地球深部探査船「ちきゅう」の下北半島沖慣熟航海コア試料の年代モデル

堂満華子*・西 弘嗣**・内田淳一***・尾田太良****・大金 薫****・平 朝彦*****・青池 寛*****・ 下北コア微化石研究グループ*****

*滋賀県立大学環境科学部・**北海道大学大学院理学研究院・***応用地質株式会社・****東北大学大学院理学研究院・*****海洋研究開 発機構・******海洋研究開発機構地球深部探査センター(CDEX)・*****相田吉昭(宇都宮大学農学部生物生産科学科 aida@cc.utsunomiya-u. ac.jp),秋元和實(熊本大学沿岸域環境科学教育研究センター akimoto@sci.kumamoto-u.ac.jp),林 広樹(島根大学総合理工学部 hayashi@riko.shimane-u.ac.jp),長谷川四郎(熊本大学大学院自然科学研究科 shiro@sci.kumamoto-u.ac.jp),北里 洋(独立行政法人 海洋開発機構 kitazatoh@jamstec.go.jp),岩井雅夫(高知大学理学部 iwaim@kochi-u.ac.jp),池原 実(高知大学海洋コア総合研究セ ンター ikehara@kochi-u.ac.jp),丸山俊明(山形大学理学部地球環境学科 maruyama@sci.kj.yamagata-u.ac.jp),岡田尚武(北海道大学 okavp@general.hokudai.ac.jp),大井剛志(熊本大学大学院自然科学研究科 ohi@es.sci.kumamoto-u.ac.jp),低藤時幸(秋田大学工学資 源学部地球資源学科 toki@keigo.mine.akita-u.ac.jp),酒井豊三郎(宇都宮大学農学部生物生産科学科 toyo.s.sakai@nifty.ne.jp),鈴木紀 毅(東北大学大学院理学研究科 norinori@m.tains.tohoku.ac.jp), 谷村好洋(国立科学博物館地学研究部 tanimura@kahaku.go.jp),高 嶋礼詩(北海道大学創成研究機構 rtaka@cris.hokudai.ac.jp),山崎 誠(秋田大学工学資源学部地球資源学科 yamasaki@ipc.akita-u. ac.jp)

Age model of core sediments taken by D/V CHIKYU during the shakedown cruises off Shimokita Peninsula

Hanako Domitsu*, Hiroshi Nishi**, Junichi Uchida***, Motoyoshi Oda****, Kaoru Ogane, Asahiko Taira****, Kan Aoike***** and Shimokita Microfossil Research Group

*Department of Ecosystem Studies, School of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone 522-8533 (domitsu.h@sus.usp.ac.jp); **Department of Natural History Sciences, Faculty of Science, Hokkaido University, Kita-10, Nishi-8, Kita-Ku, Sapporo 060-0810 (hnishi@mail.sci.hokudai.ac.jp); ***OYO Corporation, Daitakubo 2-2-19, Minami-ku, Saitama, 336-0015 (uchida-junichi@oyonet.oyo.co.jp); ****Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Aoba, Aramaki, Sendai 980-8578, Japan (odam@mail.tains.tohoku.ac.jp); *****Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061 (ataira@jamstec.go.jp); *****Geological Evaluation Group, Marine Operation Department, Center for Deep Earth Exploration (CDEX), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama Institute for Earth Science, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 236-0001 (bluepond@jamstec.go.jp).

Abstract. Three continuous cores of 47 m, 71 m and 365 m in thickness were recovered from the subseafloor at about 1200 m water depth at Holes C9001A, C9002A/B and C9001C/D during D/V *CHIKYU* shakedown cruises of CK05-04 Leg 2 (16 November – 14 December 2005) and CK06-06 (6 August – 29 October 2007). The core sediments are composed mainly of diatomaceous silty clay, and are divided into four lithologic units from Units A to D at Hole C9001C. The Unit A is characterized by common intercalations of tephra/sand and higher magnetic susceptibility (MS), while the Unit B is rare in tephra/sand intercalations with lower MS. The Unit C is composed of unconsolidated sands, and the Unit D is similar in lithology with the Unit A.

The integrated stratigraphy of micropaleontology, tephrochronology and magnetostratigraphy suggest that the bottom age of Hole C9001C core is correlated with the base of the Brunhes Chron (Chron C1n) that is assigned to about 780 ka (Middle Pleistocene). The geological age of Hole C9001D ranges from 1.05 to 1.65 Ma (Early Pleistocene). The oxygen isotope stages from Marine Isotope Stage (MIS) 1 to MIS 18 are recognized in Hole C9001C based on the correlation with a standard isotope curve, and these data accord well with the results of biostratigraphy and magnetostratigraphy. The Unit A ranges from MIS 1 to MIS 8 (about 300 ka), and Unit B spans from MIS 9 to MIS 16 (300 ka – 640 ka). The Units C and D are assigned to MIS 17 and MIS 18, respectively. Hole C9001C core has a continuous sequence without hiatus although a disturbance layer occurs around 150 mbsf. Thus, the Shimokita cores have a strong potential to improve biochronology and revise geological time scales for the past 800 kyr in the Northwest Pacific region.

Key words: Chikyu Shimokita, biostratigraphy, oxygen isotope

141E°

142

はじめに

地球深部探査船「ちきゅう」の慣熟航海は、下北半島 東方沖を実施海域として 2005年7月末から約2年間行わ れた(図1).最初のCK05-04 Leg 2航海では、C9001(水 深1,183m)とC9002(水深1,179m)の2地点で掘削が 行われ、C9001地点では46.5 mbsf(meters below seafloor), C9002地点ではA孔で26.2 mbsf, B孔では23.3から70.8 mbsf (47.5 m)までの深度でコア堆積物が得られた.次のCK06-06航海ではC9001地点を再び掘削し、C孔から365 mの 連続コア堆積物が回収された.さらに、D孔では初のラ イザー掘削を行い、527~647 mbsfの深度でカッティン グスを10 mおきに回収した(青池, 2008; 青池ほか, 2010).

下北半島沖では、これまでに多くのコア試料が得られ ている. 例えば, 東京大学海洋研究所の「淡青丸」のKT-90-9次航海ではST-5コア(41°27.1'N, 143°30.6'E, 水 深, 2,098m)が採取され, 最終氷期以降(約2万年)の 堆積物が得られた(大串ほか,2000).このコアでは、底 生有孔虫の群集解析が行われた結果、下北沖では最終氷 期には北方起源の中層水の影響が強かったことが指摘さ れた. その後, その西側でMR01-K03 PC4/PC5コア (41°07.1'N, 142°24.2'E, 水深, 1,366m) が採取され た. このコアの基底の年代は35 ka (35,000年前) に及ぶ (Ahagon et al., 2003). 幾つかの研究でこのコアの有孔 虫化石の酸素・炭素同位体比が測定され、最終氷期以降 の北太平洋地域の海洋循環,メタンハイドレートの溶融 に関して議論が行われた(Ahagon et al., 2003; Hoshiba et al., 2006; Uchida et al., 2004; Uchida et al., 2008). 最 近では、2001年に行われた International Marine Global Change Study (IMAGES) の航海でMD01-2409のコア が採取された(川幡ほか, 2006b, 化石79号特集号). こ のコアでは浮遊性有孔虫の群集解析が行われ,過去26.9 kyr (26,900年間)の津軽海峡の周辺の表層の水塊構造の変 遷が明らかにされた (Kuroyanagi et al., 2006). また, 底生有孔虫の群集も解析され,最終氷期から完新世まで の下北半島周辺の中層・深層水の起源が議論されている (芝原ほか, 2006; Shibahara et al., 2007).

上記のように、これまでに得られた下北半島付近のコ アは、数万年前までの年代を示すものがほとんどである. 一方、2001年に行われたIMAGESの航海では、下北沖以 外では比較的長い期間に至るコア堆積物が得られた. し かし、それらも海洋酸素同位体ステージ(Marine Isotope Stage: MIS)の第10ステージ(MIS 10)にあたる約35 万年前(四国沖の大陸斜面下部のMD01-2422,32°8.7'N, 133°51.8'E,水深,2,737m),MIS 12にあたる約50万 年前(琉球海溝陸棚斜面のMD01-2398,23°59.51'N, 124°24.76'E,水深,2,140m)までにしか達していない (氏家・氏家,2006;池原ほか,2006).これに対して、今 回の「ちきゅう」の航海で得られたコアは、古地磁気極

143

144

性のBrunhes-Matuyama境界(Chron C1n/C1r)付近ま でさかのぼることができ、約78万年間に及ぶ日本近海で 最初のコアとなった.これとは別に,銚子で掘削された 陸上コア(35°46.44'N, 140°43.53'E)があるが, その 地質年代はMIS 11からMIS 24にわたる(Kameo et al., 2006). さらに, 統合深海掘削計画 (Integrated Ocean Drilling Program, IODP)のExpedition 315では南海ト ラフで掘削が行われ、中期更新世から鮮新世に至る堆積 物が採取された(Kinoshita et al., 2009). しかし, これ らのコアはいずれも更新統の上部を欠いている. このよ うに、更新世を長期間にわたってカバーするようなコア は、日本周辺ではいまだ少ないのが現状である.今回の 下北沖のコアは、上部から中部更新統を連続的に採取で きたきわめて重要なものとなった.本論では本コアの地 質年代を微化石年代と酸素・炭素同位体比の結果をあわ せて検討した結果, 日本近海で初めて後期~中期更新世 までの連続的な年代モデルをつくることができたので報 告する.

掘削コアの岩相

CK05-04 Leg 2航海(2005年11月16日~12月14日) では、C9001A(0~48.5 mbsf)、C9002A(0~26.2 mbsf)、 C9002B(23.3~70.8 mbsf)の3孔を掘削した.C9001A 孔のコア堆積物は、海底下2 mbsf から46.5 mbsf の深度で 採取された.最終的には、この航海ではC9001地点から は長さ46.5 m、C9002地点では70.8 mの2本のコアが採 取された(青池ほか,2009).その岩相は、いずれも単

図2. C9001CおよびD孔の岩相. Fig. 2. Lithologic columnar section of Holes C9001C and C9001D.

調なオリーブ黒色からオリーブ灰色の塊状の珪藻質シル ト質粘土から構成され,海綿骨針,有孔虫,ナノ化石, 放散虫などの微化石が50%以上を占め,顕微鏡下では珪 藻が約30%に達する.生物擾乱はコア全体を通して強く, ときおり小礫が泥層の中に散在的にみられる.礫は,灰 白色で角礫から亜円礫の軽石(数mmから1.3 cm)が最 も多く,次いで亜円礫の細礫から小礫のスコリア(数mm から1 cm)が多い.

各コアには、テフラや砂層が挟まれ、火山灰層が26枚、 砂層が29枚確認された(青池,2008;青池ほか,2010). 火山灰層は、1mmから10cmまでの厚さで、5mm以上 の厚さをもつものが多い.シルトから細礫サイズで、し ばしば級化構造を示す. これらの層は, 灰白色〜白色の 軽石質からなる層と灰黒色〜黒色の岩片からなる層に大 別できる. 砂層はC9001A孔では少なく, C9002A孔では 数mm〜10 cmの厚さの砂層がCore 1Hから3Hまで数多 く挟在する. C9002B孔でも同様な砂層が各セクション (1.5 m) に数枚の頻度で挟まれる(青池, 2008; 青池ほ か, 2010).

翌年のCK06-06航海(2006年8月6日~10月26日)で は、2005年と同じC9001地点を掘削し、C9001C孔にお いて365mbsf(全長386mのコア)までノンライザー, C9001D孔ではライザーで647 mbsfまで掘削し(青池, 2008; 青池ほか, 2010), D孔の522~647 mbsfの深度で は5~10m間隔でカッティングス試料を回収した. C9001C 孔の堆積物もオリーブ黒色からオリーブ灰色の塊状の珪 藻質シルト質粘土からなり、海綿骨針、有孔虫、ナノ化 石、放散虫などの多くの微化石を含み、貝殻片もみられ る.粘土層には,軽石,シルト,砂,小礫から中礫が含 まれ、漂流岩屑の可能性も示唆される.数cmの厚さか らなる火山灰層・砂層がコア上部と最下部に挟まれる. C9001C孔は、岩相から4つのユニットに区分できる(図 2). 最上部のUnit A (Core 1Hから17H-CC, 0cm:0 よぶ) とUnit B (Core 17H-CCから38H-1, 0cm: 158 ~340 mbsf)は、珪藻質シルト質粘土で、前者では火山 灰層・砂層を多く挟むが、後者にはほとんど挟まれない. Unit C (38H-1, 0 cmから38H-CC, 20 cm: 340~ 348 mbsf)は、固結していない細粒砂からなる、Unit D $(38H-CC, 20 \text{ cm} \Rightarrow 540H-CC, 30 \text{ cm} : 348 \sim 365 \text{ mbsf})$ は、再び火山灰や砂層を挟む珪藻質シルト質粘土からな る. C9001D 孔のカッティングスは、顕微鏡下ではやや **固結しているものの**,上位の堆積物と類似した岩相を示 す. 岩相から判断すると, C9001A孔とC9002A/B孔は, すべてC9001C孔のUnit Aに対比することができる(青 池,2008;青池ほか,2010).

微化石の分析手法

微化石分析には、C9001C孔とC9001D孔のコア試料を 用いた.C9001C孔のコアからは、386mの試料のうち1H から40Hまでのコアキャッチャー(CC)の40試料、 C9001D孔の試料からは527~647mbsfの深度から10m ごとに採取した12試料のカッティングスを採取し、分析 に用いた(表1).微化石のうち、ナノ化石はスミアス ライド法で処理し、プレパラートを作成した.有孔虫に 関しては、乾燥前の堆積物試料を4~20g程度採取し、ド ラフト内で3%過酸化水素水により常温で処理した.そ の後200メッシュ(開孔75μm)のステンレスメッシュで 水洗し、40°Cのオーブンで乾燥後、簡易分割器により分 割した.有孔虫化石の検出は、125μm以上の個体につい

表1.微化石を分析した試料.

Table 1. Sample list of biostratigraphic study at Holes C9001C and D.

表2. C9001CおよびD孔におけるナノ化石の産出表

Table 2. Occurrences of calcareous nannofossils at the Holes C9001C and D.

EXPEDITION	SITE	HOLE	CORE	CORE_TYPE		SAMPLE CODE	CORE CATCHER HORIZON (cm)	CORE BOTTOM DEPTH (mbsf) CUTTINGS TOP- BOTTOM DEPTH (mbsf)
902	C9001	С	1	Н		PAL	CC, 14.0–24.0	6.91
902	C9001	С	2	Н		PAL	CC, 18.0–28.0	16.41
902	C9001	C	3	Н		PAL	CC, 20.0–30.0	25.91
902	C9001	С	4	Н		PAL	CC, 24.0–34.0	35.41
902	C9001	C	5	H		PAL	CC, 36.0–46.0	44.91 54.41
902	C9001	C	0	н u		PAL	CC, 30.0-40.0	54.41 62.01
902	C9001	C	8	н		PAL PAI	CC, 23.0-33.0	73 /1
902	C9001	C	9	Н		PAL	$CC_{260-360}$	82.91
902	C9001	C	10	Н		PAL	CC, 58.0–68.0	92.41
902	C9001	C	11	Н		PAL	CC, 28.0–38.0	101.91
902	C9001	С	12	Н		PAL	CC, 20.0–30.0	111.41
902	C9001	С	13	Н		PAL	CC, 27.0–37.0	120.91
902	C9001	С	14	Н		PAL	CC, 16.0–26.0	130.41
902	C9001	С	15	Н		PAL	CC, 20.0–30.0	139.91
902	C9001	С	16	Н		PAL	CC, 20.0–30.0	149.41
902	C9001	С	17	Н		PAL	CC, 30.0–40.0	158.91
902	C9001	C	18	H		PAL	CC, 23.0–33.0	165.41
902	C9001	C	20	п Н		PAL PAI	CC, 20.0-30.0	174.91
902	C9001	C	21	Н		PAL	CC 24 0-34 0	193.91
902	C9001	C	22	Н		PAL	CC, 18.0–28.0	203.41
902	C9001	С	23	Н		PAL	CC, 51.0-61.0	212.91
902	C9001	С	24	Н		PAL	CC, 45.0–55.0	222.41
902	C9001	С	25	Η		PAL	CC, 34.0-44.0	231.91
902	C9001	С	26	Н		PAL	CC, 27.0–37.0	239.03
902	C9001	C	27	Н		PAL	CC, 4.0–14.0	248.53
902	C9001	С	28	H		PAL	CC, 32.0–42.0	258.03
902	C9001	C	29	H		PAL	CC, 22.0–32.0	267.53
902	C9001	C	31	н		PAL PAI	CC, 32.0-42.0	274.30
902	C9001	C	32	Н		PAL	CC, 30.0–40.0	292.16
902	C9001	Ċ	33	Н		PAL	CC, 40.0–50.0	301.66
902	C9001	С	34	Х		PAL	CC, 26.0–36.0	311.16
902	C9001	С	35	Х		PAL	CC, 13.0–23.0	320.66
902	C9001	С	36	Х	no	sample		330.16
902	C9001	С	37	Х		PAL	CC, 14.0–24.0	339.66
902	C9001	С	38	Н		PAL	CC, 10.0–20.0	349.16
902 902	C9001 C9001	C	39 40	н Н		PAL	CC, 60.0–70.0 CC, 19.0–29.0	365.33
	G0001			~ ~ ~ ~				
902	C9001	D	2	SMW SMW			Cuttings	527-537
902	C9001	ם ח	4	SMW			Cuttings	547-541
902	C9001	D	8	SMW			Cuttings	557-567
902	C9001	D	10	SMW			Cuttings	567-577
902	C9001	D	12	SMW			Cuttings	577-587
902	C9001	D	14	SMW			Cuttings	587-597
902	C9001	D	16	SMW			Cuttings	597-607
902	C9001	D	18	SMW			Cuttings	607-617
902	C9001	D	20	SMW			Cuttings	617-627
902	C9001	D	22	SMW			Cuttings	627-637
902	C9001	D	24	SIVIW			Cuttings	03/-04/

calcareous nannofossil zone (Martini, 1971)	sample	DEPTH (mbsf)	Braarudosphaera bigelowi (Gran and Braarud) Deflandre	Calcidiscus leptoporus (Murray and Blackman) Loeblich and Tappan	Coccolithus pelagicus (Wallich) Schiller	Discolithina japonica Takayama	Emiliania huxleyi (Lohmann) Hay and Mohler	Gephyrocapsa caribbeanica Boudreaux and Hay	Gephyrocapsa oceanica Kamptner	Gephyrocapsa parallela Hay and Beaudry	Gephyrocapsa spp. (small)	Helicosphaera carteri (Wallich) Kamptner	Helicosphaera hyalina Gaarder	Helicosphaera wallichii (Lohmann) Boudreaux and Hay	Pseudoemiliania lacunosa (Kamptner) Gartner	Reticulofenestra spp. (small)	Rhabdosphaera clavigera Murray and Blackman	Syracosphaera pulchra Lohmann	Umbellosphaera irregularis Paasche	Umbilicosphaera sibogae (Weber-van Bosse) Gaarder
	1H-CC 2H-CC	6.91 16.41		+	+++++		++++	++++	++++	+++	++++	+				++++				
	3H-CC	25.91		+	+		+	+	+	+	+					+				
	4H-CC	35.41	+	+	+		+	+	+	+	+	+				+	+	+	+	+
	6H-CC	54.41		+	+		+	+	+	++	+					+				
	7H-CC	63.91					+	+	+	+	+					+				
N21	8H-CC	73.41	+	+	+		+	+	+	+	+	+		+		+				+
Z	9H-CC	82.91		+	+	+	+	+	+	+	+	+	+			+	+	+	+	+
	11H-CC	101.91	+	т	+	т	+	+	+	+	+	т	т			+	т	т	т	
	12H-CC	111.41		+	+		+	+	+	+	+					+		+		
	13H-CC	120.91			+			+	+	+	+					+				
	14H-CC 15H-CC	130.41		+	+		+++	+	++	+	++					++				+
	16H-CC	149.41		+	+		+	+	+	+	+					+		+	+	
_	17H-CC	158.91	+	+	+			+	+	+	+	+				+				+
	18H-CC	165.41		+	+			+	+		+					+				
	20H-CC	174.91			+			+	+		+					+				
120	21H-CC	193.91	+	+	+			+	+		+	+				+				+
ź	22H-CC	203.41	+	+	+			+	+		+	+				+				
	23H-CC 24H-CC	212.91			++			+	++		++					++				
	25H-CC	231.91		+	+			+	+		+					+				
_	26H-CC	239.03	+	+	+			+	+		+					+				
	27H-CC 28H-CC	248.53 258.03		++	++			++	++	++	++	+			++	++		+		
	29H-CC	267.53	+	+	+			+	+		+				+	+				
	30H-CC	274.36		+	+			+	+	+	+	+			+	+				
	31H-CC 32H-CC	282.66	+	+	+			+	+	+	+	+			+	+		+		
019	33H-CC	301.66	+	+	+			+	+	+	+				+	+				
Z	34H-CC	311.16			+			+	+	+	+				+	+				
	35H-CC	320.66	+	+	+			+	+	+	+	_ــ			+	+				
	38H-CC	349.16	+	+	+			+	+	+	+	Ŧ	Ŧ		+	+				
	39H-CC	357.13						+	+	+	+	+			+	+				
	40H-CC	365.33		+	+			+	+	+	+				+	+				+
	Note, +: p	oresent																		

て,1試料あたり100~1,500個体前後の有孔虫を抽出し, 主要な種について計数して産出頻度を求めた.

珪藻化石に関しては、コア試料約10 cc をビーカーに入 れ、15%の過酸化水素水(H_2O_2)、約15%の塩酸(HCl) を注ぎ加熱した.その後、満量になるまで冷水を注ぎ、 砂泥粒子が底に沈殿したら上澄みを流し捨て、上澄みが 透明になるまで繰り返した.これらの操作によって、細 粒砂〜シルトに相当する粒子が濃集した懸濁液ができる

図3. 微化石層序,テフラ層序,古地磁気層序に基づくC9001CおよびD孔の年代モデル. 微化石よる化石帯は右側に示してある.LO,最終 産出;FO,初産出;P,その微化石が産出する層準.

Fig. 3. Age model of Hole C9001C/D based on micropaleontology, tephrochronology and magnetostratigraphy. Biostratigraphic zones of microfsssils are shown in the right column. LO = last occurrence; FO = first occurrence; P = present of microfossils.

ので,その一部を取り出して希釈し,カバーガラスの上 にのせ,乾燥した後に光硬化剤を用いてマウントした.

放散虫化石については、1H-CCから31H-CCまでのコ アキャッチャー (CC) の31 試料は「ちきゅう」船上で 処理を行い,残りのCC試料(32H-CCから40H-CC)の 9試料とカッティングス試料は、下船後に処理を行った. いずれの試料の処理も、最初にコア試料から約100~200g を取り出し、500 cc のビーカーに入れ、加熱した約10% の過酸化水素水(H2O2)を注ぎ、試料が泥化するまで1 時間程放置した.次に,溶液が淡黄緑色になるまで約15% の塩酸(HCl)を注ぎ加熱した. 泥化した試料を350メッ シュ(開孔45µm)のステンレスメッシュで洗浄し,濾 紙に回収した残渣を乾燥させた. トラガカントゴムを塗 布したスライドグラス上に乾燥させた試料を散布して定 着させ、光硬化剤を用いて封入してプレパラートを作成 し, 主要な種について計数した. 化石の保存度について はVG, G, M, P, VPの5段階, 産出頻度については VA, A, C, F, R, VRの6段階に区分した(表2~6).

微化石層序の結果

石灰質ナノ化石

C9001C孔において、調査した試料は36H-CCを除く 1H-CCから40H-CCまでの39試料である(表2). 全体 的に保存状態は悪く,産出個体数,種数ともに少ない. 地質年代の決定に重要な種の層位分布に関しては, Emiliania huxleyiが16H-CCより上位でほぼ連続的に産出 する. この種は、その産出の下限が0.25 Ma (MIS 8) で、 Martini(1971)の石灰質ナノ化石帯NN21帯の下限を定 義する. また, Pseudoemiliania lacunosaは27H-CCより 下位に連続で産出し、それより上位では全く認められな い. この種の産出上限は0.45 Ma (MIS12) で, NN20/ NN19境界を定義する.一方,その絶滅が更新世中期の 0.85 Ma (MIS 22) とされている Reticulofenestra asanoi は全く認められない.以上の結果に基づくと, C9001C 孔の最下部は更新統中部の0.85 Maには至っていない.ま た、これらの示準面は、堆積物の厚さに対してほぼ直線 上に並ぶことから,本掘削地点では地層の欠如はみられ ないと推定される (図3).

C9001D 孔では,合計22 試料のカッテイングス試料を 処理し調査を行った.石灰質ナノ化石はいずれの試料も 保存が悪く,産出個体数も極めて少ない.いずれの試料 でも指標種の確認は困難で,8SMW,12SMW,18SMW の3 試料にのみ長径が6µmを越える大型の Gephyrocapsa が認められた.このことから,8SMWから18SMWの間 は少なくとも更新統下部で1.21 Maから1.45 Maの間に対 比される.最下位の24SMWには Gephyrocapsa oceanica が産出したことから,最下部は少なくとも更新世の1.65 Ma より若い年代であることは間違いない.

浮遊性有孔虫

C9001CおよびD孔の全試料から浮遊性有孔虫化石が 産出した(表3). 試料の重量1gあたりの個体数は平均 して50個体前後であり,少ない試料では数個体以下であ る.特に,カッティングス試料では産出が少なく,全残 渣を検鏡しても20個体以下であった.化石の保存状態は 普通程度であるが,不良となる層準が数層準あり,殻の 破損や表面構造の溶失等が認められる.カッティングス として採取されたC9001D孔の試料は,一般に保存が悪 く,殻の着色や堆積物粒子の膠着,破損が普遍的に認め られた.

産出した化石群集では、左巻きの Neogloboquadrina pachydermaが産出個体の60~80%を占め、Globigerina bulloides, Neogloboquadrina incompta, Globigerinita glutinataなどを伴う. N. pachydermaは、現在の日本周辺 海域では親潮水塊に卓越する種であり(Takemoto and Oda, 1997)、本掘削地点も全層準を通して寒流の影響下 にあった可能性が高い. 暖流系の種群とされる Globigerinoides属の各種やGloborotalia inflata等は、ごく 散点的に低頻度で産出する. このうちG. inflataはコア区 間下部の33H-CCおよび28H-CCで多産する(表3).

年代決定に関して重要な種としては,Neogloboquadrina ingleiがC9001D孔の最下部の試料24SMWからC9001C 孔の37X-CCにかけて連続的に産出し、35X-CCでは1600 個体以上を検討したにも関わらず認められなかった.し たがって、37X-CCと35X-CCの間に本種の最終産出(Last occurrence,LO)が認められる(Fig. 3).また、カッ ティングス区間の最下部の試料24SMWのさらに下位に N. ingleiの初産出(First occurrence,FO)があると考 えられる.Globorotalia inflataのうち最終旋回が3室とな る形態型(Motoyama et al., 2004におけるG. inflata modern form)が、検討した最下部の24SMWから上位にかけて 散点的に産出する.したがって、24SMWより下位に、こ の形態型のFOが存在する.その他の示標種は産出しな かった.

以上の産出結果に基づいて地質年代を検討すると, G. inflata modern form のFOについては三陸沖のODP Leg 186で古地磁気層序との対応が得られ,その年代値は2.3 ~2.5 Maと見積もられている(Motoyama et al., 2004). したがって,この種が産出する最下部の試料24SMW は 2.5 Maよりも若い.なお, N. ingleiのFOは北東太平洋カ リフォルニア沖のODPサイトで認められ、31°N付近の 1011地点から41°N付近の1020地点に向かって,約1.2 Ma から約1.9 Maと古くなる異時性が認められる(Kucera and Kennett, 2000).本掘削地域は1020地点の緯度にほ ぼ相当しているが,日本周辺海域における異時性の実態 が明らかでないため,この基準面の存在を指摘するだけ にとどめる.また,本種のLOについては,同じくカリ フォルニア沖で約0.6~0.8 Maの年代値が得られている

表3. C9001CおよびD孔における浮遊性有孔虫化石の産出表.

Table 3. Occurrences of planktic foraminifers at the Holes C9001C and D. Preservation classifications: VG (very good) = rare of broken and dissolution shells; G (good) = some specimens contains broken and dissolution of shells, and aggregation of sand grains; M (moderate) = distinct broken and dissolution of shells, but many specimens are possible to identify the species; P(poor) = distinct broken and dissolution of shells, several specimens are not identified; <math>VP(very poor) = half of specimens are difficult to identify the species. Abundance classifications: VA(very Abundant) = more than 32 %; A (abundant) = 16-32 %; C (common) = 8-16 %; F (few) = 4-8 %; R (rare) = 2-4 %; VR (very rare) = 2%; + = less than 20 total specimens. m m ler)

902 902 902 902 902 902 902 902 902 902	EXPEDITION	902 902 902 902 902 902 902 902 902 902	902 902 902 902 902	7
C9001 C9001 C9001 C9001 C9001 C9001 C9001 C9001 C9001 C9001 C9001	Note, V	C9001 C9001	E C9001 C9001 C9001 C9001 C9001	
D D D D D D D D D D D D D	/A: v HOTE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U U U U U U U U U U U U U U U U U U U	
2 4 6 8 10 12 14 16 18 20 22 24	core	$\begin{array}{c} 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 90\\ 40\\ \end{array}$	1 2 3 4 5	
SMW SMW SMW SMW SMW SMW SMW SMW SMW	CORETYPE	Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	Н Н Н Н СОКЕТУРЕ	
	nt, A: al	PAL PAL PAL PAL PAL PAL PAL PAL PAL PAL	PAL PAL PAL PAL PAL	
Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings Cuttings	Dundant, C: con CORE CATCHER HORIZON (cm) CORE CATCHER HORIZON	CC, 230–33.0 CC, 240–34.0 CC, 240–34.0 CC, 260–36.0 CC, 580–68.0 CC, 280–38.0 CC, 200–30.0 CC, 210–37.0 CC, 160–26.0 CC, 200–30.0 CC, 240–34.0 CC, 240–34.0 CC, 240–34.0 CC, 240–34.0 CC, 240–34.0 CC, 240–34.0 CC, 240–44.0 CC, 220–32.0 CC, 240–44.0 CC, 220–32.0 CC, 240–44.0 CC, 220–32.0 CC, 240–34.0 CC, 220–32.0 CC, 240–34.0 CC, 220–32.0 CC, 200–30.0 CC, 200–20.0 CC, 200–20.0 CC, 200–20.0 CC, 140–24.0 CC, 100–20.0 CC, 100–20.0	CC, 14.0–24.0 CC, 18.0–28.0 CC, 20.0–30.0 CC, 24.0–34.0 CC, 36.0–46.0	HER HORIZON (cm)
527-537 537-547 547-557 567-577 567-577 577-587 587-597 597-607 607-617 617-627 627-637 637-647	THE BOTTOM DEPTH (mbst)	63.91 73.41 82.91 10.1.91 111.41 120.91 130.41 139.91 130.41 139.91 130.41 139.91 139.91 149.41 173.91	6.91 16.41 25.91 35.41 44.91	0
VR R VR VR VR VR VR R R R R	Group abundance	R A VA VA R C C P A VA F VR R VR R A R R A R C A A VA R R VA C C A	C A A A C Group abunda	nce
Р Р Р Р Р Р Р Р Р Р Р	Freservation	M G M M P P P P M M P M P M P M P M G M G	d D d D d Preservation	
VR VR + A A C	e, VR: very ra Augusto por spionad animaginal contraction of the spin of the s	A C F C A A A VR C C C C C R VR C C C R VR C C C R VA R A A A A F F C A A A F F C C C C C C C C	A A C A R	bulloides d'Orbigny
VR	Globigerina falconensis Blow	R R VR VR VR VR VR VR VR VR VR	VR VR Clobigerim	tfalconensis Blow
	Globigerina umbilicata Orr and Zaitzeff	VR VR R VR VR VR VR VR VR	R VR A VR A VR	umbilicata Orr and Zaitzeff
VR	Globigerinita glutinata (Egger)	FRF FCVRRF RVR FVRVR VRVR VR VR VR VR VR	R F R Robigerini	ta glutinata (Egger)
	Globigerinoides ruber (d'Orbigny)	VR VR	Globigerinc	ides ruber (d'Orbigny)
VR	Globigerinoides succulifier (Brady)	VR	Globigerinc	ides succulifer (Brady)
VR	Globorotalia crassaformis (Galloway and Wissler)	VR R VR	Globorotali	a crassaformis (Galloway and Wiss
+ VR VR	Globorotalia inflata (d'Orbigny) 3-chambers form	F VR VR VR VR F VR VR VR F A C R VR R VR R R VR R R R R R	R VR Roborotali	a inflata (d'Orbigny) 3-chambers fo
VR	Globorotalia inflata (d'Orbigny) 4-chambers form	VR VR VR VR VR VR VR VR VR VR VR VR VR	R R Globorotali	a inflata (d'Orbigny) 4-chambers fo
	Globorotalia tumida (Brady)	VR	Globorotali	a tumida (Brady)
VR VR	Neogloboquadrina dutertrei (d'Orbigny)	VR VR VR VR VR VR VR VR VR VR VR R	iboqol8oəN F R	tadrina dutertrei (d'Orbigny)
VR + VR VR A	Neogloboquadrina incompta (Cifelli)	R R F C R A F F C R R F R VR VR VR VR R R R R	1boqol8oəN C VR R F	tadrina incompta (Cifelli)
+ C + VR + + + VR C C	Neogloboquadrina inglei Kucera and Kennett	VR VR C F	Neoglobogi	adrina inglei Kucera and Kennett
+ A A + + A + + A + + C A A	Neogloboquadrina pachyderma (Ehrenberg)	VA VA VA VA VA VA VA VA VA VA VA VA VA V	S ≤ ≤ ≤ Neogloboqi	tadrina pachyderma (Ehrenberg)
	Pulleniatina obliquiloculata (Parker and Jones)	VR VR	A Pulleniatin	t obliquiloculata (Parker and Jones)
VR VR	Turborotalita quinqueloba (Natland)	C R A A A C F VR R F VR R F VR	F F R A R	'a quinqueloba (Natland)

Note, VA: very abundant, A: abundant, C: common, F: few, R: rare, VR: very rare, +: present, G: good, M: moderate, P: poor.

表4. C9001CおよびD孔における底生有孔虫化石の産出表.

Table 4. Occurrences of benthic foraminifers at the Holes C9001C and D. Abundance classification: VA (very abundant) = more than 27%; C (common) = 9–27%; F (few) = 3–9%; R (rare)= less than 3%.

2 SMW 4 SMW 6 SMW 8 SMW 10 SMW 12 SMW 14 SMW 16 SMW 18 SMW 20 SMW 22 SMW 24 SMW	902-C9001D(sample no.)	26H-CC 27H-CC 29H-CC 31H-CC 33H-CC 35H-CC 37H-CC 39H-CC	14H-CC 15H-CC 16H-CC 17H-CC 18H-CC 20H-CC 21H-CC 22H-CC 23H-CC 23H-CC 24H-CC 25H-CC	1H-CC 2H-CC 3H-CC 4H-CC 5H-CC 6H-CC 7H-CC 9H-CC 10H-CC 11H-CC 12H-CC 13H-CC	902-C9001C (sample no.)
527-537 537-547 547-557 557-567 567-577 577-587 587-597 597-607 607-617 617-627 627-637 637-647	DEPTH (mbsf)	239.03 248.53 267.53 282.66 301.66 320.66 339.66 357.13	130.41 139.91 149.41 158.91 165.41 174.91 184.41 193.91 203.41 212.91 222.41 231.91	6.91 16.41 25.91 35.41 44.91 54.41 63.91 73.41 82.91 92.41 101.91 111.41 120.91	DEPTH (mbsf)
	Bolivina decussata Cushman	F	F C A	VA R	Bolivina spissa Cushman
1	Bolivina spissa Cushman			R	Brizalina alata (Seguenza)
1 1 1 1	Buccella spp.	R C C F	R	C F R	Brizalina pacifica (Cushman)
2 2 2 1	Buliminella tenuata (Cushman)		R		Bulimina striata d'Orbigny
1	Cassidulina norvangi Thalmann	F F VA VA F C F	C F F	R F R	Buliminella tenuata (Cushman)
1	Cibicidoides sp.	R R R	R	F	Cassidulina norvangi Thalmann
111 25 24 18 25 35 14 39 36 40 33 32	Elphidium batialis Saidova	F	C R A R C	C R R R	Chilostomellina fimbriata Cushman
1 1 2 1 2	Elphidium spp.	C F F VA C A VA	F C A C C C F C F	A C C VA C C A C VA F VA	Elphidium batialis Saidova
37 48 35 23 39 34 19 19 19 14 2 34 18 2 40	Epistominella pacifica (Cushman)	R A C C C	R C F F R R	R R R R R R F C	Epistominella pacifica (Cushman)
	Fissulina spp.	F	R C R R	F F C C	Globobulimina affinis (d'Orbigny)
1	Frondicularia sp.	F R R VA F	R F	F C F VA F F C F	Globobulimina auriculata (Bailey)
1	Globobulimina auriculata (Bailey)		R	F	Globobulimina pacifica Cushman
1	Globobulimina pacifica Cushman	R F R C	R R	F C F R F R F R R	Islandiella norcrossi (Cushman)
2	Globocassidulina spp.			R	Lagena spp.
1	Gyroidina sp.		R R R	F F F R	Nonionella globosa Ishiwada
1 3 1 1 4 2 2 2 3 1 3 1 3	Islandiella norcrossi (Cushman)	C A F C F C	F C R C F R C C C	C VA F F C R R F	Nonionellina labradorica (Dawson)
	Lagena spp.			R	Nonionellina sp.
1	Lenticulina spp.			F	Pseudoparrella spp.
1 2 1 2 6	Nonionellina labradorica (Dawson)	R		R	Qunquloqulina spp.
1	Pseudoparrella takayanagii (Iwasa)		С		Rutherfordoides rotundata (Parr)
1	Pseudoparrella spp.	R			Siphonodosaria sp.
1	Pyrulina sp.	С	A C C	A F VA C A C VA R A C VA	Stainforthia spp.
1	Rectobolivina raphanus (Parker and Jones)	A R C VA C F C	R F C R C C C R C F	VA VA C F F VA A C C R R	Uvigerina akitaensis Asano
1	Siphonodosaria sp.			_	
1	Stainforthia spp.				
1	Stilostomella lepidula (Schwager)				
36 29 9 19 16 32 27 12 27 12 27 12 27 5	Uvigerina akitaensis Asano				
5 9 9 9 5 5 7 7 2 2 1 2 2 5 5 5	Valvulineria spp.				
2	others				
1	فمناسبته فيستوارز فرمسته متتسامية				
88 08 74 65 87 17 64 79 70 91 64 76					
5 6 8 2 5 13 2 9 6 5 1 1	total planktonic foram. number				
93 114 82 67 92 130 66 88 76 96 65 77	total foram. number				
5.4 5.3 9.8 3.0 5.4 10.0 3.0 10.2 7.9 5.2 1.5 1.3	P/T ratio				

(Kucera and Kennett, 2000). したがって, この種の産 出上限である試料 37X-CC は少なくとも 0.6 Maよりも古 い可能性が高い.

底生有孔虫群集

C9001C 孔の試料 1H-CC から 39H-CC までのうち,奇 数番号のものについて計20 試料の検討を行った. 群集組 成は比較的単純で Elphidium batialis, Epistominella pacifica, Nonionellina labradorica, Uvigerina akitaensis が優占する (表4). 1H-CC は Bolivina spissa, E. batialis, U. akitaensis が多く,現在の水深(1,180 m) とほぼ同様の群集を示 す.特に, E. batialis は5H-CC,9H-CC から13H-CC, 17H-CC から19H-CC,33H-CC,39H-CC で多産し,現 在の水深と同様の環境を示唆する. E. pacifica は12H-CC から13H-CC,17H-CC から20H-CC,33H-CC から39H-CCで比較的多産する.また,貧酸素種のBulimina tenuata, Brizalina pacifica, Globobulimina affinis, G. auricurata, Stainforthia spp.は,コア中部ではあまり産出せず,下部 と上部で多い傾向があり,溶存酸素極小層の変動を反映 している.

C9001D 孔の試料 2SMW から 24SMW までのカッティ ングス 12 試料 (偶数番号)から産出する底生有孔虫の群 集組成も E. batialis, E. pacifica, U. akitaensisの3種が 全体の産出数の90%を占め, Cibicidoides sp., Islandiella norcrossi, N. labradorica などが付随する (表4). E. batialisは下部 (12SMW および16SMW から22SMW)で 多産し, E. pacifica と U. akitaensis は上部 (2SMW から 6SMW および10SMW から14SMW)で多産する傾向が ある. I. norcrossiの産出数が少ないが,全層準を通じて 産出する. また, Rectobolivina raphanaの産出は, 18SMW から22SMW に限られている. このコアでは、全有孔虫 数に対する浮遊性有孔虫数の割合 (P/T比)は、層準に よってばらつきがある. なお. 処理過程において、上部 に細礫サイズの円〜亜円礫が若干認められたが、群集で は浅海域からの流入は確認できなかった.

両コアから産出する主要種である E. batialis, U. akitaensis は,親潮域の漸深海帯に多産する種である(Ikeya, 1971; 阿部ほか, 2003;大井ほか, 2005)が, E. pacificaは現在 と同程度の水深には産出せず,より深層の水深2,000 m付 近で多産する.したがって, C9001C孔の基底からC9001C-11H-CCまでは,現在より深い水深であったこと可能性 も示唆されるが,今後の研究が必要である.一方,現在 の下北沖では,500から1,500 mの水深には溶存酸素極小 層が形成されており,今回の試料から得られた群集は, 全体として低い溶存酸素環境を反映している.これらの 増減は,溶存酸素極小層の空間的な変動を示している可 能性もある.また,現在の本海域(水深約1,000 m)付 近では上記のほかに Bolivina spissaが卓越するが,コアで はほとんど産出しない.以上のことから,底生有孔虫が 示す底層環境は,基本的に低い溶存酸素環境であるもの の,その程度は時間的・空間的に変動していたと考えら れる.また,P/T比のばらつきは,表層の生産性の周期 的変化を表しているとみなされる(表4).

珪藻

新第三系から第四系の珪藻生層序では、生物地理区ご とに化石帯区分が提唱されており、北太平洋では北太平 洋珪藻化石帯(NPD:North Pacific Diatom Zone)が、 コード番号(新しい方からNPD12からNPD1まで)とと もに多用されている(Yanagisawa and Akiba, 1998; Maruyama and Shiono, 2003; Motoyama *et al.*, 2004).本 論文では、三陸沖で実施されたODP Leg 186 において使 用された化石帯区分(Maruyama and Shiono, 2003)を 基にして結果を論ずる.

C9001C孔における珪藻基準面として、Probosia curvirostris OLO (0.3 Ma; 14H-CC/15H-CC, 130.41/ 139.91 mbsf) & Actinocyclus oculatus O LO (1.01 \sim 1.46 Ma; 6SMW/8SMW, 557 mbsf) が認識された(表 5). C9001D 孔の最下限の試料 24SMW(647 mbsf) に おいても、Probosia curvirostrisとActinocyclus oculatusが 共産し、また Neodenticula koizumiiの連続的な産出が認 められないことから,最下限はActinocyclus oculatus帯 (NPD10) に含まれており, Probosia curvirostrisのFOで ある2.0 Maよりも古くなることはないと結論される.し たがって,本コアの試料は,新第三系の北太平洋珪藻化 石帯のうち、1H-CCから14H-CCまでが Neodenticula seminae帯 (NPD12), 15HCCから6SMWまでがProbosia curvirostris帯 (NPD11), 8SMW から24SMW まで Actinocyclus oculatus帯(NPD10)に区分でき、それぞ れ上部更新統、中部更新統、下部更新統に相当する(図 3).

但し、*Probosia curvirostris*のFOについては、CK92に 準拠した場合に1.58 Ma (Cande and Kent, 1992), BKFV85 の場合では1.5 Ma (Berggren *et al.*, 1985; Koizumi and Tanimura, 1985) との見解があるため、本コアの最下限 が1.58 Maよりも若いとの判断も成り立つ. カリフォル ニア沖では、1 Ma前後の判断基準として*Rhizosolenia matuyamai*の生存区間(LOが0.91–1.06 Ma, FOが0.99– 1.14 Ma)が有効な示準となっているが(Maruyama, 2000)、本コアでは見い出せなかった. *Rhizosolenia matuyamai*のLO(CK95, 0.91~1.06 Ma), *Rhizosolenia matuyamai*のFO(CK95, 0.91~1.14 Ma), *Proboscia curvirostris*のFO(CK92, 1.58 Ma), *Neodenticula koizumii* のLO(CK95, 2.0 Ma)の4つの示準面は認識されなかっ た.

放散虫

C9001C孔のコアでは、以下の6つの放散虫化石の基準

化石 87 号

表5. C9001CおよびD孔における珪藻化石の産出表.

Table 5. Occurrences of diatoms at Holes C9001C and D. Diatom slides were examined in their entirety at a magnification of $600 \times$ for stratigraphic markers and paleoenvironmentally sensitive taxa. Identifications were checked routinely at $1000 \times$. These abundances were recorded as follows: A (abundant) = one or more specimens per field of view; C (common) = one specimen per each lateral traverse; R (rare) = one specimen per a few lateral traverses; VR (very rare) = one specimen per several or more lateral traverses; and rw (reworked) = one or more reworked specimens. Preservation of diatoms was determined qualitatively as follows: G (good) = finely silicified forms present and no alteration of frustules observed; M (moderate) = finely silicified forms present with some alteration; and P (poor) = finely silicified forms absent or rare and fragmented, and the assemblage is dominated by robust forms.

jisawa

EXPEDITION	SITE	ЭТОН	CORE	CORE_TYPE	TOP_DEPTH	ADVANCEMENT	HINER_LENGTH	Depth (mbsf)	Datom zone	NPD: North Pacific Diatom Zone	Geologic age	Group abundance	Preservation	Actinocyclus ingens Rattray	Actinocyclus curvatulus Janisch	Actinocyclus ochotensis Jousé	Actinocyclus oculatus Jousé	Actinoptychus senarius (Ehrenberg) Ehrenberg	Arachnoidisus ehrenbergi Bailey	<i>Biaduphia aurita</i> (Lyngbye) Brebisson et Godey <i>Coscinadiscus marainatus</i> Fhrenhera	Coscinodiscus spp.	Denticulopsis praedimorpha Barron ex Akiba	Fragilariopsis doliola (Wallich) Medlin et Sims	Grammatophora spp. Noodonticula termetechnica (Zabelina) Abiba at Vanarisawa	Neodenticula seminae (Simonsen et Kanaya) Akiba et Yanaş	Nitzschia fossilis (Frenguelli) Kanaya ex Schrader	Nitzschia marina Grunow in Cleve et Grunow	Nitzschia reinholdii Kanaya ex Barron et Baldauf	Rhizosolenia hebetata s. l. (Bailey) Gran	Proboscia barboi (Brun) Jordan et Priddle	Proboscia curvirostris (Jousé) Jordan et Priddle	Stephanopyxis turris (Greville et Arnott) Ralts	Stephanopyxis dimorpha Schrader	Indlassionema scaraderi Akuva Thalaeeioeiva convora e 1 Mukhina	Inalassiosira convexa S. I. Iviukillia
902	C9001	С	1	Н	0.00	6.91	6.92	6.91	N. seminae	12	late Pleistocene	с	М					R		R	С				R				R						
902	C9001	С	2	Н	6.91	9.50	9.75	16.41	N. seminae	12	late Pleistocene	С	М							R	C		R		R				R	R		R			
902 902	C9001 C9001	c	3 4	Н	25.91	9.50 9.50	9.88	35.41	N. seminae N. seminae	12	late Pleistocene	A	м G		R					кк R	A	rw			к С				c			R		F	R
902	C9001	С	5	Н	35.41	9.50	10.17	44.91	N. seminae	12	late Pleistocene	R	Р					R			R				R				R						
902	C9001	С	6	Н	44.91	9.50	10.22	54.41	N. seminae	12	late Pleistocene	С	M							С	R				R				С			R			
902 902	C9001	c	8	н	54.41 63.91	9.50 9.50	10.15	73.41	N. seminae	12	late Pleistocene	A	M G					R	R	R	A				С				к			R			
902	C9001	C	9	н	73.41	9.50	10.27	82.91	N. seminae	12	late Pleistocene	С	М							R R		rw							С						
902	C9001	С	10	Н	82.91	9.50	10.51	92.41	N. seminae	12	late Pleistocene	С	М							R					R		R		R			С	R		
902	C9001	С	11	Н	92.41	9.50	10.23	101.91	N. seminae	12	late Pleistocene	С	М							_	R				R				С			_	_		
902	C9001	C C	12	н н	101.91	9.50	10.18	111.41	N. seminae	12	late Pleistocene	A P	G							R	А								C P			R.	R		
902	C9001	с	14	н	120.91	9.50	10.15	130.41	N. seminae	12	late Pleistocene	R	Р							C R									R			R	R		
902	C9001	С	15	Н	130.41	9.50	10.72	139.91	P. curvirostris	11	middle Pleistocene	С	М							R R	R				R				R		R	R	R		
902	C9001	С	16	Н	139.91	9.50	10.33	149.41	P. curvirostris	11	middle Pleistocene	С	М							R R	С				R				R		R	R			
902	C9001	С	17	Н	149.41	9.50	10.39	158.91	P. curvirostris	11	middle Pleistocene	С	M							R	R								R		R	R			
902	C9001	C	18	н	158.91	6.50 9.50	7.24	165.41	P. curvirostris P. curvirostris	11	middle Pleistocene	A C	M							R	R		R		R		R		R		R	R			
902	C9001	с	20	н	174.91	9.50	10.09	184.41	P. curvirostris	11	middle Pleistocene	С	M							i c	K				R		R		ĸ		R	C			
902	C9001	С	21	Н	184.41	9.50	10.40	193.91	P. curvirostris	11	middle Pleistocene	А	М					R			А				R				R		R	R			
902	C9001	С	22	Н	193.91	9.50	10.53	203.41	P. curvirostris	11	middle Pleistocene	С	М								С		R		R				R		R	R			
902	C9001	С	23	H	203.41	9.50	10.57	212.91	P. curvirostris	11	middle Pleistocene	С	M			r	ſW			R R	R				R					R	R	R			
902 902	C9001	c	24 25	н	212.91	9.50 9.50	10.37	222.41	P. curvirostris P. curvirostris	11	middle Pleistocene	c	M P					R		K R	ĸ			rs	,					ĸ	R	R			
902	C9001	C	26	н	231.91	7.12	8.01	239.03	P. curvirostris	11	middle Pleistocene	C	Р							R	R				R						R	R			
902	C9001	С	27	Н	239.03	9.50	9.97	248.53	P. curvirostris	11	middle Pleistocene	С	Р					R		R									R		R	R			
902	C9001	С	28	Н	248.53	9.50	10.30	258.03	P. curvirostris	11	middle Pleistocene	С	Р						R	R											R	R			
902	C9001	C C	29 30	н н	258.03	9.50 6.83	8.47	267.53	P. curvirostris	11	middle Pleistocene	C	M			r P	ſW			R	R		R		R				P		C P	P			
902	C9001	с	31	н	274.36	8.30	10.14	282.66	P. curvirostris	11	middle Pleistocene	С	M			r	w						ĸ						ĸ		C	R			
902	C9001	С	32	Н	282.66	9.50	10.33	292.16	P. curvirostris	11	middle Pleistocene	С	М			r	ſW								R						С				
902	C9001	С	33	Н	292.16	9.50	10.38	301.66	P. curvirostris	11	middle Pleistocene	С	М			r	ſW		R				R		R				R		R	R			
902	C9001	C C	34	X	301.66	9.50	9.85	311.16	P. curvirostris	11	middle Pleistocene	R	P								D				D		R				R	R			
902	C9001	no sample	55	л	511.10	9.50	0.00	320.00	r. curvitosuis	11	Initiale Fleistocene	C	r								ĸ				K						ĸ	ĸ			
902	C9001	c	37	х	330.16	9.50	7.70	339.66	P. curvirostris	11	middle Pleistocene	С	М							R	R			rv	R						R	R			
902	C9001	С	38	Н	339.66	9.50	9.35	347.63	P. curvirostris	11	middle Pleistocene	R	Р																R						
902	C9001	С	39	Н	347.63	9.50	7.51	355.83	P. curvirostris	11	middle Pleistocene	A	M										D		R	R		D	R		R	R	D		
902	C9001	C	40	н	333.83	9.50	9.95	305.33	P. curvirostris	11	middle Pleistocene	C	м							K K			ĸ		ĸ			к	к		ĸ	ĸ	к		
902	C9001	D	2 5	SMW	С	uutings		527-537mbsf	P. curvirostris	11	middle Pleistocene	VR	Р							R										R	R			R	Ł
902 902	C9001	D	4 5	SMW	C	uutings		537-547mbsf 547-557mbsf	P. curvirostris	11	middle Pleistocene	R	P	rw.	R			R		R												R			
902	C9001	D	8 5	SMW	c	uutings		557-567mbsf	A. oculatus	10	early Pleistocene	R	P				R			R											R			F	R
902	C9001	D	10 \$	SMW	C	uutings		567-577mbsf	A. oculatus	10	early Pleistocene	R	Р				R				R			R F								R		R	R
902	C9001	D	12 5	SMW	С	uutings		577-587mbsf	A. oculatus	10	early Pleistocene	С	Р				R			R	R				R						R		r	w R	2
902	C9001	D	14 5	SMW	C	uutings		587-597mbsf	A. oculatus	10	early Pleistocene	R	P				R			R D 7	R				n					р	р	D	R	R	ł
902 902	C9001	D D	10 2	SMW	C C	uutings		607-617mbsf	A. oculatus A. oculatus	10	early Pleistocene	c	r P			R	к С			r. R	R				R					R	к С	ĸ		R	R.
902	C9001	D	20 5	SMW	c	uutings		617-627mbsf	A. oculatus	10	early Pleistocene	R	Р	rw			R			R					R					R	R	R		R	R
902	C9001	D	22 \$	SMW	С	uutings		627-637mbsf	A. oculatus	10	early Pleistocene	С	Р	rw			R			R	R				С					R		R			
902	C9001	D	24 \$	SMW	С	uutings		637-647mbsf	A. oculatus	10	early Pleistocene	С	Р				R		R	R					R					R	R	R	r	w R	٤

Note, A: abundant, C: common, R: rare, VR: very rare, rw: reworked, G: good, M: moderate, P: poor.

表6. C9001CおよびD孔における放散虫化石の産出表

EXPEDITION	E	En.	CORE	CORE_TYPE		CORE CATCHER HORIZON (cm)	DEFTH (mbst)	Group Abundance	Preservation	RADIOLARIAN ZONE (Motoyama & Martyama, 1998)	Amphirhopalum praeypsilon Sakai	Amphirhopalum ypsilon Haeckel	Axoprunum angelinum (Campbell et Clark)	Botryostrobus aquilonaris (Bailey)	Ceratospyris borealis (Bailey)	Collosphaeridae gen. et sp. indet.	Comutella profunda Ehrenberg	Cycladophora davisiana Ehrenberg	Didymocyrtis tetrathalamus tetrathalamus (Haeckel)	Eucyrtidium acuminatum (Ehrenberg)	Eucyrtidium calvertense Martin	Eucyrtidium matuyamai Hays	Lamprocyrtis nigriniae (Caulet)	Lamprocyrtis maritalis (Haeckel)	Lychnocanoma nipponica sakaii Morley et Nigrini	Lychnocanoma sp.	Perpyramus spp.	Plegmosphaera churchi Campbell et Clark	Prerocantum praetextum (Enrenoerg)	t terocorys cuusus (r opoisny) Pterocorys zancleus (Mueller)	Sphaeropyle langii Dreiver	Sphaeropyle robusta Kling	Spongaster tetras irregularis Nigrini	Spongaster tetras tetras Ehrenberg	Spongodiscus resurgens osculosa (Dreyer)	Spongotrochus glacialis Popofsky	Spongurus cylindricus Haeckel	Stylocontarium acquilonium (Hays)	Stylocontarium bispiculum Popofsky	Tetrapyle octacantha Mueller	Ineocoryinium veiuum inigriii
902 902 902 902	C9001 C9001 C9001 C9001	C C C C	1 2 3 4	H H H	PAL PAL PAL PAI	CC, 14.0-24.0 CC, 18.0-28.0 CC, 20.0-30.0 CC, 24.0-34.0	6.91 16.41 25.91 35.41	C F R VR	M I G I G I	3. aquilonaris 3. aquilonaris 3. aquilonaris 3. aquilonaris		R		F VR	R R R	VR VR		C R A		VR VR						RV	R	VI	R F VI	e e						R					_
902	C9001	С	5	н	PAL	CC, 36.0-46.0	44.91	F	M 1	8. aquilonaris					+			+							+	+	+		-	-											
902 902	C9001 C9001	C C	6 7	н н	PAL PAL	CC, 30.0-40.0 CC, 23.0-33.0	54.41 63.91	VR C	M I G I	3. aquilonaris 3. aauilonaris				VR		VR		+ C	VR						+ R	VR		R	VI	ξ				VR		+ VR			1	√R	
902	C9001	C	8	Н	PAL	CC, 24.0-34.0	73.41	R	G I	8. aquilonaris					+	+	+	+							+	+			-							+					
902	C9001	С	9	Н	PAL	CC, 26.0-36.0	82.91	F	MI	8. aquilonaris 8. aquilonaris				+	VP	+ P		+ P							+ P	+ P	,	/D	v	-						+				JD V	D
902	C9001	С	11	н	PAL	CC, 28.0–38.0	101.91	A	GI	8. aquilonaris				VR	VR	VR	VR	A	VR	VR					R	VR V	R V	/R	VI	ξ						F			1	/R	ĸ
902	C9001	С	12	Н	PAL	CC, 20.0-30.0	111.41	С	G I	8. aquilonaris				VR	VR	VR	VR	VR							R	A	``	/R	VI	2				VR	VR	R			١	/R	
902 902	C9001 C9001	С	15	н	PAL	CC, 27.0-37.0 CC, 16.0-26.0	120.91 130.41	г R	P I	s. aquitonaris 8. aquilonaris		VK		VK	vк			к +	VK						к +	к +	``	/K	vi	¢					VR	к +				+	
902	C9001	С	15	Н	PAL	CC, 20.0-30.0	139.91	F	G 1	8. aquilonaris					+			+							+	+		+							+	+					
902 902	C9001 C9001	C C	16	Н Н	PAL	CC, 20.0-30.0	149.41	R	MI	8. aquilonaris 8. aquilonaris						+	+	+						+	+	+										+		+			
902	C9001	С	18	н	PAL	CC, 23.0-33.0	165.41	F	M 1	3. aquilonaris		VR		R	VR	VR	VR	R				,	VR		VR ·	VR V	R V	/R							R	R		VR	1	/R	
902	C9001	С	19	Н	PAL	CC, 20.0-30.0	174.91	F	M I	8. aquilonaris		VR		VD	VR	VR	VR	R	VD						VR	\ \/D_\/	R V	/R	VI	2					R	F		VR	1	/R	
902 902	C9001 C9001	С	20 21	н	PAL	CC, 18.0-28.0 CC, 24.0-34.0	184.41	A	GI	s. aquitonaris 8. aquilonaris		VR		R	VR	VR	vк	R	VR	VR				VR	VR	VR V VR V	R I	r v R V	R VI	ξ					VR	VR		VR	1	/R	
902	C9001	С	22	Н	PAL	CC, 18.0-28.0	203.41	F	М.	A. angelinum			VR	VR	VR	VR		R	VR	VR					VR	VR V	R V	/R	VI	٤					VR	R		VR	١	/R	
902 902	C9001 C9001	C C	23 24	H H	PAL PAL	CC, 51.0-61.0 CC, 45.0-55.0	212.91	VR VR	M. P.	A. angelinum A. angelinum				+	+++++++++++++++++++++++++++++++++++++++	+		++										+	-	-					+	+		+			
902	C9001	С	25	н	PAL	CC, 34.0-44.0	231.91	VR	Р.	A. angelinum		+		+	+			+							+	+									+	+					
902	C9001	С	26	Н	PAL	CC, 27.0-37.0	239.03	R	М.	A. angelinum					R	VR								VR	VR	VR	1	/R								А		R	١	/R	
902 902	C9001 C9001	c	27	н	PAL	CC, 4.0-14.0 CC, 32.0-42.0	248.55 258.03	VR	P.	A. angelinum A. angelinum					R			+							+ R	VR									+	А		А			
902	C9001	С	29	Н	PAL	CC, 22.0-32.0	267.53	С	G.	A. angelinum				VR	R			VR	VR						VR	VR		С	VI	۶.			VR	VR	VR	С		R			
902 902	C9001 C9001	C C	30 31	H H	PAL PAL	CC, 32.0-42.0 CC, 22.0-32.0	274.36 282.66	VR	M.	A. angelinum A. angelinum					+ VR	+									VR			А						VR	+	+ A		+ R			
902	C9001	С	32	н	PAL	CC, 30.0-40.0	292.16	F	M	A. angelinum				VR	VR										VR	VR	1	/R							VR			VR	1	/R	
902	C9001	С	33	Н	PAL	CC, 40.0-50.0	301.66	F	Μ.	A. angelinum				VR	VR	VR	VR	VR		VR					VR	VR V	R V	/R			VF	2			VR			VR			
902 902	C9001 C9001	C C	34 35	X X	PAL PAL	CC, 26.0-36.0 CC, 13.0-23.0	311.16 320.66	F	M.	A. angelinum A. angelinum	VR	VR	VR	VR	VR VR	VR	VR	R		VR		rw			R	VR VR	,	/R /RV	'R						VR	VR	VR	VR	VR V	/R	
902	C9001	C	36	X no s	sample		330.16			0																															
902	C9001	С	37	Х	PAL	CC, 14.0-24.0	339.66	R	M	A. angelinum				VD	VD	VD		VD	VD						+	VD		v	D	V					р				+		
902 902	C9001 C9001	С	38 39	н	PAL	CC, 10.0-20.0 CC, 60.0-70.0	357.13	F	M	A. angelinum A. angelinum				A	VR	VK	VR	VR	VK							vк		v	ĸ	VI	VF	1			VR				VR		
902	C9001	С	40	Н	PAL	CC, 19.0-29.0	365.33	F	М.	A. angelinum				VR	VR	VR	VR	R							+		`	/R							VR		VR				
902	C9001	р	2.54	/W		Cuttines	527-537	P	м	A angelinum																												+	+		
902	C9001	D	4 SN	ΛW		Cuttings	537-547	F	M	E. matuyamai								R				R															,	VR	VR	+	
902 902	C9001 C9001	D D	6 SM 8 SM	AW AW		Cuttings	547-557 557-567	VR VR	P I P I	E. matuyamai E. matuyamai								R +	+			+	+												+			+++++	VR		
902	C9001	D	10 SM	ΛW		Cuttings	567-577	F	м	E. matuyamai				+				Ŕ				R		+		+			F	ł				+	VR		,	VR	VR		
902	C9001	D	12 SM	AW AW		Cuttings	577-587 1	barren	м	7 maturar -i				VP	p			c				70					D			,							,	VP			
902	C9001	D	14 SM	AW		Cuttings	597-607	A	M	2. matuyamat 2. matuyamat			+	۰ĸ	VR	+		c	VR		1	/R				v	R		VI	λ λ		VR			R		,	VR	F		
902	C9001	D	18 SM	AW		Cuttings	607-617	F	P	E. matuyamai			R		VR			+			\	/R				V	R					+			R		1	VR	R	+	
902 902	C9001 C9001	D	20 SN 22 SN	AW AW		Cuttings	617-627 627-637	F	PI	2. matuyamai 2. matuyamai		R	R R		VR VR			F		+	+ \	/R /R				V	к		-	-					R VR		,	VR	к VR V	+ R	
002	C9001	D	24 51	w		Cuttinge	637.647	F	D	7 maturamai			D ·	VP	VP			F	VP		+ 1	/D		+			P					VP			P		,	UD .	VP .	+	

Table 6. Occurrences of radiolarians at Holes C9001C and D. These abundances were recorded as follows: A (abundant) = more than 25 %; C (common) = 20-25 %; F (few) = 15-20 %; R (rare) = 5-15 %; VR (very rare) = less than 5 %; + = present, few specimens and more than one specimen.

Note, A: abundant, C: common, Few: few, R: rare, VR: very rare, +: present, rw: reworked, G: good, M: moderate, P: poor.

面が確認された(表6):(1) Lychnocanoma nipponica sakaiiのLO(0.05Ma):4H-CC/5H-CC, 35.41/ 44.91 mbsf, (2) Stylacontarium acquiloniumのLO(0.4Ma): 16H-CC/17H-CC, 149.41/158.91 mbsf, (3) Axoprunum angelinumのLO(0.46Ma):21H-CC/22H-CC, 193.91/ 203.41 mbsf, (4) Lychnocanoma nipponica sakaiiのFO (0.95Ma):40H-CC/2SMW, 365.33/527–537 mbsf, (5) Eucyrtidium matuyamaiのLO(1.05Ma):2SMW/4SMW, 537 mbsf, (6) Sphaeropyle robustaのLO(1.45Ma): 14SMW/16SMW, 597 mbsf. C9001C孔の4H-CCから最下部40H-CCまで*L. nipponica* sakaiiがほぼ連続して産出するが,C9001D孔のカッティ ングス試料(2SMW~24SMW)では全く認められない (図3,表6).40H-CC(約365mbsf)と2SMW(527-537mbsf)の間は160~170mほど欠けているため本種 の初出現を確認できないが,C9001C孔の最下部は*L.* nipponica sakaiiのFO(0.95Ma)より若くなるものと判 断される.

C9001D 孔のカッティングス試料の4SMW から最下部 の24SMWまで地質年代決定に重要な種である*E. matuyamai*

表7. C9001CおよびD孔における層序学イベントの総括.

Table 7. Stratigraphic events at Holes C9001C and D. LO = last occurrence; FO = first occurrence; P = present of microfossils.

						(mbsf)				CK95		
I	Event	Times	Core	Top sample (FO presence)	Bottom sample (LO presence)	Depth	Тор	Bottom	Original age (Ma)	Age (ka)	$\text{Error}(\pm)$	Age and datum
1		Spa 支盔室	C9001A	34 6 17 34			28.4	28.56		43	1	
1		Spa Zma 777	C9002B	111 5 08 114			20.4	20.50		-15	1	
			C9001C	4H-4 57-68			30.3	30.39				
2	10	I vchnocanoma nipponica sakaji	C9001C	4H-CC	5H-CC	35.3	50.5	44.9	0/0.06 in original	500		Morley and Nigrini (1995)
3	LO	Aso_1 (阿薛4) テフラ	C9002B	4H-2 20-254	511 00	5515	53 24	53.29	o, oloo III oliginui	87.5	2.5	honey and highlin (1999)
5			C9001C	6H-CC 337-36			54 35	54.38		07.5	2.5	
4	10	Proboscia curvirostris	C9001C	14H-CC	15H-CC		130.41	139.91	MIS8	250		
5	FO	Emiliania huxlevi	C9001C	16H-CC	17H-CC		149 41	158.91		250		
6	10	Stylacontarium acauilonium	C9001C	16H-CC	17H-CC		149.3	158.91	0.37/0.52 in original	400		Morley and Nigrini (1995)
7	LO	Axoprunum angelinum	C9001C	21H-CC	22H-CC		193.9	203.41		460	40	Motovama (1996)
8	10	Pseudoemiliania lacunosa	C9001C	27H-CC	28H-CC		248.53	258.03	MIS12, NN20/NN19	410	10	
9	10	Neogloboauadrina inglei	C9001C	35H-CC	37H-CC		319.2	337.8		600	100	
10	LO	Base of Brunhes	C9001C	Lower than 40H		368.33				780	100	
11	FO	Lychnocanoma nipponica sakaii	C9001C	9001C40HCC	C9001D2SMW		365.33	527-537	0.9/1.0 in original	950	50	Kamikuri et al. (2004)
12	10	Reticulofenestra asanoi	C9001C	9001C40HCC	C9001D2SMW		365.33	527-537	MIS22	850	50	No occurrence
	20									000		
13	LO	Eucyrtidium matuyamai	C9001D	2SMW	4SMW	537			1.0/1.1 in original	1.05	0.05	Kamikuri et al. (2004)
												Motoyama (1996)
14	LO	Actunocyclus oculatus	C9001D	6SMW	8SMW	557	554-557	557-567		1.01-1.46		
15	LO	Sphaeropyle robusta	C9001D	14SMW	16SMW	597			1.4/1.5 in original	1.45	0.05	Kamikuri et al. (2004)
												Foreman (1973)
16	FO	Eucyrtidium matuyamai	C9001D	lower than 24SMW		647			1.7/1.9 in original	1.8	0.1	Kamikuri et al. (2004)
17	Р	large Gephyrocapsa	C9001D	8SMW	18SMW	647				1.21-1.45		Morley and Nigrini (1995)
18	Р	Gephyrocapsa oceanica	C9001D							younger1.65		

がほぼ連続して認められた(表6).本種は,正磁極クロ ンC2n(Olduvaiイベント)の基底付近から出現(1.8 Ma) し,C1r1n(Jaramilloイベント)基底付近で絶滅(1.05 Ma) する短い生存期間をもつ.その基準面は信頼性が高いの で,4SMWから24SMWの区間は更新統下部(1.05 Maか ら1.8 Ma)に対比される(Kamikuri *et al.*,2004; Motoyama *et al.*,2004).また*S. robusta*のLOが14SMW/16SMW間 に認められることから,14SMW/16SMW (597 mbsf)付 近は1.45 Maに対比される.最下位の試料24SMWには*E. matuyamai*は産出するが,*Lamprocyrtis heteroporos*を産 しないため,最下部は少なくとも*E. matuyamai*のFO (1.8 Ma)よりは若い年代を示すものと判断される.

以上のことから、C9001C およびD 孔のコアは、全試 料がほぼ更新統に属することが判明し、本山・丸山(1998) によって定義された新第三系の北西太平洋地域の中高緯 度における放散虫化石帯の最上部の3化石帯に相当する (図3). C9001C 孔の1H-CC から21H-CC の区間は Botryostrobus aquilonaris帯、C9001C 孔の22H-CC から C9001D 孔の2SMW の区間はAxoprunum angelinum帯, C9001D 孔の3SMW から24SMW の区間は Eucyrtidium matuyamai帯に区分できる.

火山灰層序および古地磁気層序

C9001CとC9002Dの2孔には多くの火山灰層が挟在す る.このうちC9001C孔の上部にある2層の火山灰層が年 代決定に使用できる(表7).この2枚の層は、C9001A やC9002B孔のコアで認識されたT11とT21と同じで、最 初の火山灰層(C9001C-4H-4,57~68 cm,34.3 mbsf) が支笏第一(Spfa-1),次の火山灰層(C9001C-6H-CC, 33.7~36 cm, 54.35~54.38 mbsf)が阿蘇4(Aso-4)に それぞれ同定される(青池, 2008; 青池ほか, 2010).ま た,C9001Cの古地磁気はすべて正磁極であるので, Brunhes 正磁極帯(Chron C1n)に対比される.

酸素同位体比層序

手法

下北コアの年代モデルを確立することを目的として、 C9001C孔に含まれる底生有孔虫化石の殻の酸素同位体 比を測定した. 安定酸素・炭素同位体比測定用試料とし て、C9001C孔の385層準(1セクションあたり1~4試 料;約0.5~1.5mの間隔)で約6~9cm厚の堆積物を採 取した.全試料について凍結乾燥後,250メッシュ(開 口径63µm)のステンレスメッシュ上で水洗して泥質分 を除去し,残渣を約40°Cで乾燥させた.全残渣試料を 鏡下観察した結果,底生有孔虫 Uvigerina akitaensis がほ ぼ連続的に産出し,かつ殻の保存状態が良好であること がわかった.そこで本研究では,U. akitaensisを同位体 比測定に用いる種として選定し、その拾い出しを行った. ただし、22H-8(202.35mbsf)の1試料についてはU. akitaensisが産出しなかったため、近縁種である Uvigerina peregrinaを用いた. 拾い出しにあたっては, 肋状隆起 (costae) と periphery に着目し、できるだけ典型的な形 態を示す個体を抽出した.

測定には長径500~800µmのU. akitaensisを3個体(100µg)用いたが,産出数が極端に少ない層準につい

図4. C9001C孔における底生有孔虫化石の酸素炭素同位体比曲線.対比できる海洋酸素同位体ステージは番号で示してある.

Fig. 4. Oxygen and carbon isotope records of benthic foraminifers at Hole C9001C. The numbers and shaded color shows Marine oxygen isotope stages and glacial stages, respectively.

図5. 標準曲線(Lisiecki and Raymo, 2005)とC9001C孔の酸素炭素同位体比曲線の対比.番号は海洋酸素炭素同位体ステージを示す.図中 の右側の示準面は表7による.

Fig. 5. Oxygen isotope stratigraphy of Hole C9001C based on correlation of the oxygen isotope record of benthic foraminifera with the standard δ^{18} O curve of Lisiecki and Raymo (2005). This figure shows glacial stages (shaded color) and useful datum levels of microfossils listed in Table 7. The FO of *Emiliania huxleyi* and the LO of *Pseudoemiliania lacunosa* are excellent markers during the Pleistocene interval (Sato *et al.*, 1999).

ては例外的に2~1個体を用いた.底生有孔虫試料をメ タノール中で機械的に壊して超音波洗浄し,殻表面や内 部の付着物を除去した後,均等に粉末化して常温で乾燥 させ,高知大学海洋コア総合研究センター所有の質量分 析計IsoPrimeで測定した.その結果,340層準について 底生有孔虫の同位体比(‰,VPDB)を得ることができ た.測定精度は、 δ^{18} Oが±0.07‰, δ^{13} Cが±0.03‰で あった.

結果

測定されたC9001C孔の酸素・炭素同位体比は,+3% から+4.8‰の間で変動した(図4).大きな正のシフト $12260 \sim 240$, $230 \sim 210$, $195 \sim 180$, $105 \sim 75$, $70 \sim 100$ 40 mbsf付近,大きな負のシフトは355,240~230,200, 70, 10 mbsf 付近にみられる.一方,古地磁気の結果は コアのすべてが正磁極であり、微化石の結果からもコア の最下部は850kaより若い年代を示す.したがって, C9001C孔の最下部はBrunhes正磁極帯(Chron C1n)の 基底付近に対比される.本コアの酸素同位体比曲線の正 もしくは負の各ピークは、SPECMAPの標準曲線 (Lisiecki and Raymo, 2005)の各々の酸素同位体比ステージに対 比できる(図5). その結果,本コアで確認された酸素同 位体比ステージは、MIS 1からMIS 18までに及び、コア 中に堆積間隙はなく、ほぼ連続して堆積したものと判断 される.したがって、C9001C孔がBrunhes正磁極帯の基 底付近にまで達するという微化石生層序の結果は、酸素 同位体比層序の結果と調和的である.特に、石灰質ナノ 化石の結果とは整合性があり、149~159mbsf付近に位 置する E. huxleyiの FO (250 ka; MIS 8), ならびに 239 ~249 mbsf 付近に位置する P. lacunosaのLO (451 ka; MIS 12)の示準面は酸素同位体比ステージ年代と一致し ている.対比の結果に従えば、最終氷期(MIS 2)は 15 mbsf 付近, MIS 5 は 50 ~ 70 mbsf, MIS 10 から MIS 9 のシフトは180~200 mbsf付近, MIS 12は240 mbsf付近 にみられる (Fig. 4).

このように全体的にはLisiecki and Raymo (2005)に 示されるような酸素同位体カーブ (LR04) と対比され る結果が得られたが,地域的なイベントを示唆するよう な酸素同位体比変化も認められる.たとえばMIS 7の125 ~155 mbsf付近の酸素同位体比変化や,MIS 10の200~ 210 mbsf の負のシフトなどがみられる (図4).これらの イベントは,124~132 mbsf の土石流堆積物と考えられ る角礫状シルト質粘土層,132~135 mbsf のスランプし たシルト質粘土層,そして203~207 mbsf の角礫状シル ト質粘土層にほぼ対応することから,堆積学的な要因に よるものである可能性が高い.

議論

年代モデルの総括

本研究の結果, C9001CおよびC9001D孔の年代決定に 使用できる示準面は,火山灰層が2,放散虫が6,珪藻 が4,ナノ化石が4,有孔虫が1,古地磁気が1層準の総 計18の示準面である(図3,5,表7).本研究では,こ のうちテフラとナノ化石の結果を重視した.その結果か ら,C9001C孔では,ほぼ同じ約62 cm/kyrの堆積速度を 示している.コア自体には不整合など欠如している部分 がないように思われる.これに対して,C9001D孔にお ける堆積速度はそれよりも遅く,約17 cm/kyrと1/3程度 で,500 mbsf付近(約0.9 Ma)に堆積速度の変換点があ ると考えられる(図3).

特に、C9001C孔に関しては、古地磁気測定の結果からBrunhes-Matuyama境界(Chron C1n/C1r境界,780 ka) は越えていない.すなわち、このコアでは少なくとも均 質な泥が約80万年間近く連続して堆積している.また、 平均60 cm/kyrの堆積速度は、半遠洋性粘土としては非常 に速い.C9001C孔の130 mbsf付近(Unit Aの下部,Core 14H-15H)には、土石流堆積物やスランプ層が砂層の上 に累重している.この層準は地震波断面でみられる反射 面と一致することから、不整合の存在が示唆された.し かし、微化石層序からも同位体比層序からも、その年代 ギャップはほとんどないことも明らかとなった.

また. CK05-04 Leg 2航海のC9001A/C9002A/B孔のコ アとCK06-06航海のC9001C/D孔のコアも帯磁率や火山 灰層を用いて対比することができる. その結果, CK05-04 Leg 2航海時のコアは, CK06-06航海時の上部70mに 相当すると考えられる(青池, 2008; 青池ほか, 2010). 今後は, C9001A/C9002A & B孔における酸素同位体比の 結果が公表されれば, さらに詳細な両コアの対比が検証 できるだろう.

標準年代モデルとしての下北コアの意義

一般に, 掘削計画で使用されている標準年代尺度は, 熱帯地域で設定されたBerggren et al. (1995)の年代尺 度が長い間使用されてきた. 近年, Gradstein et al. (2004) による再定義がなされ, 階境界や化石帯の境界の絶対年 代の値が更新された. Berggren et al. (1995)では, 石 灰質微化石が化石帯区分の中心であったが, Gradstein et al. (2004)では放散虫や渦鞭毛藻の区分も検討されてい る.特に,放散虫に関しては, ODP Leg 199などで熱帯 太平洋において古地磁気層序との対比がなされており, Berggren らの区分との対比が可能である(Sanfilippo and Nigrini, 1998; Kamikuri et al., 2005; Nigrini et al., 2005; Funakawa et al., 2006).

一方,北太平洋では生物地理区が異なるので,これら 熱帯地域の標準年代尺度の生層序区分をそのまま使用す ることはできない. そのため, 高緯度地域では独自の生 層序区分が提唱されている(たとえば, Yanagisawa and Akiba, 1998; 本山, 九山, 1998; 斎藤, 1999; Maruyama and Shiono, 2003; Kamikuri et al., 2004など). また, 使 用される微化石の種類は、中・高緯度地域では珪藻や放 散虫が中心である. 浮遊性有孔虫の示準種はほとんど産 出しない.しかし、ナノ化石に関しては、示準種が熱帯 から高緯度地域までの広い範囲に産出し、熱帯とそれ以 外の生物地理区を対比するのに重要な化石として使用さ れている.本論でもナノ化石の生層序・化石帯区分を中 心に、それ以外の微化石の結果を併用し、コアおよび堆 積物の地質年代を決定した. コア上部(0~350 mbsf, C9001A, C9002A/B, C9001Cの3孔)では、火山灰層 とナノ化石の示準面はほぼ整合的に並ぶことから、ほぼ 年代的には矛盾がないと思われる(図3).しかし,放散 虫の示準面は従来の報告よりやや若い年代を示す傾向に あり、今後の研究課題である.コア下部(C9001D)で は,ナノ化石,放散虫,古地磁気の結果はいずれもそれ ほど矛盾はない.

日本近海では、これまで多くのコアが採取されたが、 Ocean Driling Program (ODP) や IODP などの深海掘削 を除けばその多くは表層のピストンコアで約3万年 (MIS 3) より若い地質年代のものがほとんどである. 但し、三 陸沖のKH-94-3-LM-8では9万年程度の年代もある(山 根・大場、1999). これに対して、近年 IMAGESの航海 では、数十万年くらい(~50万年、~MIS 12)まで遡 れる幾つかのコアが採取され、研究が進められている(川 幡ほか、2006a, b; Rosenthal *et al.*, 2006 など). これらの コアの年代決定は¹⁴C 年代や酸素同位体比が主体で、こ れに微化石年代、テフラ、古地磁気年代を補足的に用い ている.

これに対して、下北のC9001C孔のコアでは、酸素同 位体比の検討よりMIS 18までのほぼ完全な酸素同位体比 層序が得られた.したがって、今回掘削された下北コア は,日本近海で初めて Brunhes 正磁極期のほとんどが欠 如していない連続試料が得られた最初の成果となり、微 化石層序,古地磁気層序,酸素同位体比層序を統合する ことができる重要なコアである. これ以外のコアとして 銚子の陸上掘削で得られたコア試料がある.しかし、こ のコアはMIS 11からMIS 24までの期間にわたり, Brunhes-Matuyama境界を含んでいるものの上部更新統が欠如し ている (Kameo et al., 2006). 一方, 同じ「ちきゅう」 を使用した南海トラフの掘削Expedition 315では更新世 から中新世までの連続コアを得ることができた (Kinoshita et al., 2009). これらのコアを合わせれば,将来的には日 本周辺海域における独自の統合地質年代尺度を確立でき ることが期待される.

まとめ

掘削船「ちきゅう」の慣熟航海は、2005年11月16日 ~12月14日 (CK05-04 Leg 2航海) と2006年8月6日~ 10月26日 (CK06-06航海) に行われ、この間C9001A (0 \sim 48.5 mbsf), C9002A (0 \sim 26.2 mbsf), C9002B (23.3 ~70.8 mbsf), C9001C (0~365 mbsf) の4孔のコア試 料を得た. C9001D (0~647 mbsf) 孔はカッティング試 料のみを522から647mbsfの区間で採取した. コア試料 は、オリーブ黒色からオリーブ灰色の塊状の珪藻質シル ト質粘土を主体とし、微化石を多く含み、Unit AからD までの4つの岩相ユニットに区分される. このうちUnit AとUnit Dは火山灰層や砂層を多く挟み, Unit Bはそれ らに乏しい. Unit Cは細粒砂を主体とする. 年代決定に 使用できる示準面は総計18あり、火山灰層が2、放散虫 が6, 珪藻が4, ナノ化石が4, 有孔虫が1, 古地磁気が 1層準である.これらを総括すると、C9001C孔の最下部 は、Brunhes-Matuyama境界(780ka)はこえていない. C9001C孔では、酸素同位体比層序も検討し、SPECMAP との対比により, MIS 1から MIS 18 までの酸素同位体比 ステージを認識することができた.したがって, C9001C 孔の最下部はBrunhes-Matuyama境界付近という結果を 支持し、少なくとも78万年間連続して堆積していると考 えられる.このように、本コアは78万年前まで連続した 日本周辺で掘削された最初のコアで、今後、さらに試料 間隔をつめて高解像度で分析を行えば、微化石層序・古 地磁気層序・酸素同位体比層序を統合した高精度の地質 年代尺度を構築できると期待される.

謝辞

本研究の一部には、日本学術振興会の基盤研究(A) (課題番号:17204043,代表:尾田太良),文部科学省の 若手研究(B)(課題番号:20740291,代表者:堂満華 子)の研究助成と東北大学21世紀COE「先端地球科学技 術による地球の未来像創出」,北海道大学21世紀COE「新 自然史科学創成—自然界における多様性の起源と進化」 の援助をいただいた.

文献

- 阿部恒平・牧野敬一・長谷川四郎,2003. 北海道十勝沖海域におけ る現生底生有孔虫の分布(予報). 岡村行信,千島弧-東北日本 弧会合部の海洋地質学的研究,平成14年度研究概要報告書-+勝 沖海域,114-121. 産業技術総合研究所,つくば.
- Ahagon, A., Ohkushi, K., Uchida, M. and Mishima, T., 2003. Middepth circulation in the northwest Pacific during the last deglaciation: Evidence from foraminiferal radiocarbon ages. *Geophysical Research Letters*, **30** (21), 2097, doi: 10.1029/2003GL018287.
- 青池 寛,2008.「ちきゅう」下北半島沖慣熟航海掘削コアについて、月刊地球,30,142–149.

- 青池 寛・西 弘嗣・坂本竜彦・倉本真一・平 朝彦・下北コア研 究グループ,2010.地球深部探査船「ちきゅう」の下北半島沖慣 熟航海コア試料 –1次解析に基づく過去80万年間の古環境変動. 化石,(87),65–81.
- Berggren, W. A., Kent, D. V. and Couvering, J. A. Van, 1985. Neogene geochronology and chronostratigraphy. In Snelling, N. J., ed., The Chronology of the Geologic Record, Geological Society of London Memoir, (10), 141–195.
- Berggren, W. A., Kent, D. V., Swisher, C. C. III and Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In Berggren, W. A., Kent, D. V., Aubry, M.-P. and Hardenbol, J., eds., Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publication, (54), 129–212.
- Cande, S. C. and Kent, D. V., 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. *Journal Geophysical Research*, 97, 13917–13951.
- Foreman, H. P., 1973. Radiolaria from DSDP Leg 20. In Heezen, B. C., MacGregor, I. D. et al., eds., Initial Reports of the Deep Sea Drilling Project, 20, 249–305, US Government Printing Office, Washinghton, DC.
- Funakawa, S., Nishi, H., Moore, T. C. and Nigrini, C. A., 2006. Radiolarian faunal turnover and paleocenographic change around Eocene/Oligocene boundary in the central equatorial Pacific, ODP Leg 199, Holes 1218A, 1219A, and 1220A. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 230, 183–203.
- Graddstein, F., Ogg, J. and Smith, A., 2004. *A Geologic Time Scale 2004.* 589p., Cambridge University Press, Cambridge.
- Hoshiba, M., Ahagon, N., Ohkushi, K., Uchida, M., Motoyama, I. and Nishimura, A., 2006. Foraminiferal oxygen and carbon isotopes during the last 34 kyr off northern Japan, northwestern Pacific. *Marine Micropaleontology*, **61**, 196–208.
- 池原 実・村山雅史・多田井修・外西奈津美・大道修宏・川幡穂 高・安田尚登, 2006. 四国沖から採取された2本のIMAGESコア を用いた第四紀後期におけるテフラ層序. 化石, (79), 60-76.
- Ikeya, N., 1971. Species diversity of recent benthic foraminifera off the Pacific coast of northern Japan. *Reports of the Faculty of Science, Shizuoka University*, 6, 179–201.
- Kameo, K., Okada, M., El-Masry, M., Hisamitsu, T., Saito, S., Nakazato, H., Ohkouchi, N., Ikehara, M., Yasuda, H. and Taira, A., 2006. Age model, physical properties and paleocenohraphic implications of the middle Pleistocene core sediments in the Choshi area, central Japan. *Island Arc*, 15, 366–377.
- Kamikuri, S., Nishi, H., Motoyama, I. and Saito, S., 2004. Middle Miocene to Pleistocene radiolarian biostratigraphy in the Northwest Pacific Ocean, ODP Leg 186. *Island Arc*, **13**, 191–226.
- Kamikuri, S., Nishi, H., Moore, T. C., Nigrini, C. A. and Motoyama, I., 2005. Radiolarian faunal turnover across the Oligocene/Miocene boundary in the equatorial Pacific Ocean. *Marine Micropaleontology*, 57, 74–96.
- 川幡穂高・黒柳あずみ・簑島佳代, 2006a. 後期第四紀の西太平洋お ける環境変動―融氷期から完新世への環境変化―. 化石, (79), 21–32.
- 川幡穂高・西 弘嗣・丸山俊明, 2006b. 西太平洋における IMAGES (International Marine Global Change Study) コアを用いた高時 間解像度の環境復元の意義. 化石, (79), 18–20.
- Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E. J., Curewitz, D., Masago, H., Moe, K. T. and the Expedition 314/315/316 Scientists, 2009. *Proceedings of the Integrated Ocean Drilling Program.* **314/315/316**, Integrated Ocean Drilling Program Management International, Inc., for the Integrated Ocean Drilling Program, publications.iodp.org/proceedings.314_345_316/3143153 16bib.htm.
- Koizumi, I. and Tanimura, Y., 1985. Neogene diatom biostratigraphy of the middle latitude western North Pacific, Deep Sea Drilling Project Leg 86. *In* Heath, G. R., Burckle, L. H., *et al.*, *eds.*, *Initial*

Reports of Deep Sea Drilling Project, **86**, 269–300. US Government Printing Office, Washinghton, DC.

- Kucera, M. and Kennett, J. P., 2000. Biochronology and evolutionary implication of Late Neogene California margin planktonic foraminiferal events. *Marine Micropaleontology*, **40**, 67–81.
- Kuroyanagi, A., Kawahata, H., Narita, H., Ohkushi, K. and Aramaki, T., 2006. Reconstruction of paleoenvironmental changes based on the planktonic foraminiferal assemblages off Shimokita (Japan) in the northwestern North Pacific. *Global and Planetary Change*, 53, 92–107.
- Lisiecki, L. E. and Raymo, M. E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d¹⁸O records. *Paleoceanography*, 20, PA1003, doi:10.1029/2004PA001071.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Farinacci, A., ed., Proceedings II Planktonic Conference, Rome, 1970, 2, 739–785.
- Maruyama, T., 2000. Middle Miocene to Pleistocene diatom stratigraphy of Leg 167. *In* Lyle, M., Koizumi, I., Richter, C. and Moore, T. C. Jr., *eds.*, *Proceeding of Ocean Drilling Program, Scientific Results*, 167, 63–110. College Station, TX (Ocean Drilling Program).
- Maruyama, T. and Shiono, M., 2003. Middle Miocene to Pleistocene diatom biostratigraphy of the Northwest Pacific at Sites 1150 and 1151. *In Suyehiro, K., Sacks, I. S., Acton, G. D. and Oda, M., eds., Proceeding of Ocean Drilling Program, Scientific Results*, 186, 1–38.
- Morley, J. J. and Nigrini, C., 1995. Miocene to Pleistocene radiolarian biostratigraphy of North Pacific sites 881, 884, 885, 886, and 887. In Rea, D. K., Basov, I. A. and Allan, J. F., eds., Proceeding of Ocean Drilling Program, Scientific Results, 145, 55–91.
- Motoyama, I., 1996. Late Neogene radiolarian biostratigraphy in the subarctic Northwest Pacific. *Micropaleontology*, 42, 221-262.
- 本山 功・丸山俊明, 1998. 中・高緯度北西太平洋地域における新 第三紀珪藻・放散虫化石年代尺度:地磁気極性年代尺度 CK92 お よびCK95 への適合. 地質学雑誌, 104, 171–183.
- Motoyama, I., Niitsuma, N., Maruyama, T., Hayashi, H., Kamikuri, S., Shiono, M., Kanamatsu, T., Aoki, K., Morishita, C., Hagino, K., Nishi, H. and Oda, M., 2004. Middle Miocene to Pleistocene magneto-biostratigraphy of ODP Sites 1150 and 1151, northwest Pacific: Sedimentation rate and updated regional geological timescale. *Island Arc*, 13, 289–305.
- Nigrini, C., Sanfilippo, A. and Moore, T. J. Jr., 2005. Cenozoic radiolarian biostratigraphy: A magnetostratigraphic chronology of Cenozoic sequences from ODP Sites 1218, 1219, and 1220, equatorial Pacific. *In* Wilson, P. A., Lyle, M. and Firth, J. V., *eds.*, *Proceedings of the Ocean Drilling Program, Scientific Results*, 199, 1–76 [Online].
- 大串健一・根本直樹・村山雅史・中村俊夫・塚脇真二,2000. 底生 有孔虫から推定される過去2万年間の親潮域における海洋環境. 第四紀研究, **39**,427-438.
- 大井剛志・田中正和・阿部恒平・長谷川四郎, 2005. 北海道襟裳岬・ 根室沖海域における現生底生有孔虫の分布(予報). 片山 肇, 千島弧-東北日本弧会合部の海洋地質学的研究, 平成16年度研究 概要報告書—根室沖・日高沖海域—, 120–129. 産業技術総合研究 所, つくば.
- Rosenthal, Y., de Garidel-Thoron, T. and Beaufort, L., 2006. Late Quaternary paleoceanography of the northwestern Pacific: Results from IMAGES Program. *Global and Planetary Change*, 53, 1–4.
- 斎藤常正, 1999. 最近の古地磁気層序の改訂と日本の標準微化石層 序. 石油技術協会誌, 64, 2–15.
- Sanfilippo, A. and Nigrini, C., 1998. Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables. *Marine Micropaleontology*, **33**, 109–156.
- 佐藤時幸・亀尾浩治・三田 勲, 1999. 石灰質ナンノ化石による後 期新生代地質年代の決定精度とテフラ層序. 地球科学, 53, 265– 274.
- 芝原暁彦・荒山恵理・大串健一・青木かおり・伊藤 孝, 2006. 下 北半島沖の海底コアにおける底生有孔虫群集の高解像度解析から

判明した融氷期における100~200年周期の貧酸素化現象.地質 学雑誌, 112, 166-169.

- Shibahara, A., Ohkushi, K., Kennett, J. P. and Ikehara, K., 2007. Late Quaternary changes in intermediate water oxygenation and oxygen minimum zone, northern Japan: A benthic foraminiferal perspective. *Paleoceanography*, 22, PA3213, doi: 10.1029/2005PA001234.
- Takemoto, A. and Oda, M., 1997. New planktic foraminiferal transfer functions for the Kuroshio-Oyashio Current region off Japan. *Paleontological Research*, 4, 291–310.
- Uchida, M., Ohkushi, K., Kimoto, K., Inagaki, F., Ishimura, T., Tsunogai, U., TuZino, T. and Shibata, Y., 2008. Radiocarbon-based carbon source quantification of anomalous isotopic foraminifera in last glacial sediments in the western North Pacific. *Geochemistry*, *Geophysics, Geosystems*, 9, doi: 10.1029/2006GC001558.
- Uchida, M., Shibata, Y., Ohkushi, K., Ahagon, N. and Hoshiba, M., 2004. Episodic methane release events from Last Glacial marginal sediments in the western North Pacific. *Geochemistry, Geophysics, Geosystems*, 5, doi: 10.1029/2004GC000699.
- 氏家由利香・氏家 宏, 2006. 沖縄トラフおよび石垣島南方で採取 された IMAGES コアに基づく過去約25万年間の表層・中層水の 変動. 化石, (79), 43–59.
- 山根雅之・大場忠道, 1999. 三陸沖海底コア(KH94-3, LM-8)の解 析に基づく過去9万年間の海洋環境変遷. 第四紀研究, 38, 1–16.
- Yanagisawa, Y. and Akiba, F., 1998. Refined Neogene diatom biostratigraphy for the northwest Pacific around Japan, with an introduction of code numbers for selected diatom biohorizons. *The Journal of Geological Society of Japan*, **104**, 395–414.

