成長様式と 骨部との関係は明らかにされていない.

そこで本研究では、絶滅動物への適応を視野に入れ、クチバシ角 質部の構造と成長様式を明らかにすることを目的とし、現生のトリ

P35

瑞浪北中学校敷地造成工事現場(岐阜県瑞浪市)の 下部中新統瑞浪層群明世層から産出した化石¹ 安藤佑介(瑞浪化石博)²・楓 達也(瑞浪市)³・木村敏之(群馬県 博)⁴・高桒祐司(群馬県博)⁵・野村真一(木更津高校)⁶・宮田真也 (城西大・大石化石ギャラリー)⁷・齊藤 毅(名城大)⁸

2016年6月から岐阜県瑞浪市土岐町で始まった瑞浪北中学校敷地 造成工事に伴って出現した下部中新統瑞浪層群明世層(18-17Ma)からは, Crenomytilus grayanus(エゾイガイ)をはじめとする多くの 化石が産出した(安藤・糸魚川, 2018など).本発表では,産出した主要な各化石の図示および古環境について言及する.

大型化石は、貝類(23種)、蔓脚類(2種)、魚類(13種)、+ 脚類(2種)、花虫類(1種)、コケムシ類(1種)、クジラ類(2 個体分)が識別された.エゾイガイをはじめ北方系の貝類が卓越す るが、Nebrius delfortriei(オオテンジクザメ)など南方系の板鰓 類の産出も見られ、冷水塊の存在とともに暖流の流入もあったと考 えられる.クジラ類では、Isanasetus sp. cf. I. laticephalus の頭 蓋、下顎、耳骨をはじめとするほぼ一体分の化石が産出した.この 個体は、保存されるいずれの椎骨でも椎体と骨端の癒合が発達しな

P36

哺乳類の距骨 cotylar fossa の足根関節での 機能の検討と系統分類形質としての意義¹ 江木直子(京大・霊長研)²

距骨の cotylar fossa は、距骨体の内側面から距骨頸にかけて形 成される窪みで、幾つかの哺乳類分類群が保持している。アフリカ 獣類ではこの上目の数少ない共有派生形質の候補とされているが、 他にも霊長類、カンガルー科などの有袋類にも存在する。この形質 は幾つかの独立した系統で認められているが、樹上歩行、地上歩行、 跳躍、掘削など様々な運動行動モードの動物に現れるため、機能的 な観点からは注目されてこなかった。

cotylar fossa を持つ哺乳類では、この窩状関節面に脛骨遠位部 の内側踝が接する。cotylar fossa を持たない食肉類、齧歯類、偶 蹄類などの脛骨-距骨関節では、距骨体内側面が垂直に内側踝正中 面と接し、内側踝は脛骨が距骨に対して正中側にずれるのを防ぐ構 造をしている。また、脛骨内側踝の遠位方向への長さが短いか、ま たは距骨頸が距骨体から遠位方向に伸びるため、内側踝の遠位が距 骨頸に接することはない。

アフリカ獣類の cotylar fossa では深さや形状に変異はあるが、

のクチバシ角質部の薄片,SEM,小角散乱法による観察を行った.クロスニコルで正中断面の薄片観察を行うと,角質部で消光位が異なる三層構造(表層からA~C層)が確認できた.また,SEM観察において,上記のA層内に更に微細な層構造があることが確認でき,この層の向きが消光位と関係することが分かった.最後に,小角散乱法によって,A層では背腹軸で一定間隔の繰り返し構造があることと,A層とB層では微細構造が異なっていることも明らかになった.

クチバシ角質部の三次元的な立体構造の推定と、複数の成長段階 の個体の薄片を元に、A層、B層それぞれの成長過程を追跡した.本 研究の成果を骨部形態と結びつけることで、クチバシ角質部の成長 様式といった新たな側面から絶滅動物のクチバシ復元へアプローチ していくことができると期待される.

¹The beak growth style supposed from the layered structure of avian rhamphotheca

²Yukine Urano (Nagoya Univ.), ³Yasunobu Sugimoto(Nagoya Univ.)
⁴Kyo Tanoue (Fukuoka Univ.), ⁵Ryoko Matsumoto (Kanagawa Pref. Mus.), ⁶Soichiro Kawabe (Fukui Pref. Univ.), ⁷Tomoyuki Ohashi (Kitakyushu Mus.), ⁸Shin-ichi Fujiwara (Nagoya Univ. Mus.)

いことから未成熟個体と考えられる.また、下顎骨と耳周骨には *I. laticephalus* との違いが見られるが、これらが種としての違いを 反映したものであるかについては慎重な検討が必要である.

微化石は、貝形虫類、有孔虫類、花粉が産出した.このうち、花 粉化石から推定される陸上の古気候は暖温帯であり、海洋気候とは ややずれがあることが明らかになった.この点に関しては、他の分 類群も含めて今後詳細な検討が必要である.

¹Fossils from the lower Miocene Akeyo Formation of Mizunami Group at the construction site of Mizunami-Kita Junior High School in Mizunami City, Gifu Prefecture, Japan.

²Y. Ando (MFM), ³T. Kaede (Mizunami City), ⁴T. Kimura (Gunma Muse. Nat. His.), ⁵Y. Takakuwa (Gunma Muse. Nat. His.), ⁶S. Nomura (Kisarazu High School), ⁷S. Miyata (Oishi Fossils Gallery, Josai Univ.), ⁸T. Saito (Meijo Univ.).

距骨頸の付け根に cotylar fossa があり, 脛骨内側踝の遠位方向に 向く関節面がはまる。カンガルーの cotylar fossa は長細い形状で, 脛骨内側踝の前後に長い遠位面がはまる。いずれの場合も,足根関 節の背屈時に接触が増し,近位足根関節を固定する。一方,霊長類 の cotylar fossa は距骨体の側面にあり,距骨体の幅が脛骨+腓骨 遠位関節面の内幅よりかなり狭いため,足根関節の背屈に加えて, 外返しが起きた際に脛骨内側踝の正中側と接し,内側から近位足根 関節を保定するのに機能していると推察される。

系統解析では距骨の cotylar fossa の有無は同等の形質として扱われてきたが、霊長類と他の哺乳類分類群では形態的な差異が存在し、また異なる関節運動の機能適応に由来して生じた可能性が示唆された。cotylar fossa の保持は幾つかの絶滅有胎盤類分類群で報告されており、アフリカ獣類との近縁性の示唆にも使われた。これらが同様の足根関節構造と関連する形質であるかを検討することにより、アフリカ獣類との近縁性の評価の手段になると期待される。

¹Presence of cotylar fossa in some mammals and its significances in the ankle joint function and in the systematic classification ²Naoko Egi (Kyoto Univ. Primate Research Inst.)

踵骨による陸棲哺乳類の体重推定¹ 鍔本武久(愛媛大・院・理工)

【背景】 踵骨・距骨は適度に扱い易いサイズで、よい状態で化石と して発見される確率が高い. また, 容易に同定できる特徴的な形態 で,行動形態をよく反映している.一方,化石哺乳類の体重は,古 生態の研究に重要な要素である.

【問題点】 距骨による体重推定については、いくつか成果が出てい るが, 踵骨による体重推定については, まだ少ない.

【目的】陸棲哺乳類の踵骨サイズからその動物の体重を推定する最 適な方法・式を見つけ、簡単に化石に応用できる形にすること.

【資料と方法】現生の陸棲哺乳類の成獣の骨標本 44 種. 踵骨の 12 箇所を計測. ニホンザル以外の標本が計67個体で、体重は台帳より 取得. ニホンザルのデータは、それぞれ 100 個体以上を計測および 台帳より体重取得したオス・メスの平均値を使用した.したがって, 見かけ上、計69個体を使用した、体重と計測値を自然対数に変換し て、それぞれの計測部位と体重との関係を、回帰分析と%SEE・%MPE により検討した.

【結果と考察】ステップワイズ重回帰分析の結果、基準によって組 み込まれる計測値がいろいろと変わったので、今回の目的には、重 回帰分析はふさわしくないと判断した. 単回帰分析におけ る%SEE・%MPE は、「踵骨の幅」の値が一番低い(一番良い). よ って、陸棲哺乳類において踵骨から体重推定をおこなうには、「踵骨 の幅」を使用するのが最適である.ただし、最適な場合 の%SEE・%MPE の値は、距骨の場合のそれらよりも高い(悪い) ので、体重推定には、踵骨よりも距骨の方が適している.「踵骨の幅」 を使用した体重推定の式(予測区間 95%)は、以下のようになる: BM = (EXP(2.917 x loge W + 1.022 ± 0.798)) x 1.081 : ここで, BM = 体 重 (g), W = 「踵骨の幅」(mm), である. 一方で, 霊長類におけ る踵骨からの体重推定を予備的に検討したところ、「踵骨の幅」より も「後距骨関節面の幅」が体重推定に適していることがわかった. つまり、分類群を変えると、適切な計測場所も変動することがある.

¹Estimation of body mass from the calcaneum in land mammals ²Takehisa Tsubamoto (Ehime Univ.)

P38

Paleoparadoxia tabatai (Tokunaga, 1939)の咀嚼運動の推定¹ 樽 創(神奈川県生命の星・地球博物館)²

Paleoparadoxia tabatai(Tokunaga, 1939)は、北西太平洋の前期 ~中期中新世に生息した体長3mを超える海生哺乳類である。その 生態は不明な点が多く、謎の絶滅哺乳類として知られる。今回、北 西太平洋に生息した P. tabatai の咀嚼運動について、新たな知見が 得られたので報告する。

これまでにも咀嚼運動は、特殊な臼歯との関係から、様々な推測 がなされてきた。しかし、いずれも頭蓋の咀嚼系の特徴を合理的に 説明していなかった。今回、国立科学博物館(NMNS-PV 5601)と東 京都あきる野市五日市郷土館 (FMI A-1737) の2つの頭蓋を元に、 採餌行動の推定を試みた。咀嚼形態・運動は、現生の中型~大型有 蹄類とも比較した。注目した主な特徴は以下の通りである。 頭蓋の主な特徴

● FMI A-1737 から、翼状骨が後方に位置し、非常に厚く発達する。

両顎の後方に頸静脈突起があり、下顎の開口運動が制限される。

● 上・下顎の関節面が凸面と凸面で接しており、また関節部がはっ きりしない。

P39

日本の新第三紀中新世サイ科(哺乳綱、奇蹄目)化石 ・現状と課題 半田直人(大阪大学総合学術博物館)²

中新世はサイ科にとって最も多様化した時期である. 東アジアに おいては中国で最も化石記録が知られている (Deng and Downs, 2002). 一方で日本でも同時期のサイ科化石が産出している。しかし それらの多くは断片的なものが多く、中新世を通じたサイ科の総括 はほとんどない. また近年サイ科の再検討が試みられ, 多くの分類 群の見解が改められつつあるが、日本の標本について分類を精査し た例はわずかである (Fukuchi and Kawai, 2011). 加えて日本では サイ科の足跡化石の報告が多数あり(岡村,2016),それらは体化石 と並んでサイ科の分布を知る情報となる. さらにサイ科化石の産出 層の年代論が進展している. そこで本研究では, 近年の知見に基づ く日本の中新世サイ科化石を総括し、現状と今後の課題を述べる.

化石産出地点は本州と九州で約20ヶ所あり,産出年代は約20Ma から 6 Ma である. しかし約 16 Ma~11 Ma (ほぼ中期中新世の時期 に相当)は化石記録が欠如する.この時期の化石記録の欠如は他の陸 生哺乳類化石でも認められ、日本海形成に伴う海域拡大の影響が指

 下顎骨は繊維性結合であり、結合部が水平で、咬合面と交わらな 12

● 左右の下顎臼歯列が幅広く、かつ平行であり、また下顎骨の断面 は側方に広がっている。

推定される顎運動

 内側翼突筋の発達は、咬筋との拮抗関係から噛みしめ運動に適す る。

● 咬筋、内側翼突筋の発達は下顎を内・外側から引くことで噛みし め、回転運動に適する。

• 内側翼突筋、側頭筋の作用方向は、咬合面の方向と筋の作用方向 から噛みしめ運動に適する。

以上の点から、P. tabataiの咀嚼運動は口を大きく開けないで擦 り潰し運動が可能な両側性の咀嚼運動で、咬合時に左右両側が回転 する蝶番運動を行なった、と推定された。

¹An inference of masticatory movement of *Paleoparadoxia tabatai* (Tokunaga, 1939)

²Hajime Taru (Kanagawa Prefectural Museum of Natural History)

摘されており(Tomida et al., 2013), 本結果もこれを支持する. 体化石および足跡化石ともに,化石記録が前期中新世に集中する. 特に岐阜県可児地域の標本はカニサイとして知られ、従来 Chilotherium 属とされてきた.他地域の標本には、カニサイと同時 期の地層から産出したことを根拠として同種類に含めた例もある. しかし一部のカニサイ標本は Brachypotherium 属および Plesiaceratherium 属に再同定された(Fukuchi and Kawai, 2011). よってカニサイをはじめとした前期中新世のサイ科の分類は標本ご とに再考する必要性がある.

Brachypotherium 属および Plesiaceratherium 属は前期中新世の 最初期には南アジアに出現しており、その後約 20 Ma ころにはヨー ロッパや中国へ分布を拡大した (e.g., Antoine et al., 2013). 日 本の標本もこの時期の地層から産出しており、これらの分類群が当 時の東アジア東縁まで分布したことを示唆する.

¹A review of the Miocene Rhinocerotidae (Mammalia, Perissodactyla) of Japan

²Naoto Handa (Museum of Osaka University)

中期中新世ケニア北部ナチョラ地域の巨大イノシシ類¹ 辻川寛(東北文化学園大・医療福祉)²・Martin Pickford(フラン ス国立自然史博物館)³・國松豊(龍谷大・経営)⁴・中野良彦(大阪 大・人間科学)⁵・中務眞人(京都大・理)⁶・菊池泰弘(佐賀大・医) ⁷・石田英實(京都大)⁸

ケニア北部ナチョラ地域の中部中新統アカ・アイテパス累層は、約1500万年前の大型類人猿ナチョラピテクス・ケリオイが大量に発見されたことで知られている。ナチョラピテクスは、四肢の解剖学的特徴から主に樹上運動を行っていたと考えられている。ナチョラ地域では、この類人猿化石とともに多様な哺乳類化石が採集されている。

本研究では、ナチョラ地域産哺乳類偶蹄目イノシシ類3種 Diamantohyus nadirus、Kenyasus namaquensis、Megalochoerus marymuunguae のうち、最も大きな M marymuunguae (推定体重約 800kg)を調べた。M marymuunguae はこれまで報告数が乏しく、模 式標本の発見されたブルク (ウエスト・ステファニー、ケニア、約 1700 万年前)で産出した約10 標本しか実質的に記載がなかった。 ナチョラの M. marymuunguae 標本は、風化が激しいものの、下顎骨

P41

新第三紀ミャンマーにおけるウシ科群集の隔離過程¹ 西岡佑一郎(早大・高等研)²・高井正成(京大・霊長研)³・鍔本武 久(愛媛大・理)⁴・江木直子(京大・霊長研)⁵・タウンタイ(メイ ッティーラ大)⁶・ジンマウンマウンテイン(マグウェイ大)⁷

ミャンマー中部の新第三系イラワジ層から産出する哺乳類化石群 集は、南アジアのシワリク哺乳類相に対比できると考えられてきた. しかし近年の調査の結果、後期中新世から鮮新世の間に、東南アジ ア大陸部の動物相と南アジアのそれとの類似性が低下したことがわ かってきた.本研究では、イラワジ化石哺乳類相の大半を占めるウ シ科に焦点を当てて、種構成の時代変化から東南アジアの動物相の 隔離時期と地理的要因について考察する.

イラワジ層産のウシ科化石は、後期中新世前期、後期中新世末/ 前期鮮新世、後期鮮新世の年代群集に細分される。後期中新世前期 はウマ科の Hipparion を含む約 8 Ma 前後の化石群集で、ウシ科はシ ワリク相と共通する Selenoportax vexillarius, Pachyportax latidens, Helicoportax sp.が発見された。後期中新世末/前期鮮新世(約 6-4 Ma) の化石群集には、ヨーロッパ東部から報告されている属 (Palaeoreas sp.)、シワリク相との共通属種(Selenoportax vexillarius,

P42

大阪層群(中期更新統)より初めて産出したクジラ化石¹ 田中嘉寛(大阪自然史博)²・樽野博幸(大阪自然史博)³

大阪層群は鮮新世から更新世にかけて、平野(盆地)から浅海域 に堆積した地層で、大阪平野地下では16層の海成粘土層がはさまれ ている.これまでゾウならびにシカ化石など、陸生哺乳類が多くみ つかっており、ワニ、カメ、スッポンなど淡水から気水域に生息す る四肢動物も産出する.

1990年,大阪市内において,大阪層群最上部の第10海成粘土 層(Ma10層)から鯨類化石が産出した.これは大阪層群から初めて の海生哺乳類の記録である. Ma 10層は Marine Isotope Stages の Stage 9の堆積物であることがしられており,その時代は中期更新 世で,およそ30万年前である.

当該標本は左下顎および5つの尾椎を含む. 尾椎において椎体と 骨端の癒合は起っておらず,当該標本は若い個体と判断できる. 下 顎は3部分に分断され,それぞれが接点を持たないが,少なくとも 前後長は2m あり,若い個体であることもあわせて,大型のヒゲク ジラであることが推測される.

当該標本は下顎頸で曲がっていること、下顎孔が小さいことから

断片や犬歯を含む上下の歯など十数標本からなり、このイノシシ類 の資料を大幅に増やしたといえる。ブルク産 M. marymuunguae 標本 も再検討した。M. marymuunguae は、Megalochoerus 属 3 種の中では 最も小さい。近縁で、おそらく先行する系統の Libycochoerus 属で は最大の L. massai に比べ、臼歯の前後径はあまり変わらないが頬 舌幅が大きい。

Libycochoerus – Megalochoerus の系統が前期から中期中新世に かけて巨大化していったとする仮説が出されているが、ナチョラピ テクスとほぼ同年代で形態も似ている類人猿ケニヤピテクス産地の マボコ(ケニア、約1500万年前)からはより大型のM khinzikebirus が出土しているなど、これらのイノシシ類の産地の年代・古環境・ 古動物地理について細かく検証し直す必要があるかもしれない。

¹A giant suid from the Middle Miocene of Nachola, northern Kenya ²Hiroshi Tsujikawa (Tohoku Bunka Gakuen Univ.), ³Martin Pickford (Muséum National d'Histoire Naturelle), ⁴Yutaka Kunimatsu (Ryukoku Univ.), ⁵Yoshihiko Nakano (Osaka Univ.), ⁶Masato Nakatsukasa (Kyoto Univ.), ⁷Yasuhiro Kikuchi (Saga Univ.), ⁸Hidemi Ishida (Kyoto Univ.)

Selenoportax falconeri, Pachyportax giganteus, Tragoportax sp.), ミャ ンマーの固有属種 (Proleptobos birmanicus, Sivaportax dolabella) が 混在するが, 頭骨および角の標本数に基づくと固有種が優占的であ る.後期鮮新世(約4-3 Ma)以降はProleptobos birmanicus と Sivaportax dolabella のみで, 南アジアやヨーロッパと共通した属種は発見され ていない. このように, イラワジ層のウシ科化石群集の時代変化に 基づくと,約8~4 Maの間に東南アジアの動物相が隔離し始め,3 Ma までに東南アジア固有種を主体とする動物相に置き換わったことが 示唆される. ミャンマーの動物相の隔離は,後期中新世から鮮新世 に急上昇したチベット高原とインド・ビルマ山脈が障壁となって起 きた可能性が高い.

¹Isolation process of bovid assemblages during the Neogene of Myanmar. ²Yuichiro Nishioka (Waseda Univ.), ³Masanaru Takai (Kyoto Univ.), ⁴Takehisa Tsubamoto (Ehime Univ.), ⁵Naoko Egi (Kyoto Univ.), ⁶Thaung-Htike (Meiktila Univ.), ⁷Zin-Maung-Maung-Thein (Magway Univ.)

ナガスクジラ上科(ナガスクジラ科+コククジラ科)であり、コク クジラの特徴であるサテライトプロセスを持たないことから、ナガ スクジラ科と推測できる.ナガスクジラ科にはザトウクジラ (Megaptera 属)が含まれており、強いカーブの下顎をもっている. 当該標本はザトウクジラほど強いカーブを描かないことから、ザト ウクジラではないと考えられる.

これまで、中期更新統からは鯨類化石の記録が少なく、断片的で はあるものの当該標本の産出は貴重な情報である.また地域の動物 相を考える上で、海成層を多く含む大阪層群から初めて鯨類化石が 報告されることは、意義があると考えている.

¹The first whale fossil from the Osaka Group (middle Pleistocene) ²Yoshihiro Tanaka (Osaka Mus.Nat. Hist.), ³Hiroyuki Taruno (Osaka Mus.Nat. Hist.)
P43

漸新統佐世保層群から発見されたキヌゲネズミ科およびトビネズミ 科(齧歯目)化石について¹ 加藤敬史(倉敷芸科大・生命)²

本邦における漸新世の陸生哺乳類化石記録は極端に乏しく、わず かに、アミノドン科、バク科、炭獣科、ビーバー科が報告されてい るに過ぎない.特に小型哺乳類の化石記録は皆無といって良く漸新 世における日本の陸生哺乳類相についてはほとんど明らかになって いない.この理由として、小型哺乳類の探索には一般的に水洗法が 用いられるが、日本の古第三系は続成作用の影響で堆積岩の分解が 困難なため効率的に小型哺乳類を探索する方法が存在しないためで ある.最近発表者は長崎県松浦市に分布する佐世保層群福井層の泥 岩が、野外に放置してやや風化させた後に、水洗法とナフサ法を併 用することで効率よく分解されることを発見した.処理後の残渣か ら産出する哺乳類化石はほとんどが齧歯類で、それらはキヌゲネズ ミ科の Eucricetodon 属とトビネズミ科(Dipodidae)によって構成 されている.これらの齧歯類については現在同定中でその詳細は明 らかになっていないが、両者の構成比を保存されやすい上類および 下顎の第三臼歯で取ると、Eucricetodon は72%、Dipodidae が 28% (N=40)となり, Eucricetodon が卓越し, Dipodidae を伴う齧歯類 相であることが明らかになった.近年モンゴルや内モンゴル自治区 での後期漸新世〜前期中新世の小型哺乳類相の研究が進み,当時の 齧歯類相ではトビネズミ科およびキヌゲネズミ科が卓越することが 報告されている(Kimura, 2010; Harzhauser et al., 2016)が,佐世 保層群の齧歯類相も同様の結果となった.この構成比については, 化石包含層が沼沢地の堆積物を削剥した海進時のラグ堆積物である ため、タフォノミカルな背景を考慮する必要があるものの、後期漸 新世の東アジアには内陸から大陸縁辺域までキヌゲネズミ科とトビ ネズミ科を中心とした齧歯類相が広く存在したことが明らかになっ た.

¹ Cricetidae and Dipodidae (Rodentia) from the Oligocene Sasebo Group, Matsuura City, Japan.

² Takafumi Kato (Kurashiki Univ.)

P44

豊橋市自然史博物館及び豊橋総合動植物公園所蔵の 現生哺乳類及び鳥類の骨格標本について¹ 安井謙介(豊橋市自然史博物館)²・木谷良平(豊橋総合動植物公園)³・ 一田昌宏(豊橋市自然史博物館)⁴

古脊椎動物学の研究を行う上で,対象となる分類群や関連する分 類群に属する現生種の骨格標本との比較検討が必須であることは言 うまでもない。

しかしながら,現生脊椎動物の骨格標本は,その材料(=死体) を入手することが容易ではなく,かつ標本作製に際しても様々な制 約があることから,研究者個人で研究に資する質・量ともに充実し たコレクションを整えることは困難である.一方,我が国の多くの 自然史系博物館における現生脊椎動物コレクションの主体は剥製や 液浸標本,頭骨標本であり,古脊椎動物学で必要とされることの多 い全身が揃った分離骨格標本の蓄積が進んでいる施設は限られてい る.加えて,必要とする標本の所在を誰もが容易に確認できる状況 にあるとは言い難い.そのため,古脊椎動物学の研究を進める中で, 多くの時間と労力を現生骨格標本の探索と確保に割かざるを得ない のが実情であろう. このような状況を多少なりとも改善し,古脊椎動物学研究への一 助となるべく,豊橋市自然史博物館では,演者の一人安井が現生脊 椎動物担当学芸員として着任以降,全身が揃った分離状態のものを 中心とする骨格標本の作製・蓄積に努めてきた.また,隣接する豊 橋総合動植物公園の協力を得て,同園の死亡飼育個体の骨格標本化 も併せて行ってきた.

現在, 演者らは骨格標本の作製・蓄積を進めるとともに, 豊橋市 自然史博物館及び豊橋総合動植物公園が所蔵する現生骨格標本の情 報公開に向けて準備を進めている。それに先立ち本発表では, これ までに整理を終えた哺乳類(18 目 48 科 104 種:582 点)及び鳥類(24 目 47 科 133 種:506 点,哺乳類・鳥類ともに2018 年 3 月末時点の 数)の骨格標本の概要について報告する.

¹Osteological collections of recent mammals and Aves housed in Toyohashi Museum of Natural History and Toyohashi Zoo and Botanical Park

²Kensuke Yasui (Toyohashi Museum of Natural History), ³Ryohei Kitani (Toyohashi Zoo and Botanical Park), ⁴Masahiro Ichida (Toyohashi Museum of Natural History)

P45

樹脂包埋薄片作成における脱水方法の比較¹ 田尻理恵(大阪市大・理)²・江﨑洋一(大阪市大・理)³

現生生物の内部組織を観察する手段のひとつとして、「Spurr 樹脂 包埋による生物薄片観察法」がある(田尻・藤田 2013).この手法 では、動物の硬組織と軟組織の位置関係を維持した状態で両者を観 察でき、走査電顕やX線CT, MRIなどでは把握できない「張り」や 「透明感」などの質感も詳細に把握できる.

本手法では、1)アセトン上昇系列による脱水、2)Spurr 樹脂の調 合と含浸、3)減圧によるアセトンの揮発と樹脂の浸透、4)樹脂の加 熱重合、5)岩石カッターによる切断~薄片の作成、という手順で試 料を作成する.本手法で用いる Spurr 樹脂には、脱水が完全でなけ れば重合不良を起こすという欠点がある.しかし、生物組織への浸 透性が極めて良く、一旦重合すると薄片作成が容易である.今回の 発表では、一連の過程における「脱水」を取り上げる.

生物組織の一般的な脱水では、アセトンもしくはアルコールを脱 水剤として用い、組織の水分を徐々に置換する.アセトンを用いる 場合は揮発性が高いため、置換後直ちに樹脂の含浸に移行できる. 一方、アルコールの場合には、樹脂含浸の前に、揮発性が高いプロ ピレンオキサイド,n-ブチルグリシジルエーテルあるいはメチルグ リシジルエーテルなどに置換する必要がある.それらの置換剤は毒 性が高く廃液処理にも細心の注意が必要であるため,これまで本手 法では脱水剤としてアセトンを使用してきた.しかし、2×2cm 程度 の軟組織の完全な脱水を必要とする本手法の場合,どの脱水剤が総 合的に最良かの検討が必要である.

そこで、含水率が高くサイズが妥当な「ウメボシイソギンチャク」 を用い、脱水効果の検討を行った.脱水剤としてa)アセトン、b)エ タノール+プロピレンオキサイド、c)メタノール+プロピレンオキ サイドの3種、濃度と時間をそれぞれ5パターンずつ設定し、比較 実験を行った.その結果、脱水効率が優れているのはアセトンであ った.

その他にも実験で得た詳細を報告する.

¹Comparison of solvents at dehydration steps for making epoxy embedded animal thin sections

²Rie Tajiri (Osaka City Univ.), ³Yoichi Ezaki (Osaka City Univ.)

HP1

栃木県葛生地域に分布する苦灰岩の特徴について¹ 原 悠介²(海城高等学校)

栃木県佐野市葛生地域には、ジュラ紀付加体である足尾帯の一部 としてペルム系炭酸塩岩からなる鍋山層が分布している。鍋山層は、 ペルム系玄武岩質岩からなる出流層を整合に覆っており、その岩相 の違いにより層状石灰岩を主とする下部石灰岩部層、塊状の苦灰岩 からなる中部苦灰岩部層、塊状石灰岩を主とする上部石灰岩部層の 3 部層に区分される。中部苦灰岩部層は、先行研究によって上部ま たは下部の石灰岩がドロマイト化作用を受け二次的に変質した結果 生じた部分だと考えられている。本研究は鍋山層のうち中部層を構 成する苦灰岩に注目し、その形成過程を解明することを念頭に置い て特徴を記載する。本研究では、苦灰岩の分布する吉澤石灰工業・ 大叶鉱山内の計24 地点で採取したサンプルについて岩相を観察し、 さらに薄片観察・アリザリンレッドSによる染色を行い、中部苦灰 岩部層の特徴について考証した。

岩相観察の結果、中部苦灰岩部層の最下部周辺、おそらく鍋山層 中部層と下部層の境界と考えられる部分にこれまでに未報告の特徴 的な葉理組織がみられた。筆者の観察した範囲で境界面に沿って10

HP2

約40万年前の古東京湾の単体サンゴに関する新発見¹ 上田航平・榧本和仁・宮﨑紫清(千葉県立木更津高等学校)²

更新世の東京湾は現在よりも広く、古東京湾と呼ばれている。古東 京湾の海底堆積物が地層として残っている下総層群には、貝化石が 密集する化石帯が複数認められている。化石帯に含まれる貝化石に ついては数多くの研究があり、当時の貝類群集が復元されている。

一方、これらの化石帯からは単体サンゴも産出することが、古くから知られている(Yabe and Eguchi, 1942; 千葉県地学研究会, 1963)。近年になり、単体サンゴの分類が大きく見直されている。そこで本研究は、 千葉県君津市西谷地域に分布する下総層群地蔵堂層から化石単体サンゴを採集し、最新の分類を基に化石を同定した。研究の過程で、 古東京湾の単体サンゴについて新知見を得たので報告する。

下総層群地蔵堂層の形成年代は、火山灰層や貝化石の年代など により約40万年前とされている。西谷地域の地蔵堂層には、礫混じり の砂層からなる地蔵堂化石帯と、斜交層理が発達する極粗粒砂層から なる西谷化石帯がある。これら2つの化石帯で計2038個体の単体サン ゴを採集した。サンゴの同定は最新の分類である Caims and Kitahara (2012)に基づいて行い、過去の研究報告についても同論文を基に再 m以上連続するこの葉理炭酸塩岩では、染色の結果炭酸カルシウム に富む部分と乏しい部分が互層していることが分かった。葉理は無 数の小断層によって切られており、再堆積後に圧力を受けたと推測 される。さらに、その近傍に露出する下部石灰岩でも、裂罅中にそ れらの葉理組織に類似した構造がみられた。こちらは、染色の結果、 石灰質砂岩でできていると考えられる。

また、下部石灰岩部層に同様に観察されるように中部苦灰岩部層 中には海綿由来と考えられる黒色のチャートノジュールが直線状に 並んで分布しているものもいくつか観察された。

さらに、中部苦灰岩部層の一部では部分的に堆積構造を残した岩 相がみられた。特に、下部石灰岩との境界部から約40m地点では ドロマイト化したウミユリ化石片の密集層が観察でき、初生的な堆 積においてストーム等のイベントによる影響が考えられる。類似の 岩相は下部石灰岩中にも観察された。先行研究において中部苦灰岩 部層は大部分が均一な組織で、一部に顕著なドロマイト化を免れた 堆積構造がみられるとされており、今回の結果はこれと合致する。

¹Features of the Dolostone in Kuzu area, Tochigi Prefecture ²Yusuke Hara (Kaijo Senior High School)

同定し、本研究と比較した。その結果、地蔵堂層から従来3科4属の単体サンゴが報告されていたのに対し、本研究では5科11属が確認された。このことから、多様な単体サンゴの生息が明らかになった。

さらに、本研究において 2 つの重要な知見が得られた。1 つ目は *Rhizotrochus* 属の化石を 2 個体発見したことである。本属の化石記録 は、西オーストラリアの後期更新世(約 12~13 万年前)の地層から産出 した *Rhizotrochus tuberculatus* のみである。そのため地蔵堂層から産出 した *Rhizotrochus* sp. は北半球における本属の初産出記録となるだけ でなく、世界最古(約 40 万年前)の記録になる。2 つ目は、サンゴ体の 底部から個体が出芽した *Endopachys grayi* を 5個体発見したことである。 本種の無性生殖は、サンゴ体の側部から出芽させた個体を分裂させる Anthoblast modeが知られ、産出化石においても側部からの出芽を確認 した。しかし本種において、サンゴ体の底部からの個体の出芽は報告 例がなく、新たな無性生殖様式として今後詳しく調べる必要がある。

¹Discoveries of solitary scleractinian corals in the middle Pleistocene Paleo-Tokyo Bay.

²Kouhei Ueda, Kazuhito Kayamoto, Shisei Miyazaki (Chiba Prefectural Kisarazu High School).

HP3

脊椎動物の糞形態と体サイズの関係: ウマ類を対象とした事例研究¹

長谷川仁衣那・藤堂博仁・出雲由夏・高橋愛佳・松野 綾・吉岡美 咲・高橋明日香・荒井晴香・馬淵璃裕奈・吉岡文菜・伊藤克真・清 水颯将(千葉大附属中)²

1. 研究目的

脊椎動物の糞化石は古生物の生態を復元する上で重要である。し かし、地層中に産出する単離した糞化石について形成生物の種類や サイズを特定するのが難しい。現生生物の糞の網羅的データベース があれば、糞化石にも適用可能だが現状ではそのようなデータも乏 しい。この問題点を解決するために、本研究では、現生生物の糞形 態に関する基礎的なデータベースの作成を目指す。

2. 研究方法

モデルケースとして、生物の進化の代表例とされるウマを対象と した。具体的には、千葉市動物公園で飼育されているウマの糞の長 径・短径・アスペクト比の3つのパラメータを計測した。その上で、 これら3パラメータと排泄主の体のサイズとの関係性を知るために データを解析した。

3. 研究結果

1) 糞の長径はおおむね体のサイズに比例しているが、体のサイズ が大きくなればなるほど、ばらつきが多く見られ、強い相関性は なかった。

2) 糞の短径は体のサイズに比例する相関性が強くみられた。

3) 糞のアスペクト比は、体のサイズとの相関性がなかった。
4. 考察および課題

糞の短径と体のサイズには相関性が見られたが、化石に適用する ためには、より信頼性の高いデータベースを作成する必要がある。 よって今後更にデータを収集していく必要がある。

¹Relationship between faces morphology and body size for vertebrates: case study using horse feces

²Nina Hasegawa, Hakuto Todo, Yuka Izumo, Manaka Takahashi, Aya Matsuno, Misaki Yoshioka, Asuka Takahashi, Haruka Arai, Riyuna Mabuchi, Fumina Yoshioka, Katsuma Itoh ,Souma Shimizu (Chiba University Junior High School)

THE PALAEONTOLOGICAL SOCIETY OF JAPAN Hongo MT-Building 4F, Hongo 7-2-2, Bunkyo-ku, Tokyo, 113-0033 JAPAN

> 2018 年 6 月 18 日印刷 2018 年 6 月 22 日発行 発行 日本古生物学会 〒113-0033 東京都文京区本郷7-2-2 本郷MTビル401号室 電話 03-3814-5490

> > 印刷所 株式会社杏林舍 〒114-0024 東京都北区西ヶ原3-46-10 電話 03-3910-4311

© The Palaeontological Society of Japan 2018 (無断転載, 複写を禁ず)