後期第四紀の西太平洋における環境変動-融氷期から完新世への環境変化-

川幡穂高*・黒柳あずみ**・蓑島佳代**

* 東京大学海洋研究所/独立行政法人産業技術総合研究所/東北大学大学院理学研究科・** 独立行政法人産業技術総合研究所

Environmental change in the western Pacific during the late Quaternary - Deglaciation to Holocene -

Hodaka Kawahata*, Azumi Kuroyanagi** and Kayo Minoshima**

*Ocean Research Institute, University of Tokyo, Minamidai 1-15-1, Nakano-ku, Tokyo 164-8639, Japan (kawahata@ori.u-tokyo.ac.jp) /Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology /Graduate School of Science, Tohoku University; **Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba-higashi 1-1-1, Ibaraki, 305-8567, Japan (a.kuroyanagi@aist.go.jp, kayo.minoshima@aist.go.jp)

Abstract. As a part of the Japanese IMAGES activity, a 33.65 m long core (MD982195) with very high sedimentation rate (ca. 80 cm kyr⁻¹) was retrieved from the northern part of the East China Sea, one of the largest marginal seas in the world. Stable isotope of oxygen and carbon in shells of planktonic for a *Globigerinoides ruber*, sea surface temperature (SST) from alkenones (U_{37}^k) in bulk sediment, Q-mode factor analysis of planktonic foraminiferal assemblage, pollen and spores assemblage, and biogenic and abiogenic components were analyzed in order to understand fluctuations in terrestrial and marine environments influenced by the East Asian Monsoon during the last 42 kyr. Besides the similality between the δ^{18} O and alkenone SST curve, many light δ^{18} O peaks, apparently corresponding to Dansgaard-Oeschger (D-O) cycles as observed in Greenland ice cores, were observed for the last 42 ka. We analysed G. ruber sensu stricto (s.s.), which represents shallower environments (lives in the upper water column) than G. ruber sensu lato (s.l.). The meandering of the westerlies during the cold and warm D-O cycles would have established an atmospheric tele-connection between East Asia and Greenland. Based upon contents of organic carbon, nitrogen and total amino acids, the estimated primary production was approximately constant during 42-15 ka, increased in 15-14 ka, and remained constant until 7 ka. Subsequently, primary production increased from 5 ka to the present. High sedimentation rate was attributed to high flux of terrestrial lithogenics, which were transported mainly from coastal lowlands and not from inland of China by wind. The environment in the marginal seas in the western Pacific was much affected by sea level change. D-O cycles were also reported from the IMAGES cores collected from the equatorial western Pacific. This area would have played an important role in the global climatic change and atmospheric concentration of CO₂, N₂O and CH₄ through the changes in the Walker circulation, which is closely related to ENSO (ENSO: El Niño/Southern Oscillation).

Key words: IMAGES, East China Sea, oxygen and carbon isotope, alkenone SST (sea surface temperature), planktonic foraminiferal assemblage, biogenic and abiogenic matter, tele-connection, sea level change, equatorial Pacific, warm pool.

はじめに

地球環境は地球の歴史が始まって以来,進化し続けて きた.それは、自然の働きによってなされてきたもので あるが、時間スケールは億年単位の超長期のものから千 年スケールまでさまざまである.この自然のみのシステ ムに近年人類の影響が多少でてきたのではないかと考え られてきたのが、地地球環境問題である.この問題には、 地球温暖化、森林の減少、野生生物種の減少、酸性雨、 オゾン層破壊、砂漠化などが含まれている. これらの地球環境問題での特徴は、地球温暖化問題を 例にとってみると、大気中の二酸化炭素の濃度は、すで に氷期・間氷期といったレンジをすでに越えてしまって いるというレンジの問題、そして、スピードが非常に速 いといった変化速度の問題が大きな特徴と言われている. 今日現代の環境問題を扱っている人々のターゲットと なっている時間スケールは、短いものでは将来50年先あ るいは百年先である.

これまで、古海洋学あるいは古気候を専門とする研究 者は、数百年以上のもう少し長い時間スケールを対象と

川幡穂高・黒柳あずみ・蓑島佳代

図 1. MD982195 ピストンコアの採取地点 (Kawahata and Ohshima, 2004).

して研究してきた.しかしながら,これらの時間スケー ルを支配する因子は、数十~百年程度の環境変動を支配 する因子とは異なるために、「過去を研究すれば将来の地 球環境問題に貢献する」と言いながらも、必ずしもその 貢献は期待されてこなかったというのが残念ながら真実 であったと思われる.

古環境の解析も進展し,1980年の終わり頃から地球の 表層環境は自然の働きのみでも大きく変動してきたことが 報告されてきた.例えば、グリーンランドの氷床コアで観 察されたダンスガードーオシュガー (Dansgaard-Oeschger :D-O)サイクルのように短時間で急激な気候変動もしば しば起こっていたらしい (例えば,Dansgaard et al.,1993). また、日本列島および周辺では今から数千年前の縄文時代 には、人類による二酸化炭素の放出がほとんど無視できた にもかかわらず、現在より温暖化していた.実際、青森県 の三内丸山遺跡から得られた知見は人類の生活にも気候の 変化が大きな影響を与えてきたことを明らかにしている.

現在,地球的規模での環境変化あるいは気候変動がどのような事件をきっかけとして起こるのか,あるいはどのような状態がしきい値となって気候状態がジャンプするのかということに関心が集まっている.この小論では、高時間解像度で古環境を解析しようとして開始された国際全海洋変動研究(IMAGES: International Marine Global Change Study, http://www.images-pages.org)プログラムで、特に西太平洋東シナ海で実施された研究について紹介するとともに、西赤道太平洋で行われた結果

図 2. MD982195 コアの年代モデル (Kawahata and Ohshima, 2004).

を概観し,西太平洋における後期第四紀の古環境について考えたいと思う.

北部東シナ海でのIMAGESの結果

試料および研究方法

ピストンコア (MD982195) は, IMAGES の 1998 年実施 された航海でフランスの調査船マリオン・デフレンヌ号 (*R/V Marion Dufresne*) によって九州西方沖の水深746mの地点 (北緯31°38.33', 東経128°56.63') から採取された (図1).

コアの全長は33.65 mで全体にオリーブ色をした均質な シルトからなるが、コア上部から5.1~6.0 mに鬼界アカ ホヤ(K-Ah)が、21.8~22.9 mには、姶良丹沢(AT)火 山灰が存在していた.年代決定のために14層準から、浮 遊性有孔虫のGlobigerina bulloides d'Orbignyもしくは、 Neogloboquadrina dutertrei d'Orbignyを拾い出し、加速器 質量分析法(Accelerator Mass Spectrometry: AMS)を 用いて¹⁴C年代を測定した.さらに、酸素同位体比のカー ブは、概して標準的な酸素同位体比カーブとよく一致し ており、¹⁴C年代から決定されたこのコアの年代モデルが 妥当であることが検証された.酸素同位体比カーブが、外 洋の標準カーブと対比できることは、九州西方海域が過 去42000年間、基本的には外洋水の影響を受けていたこと を意味している.その結果、堆積速度は25~274 cm kyr⁻¹ と変動し、平均80 cm kyr⁻¹と推定された(図2).

図3. MD982195コアのG. ruberの^{δ18}O値、^{δ13}C値カーブと、U^k₃₇ 水温,そしてMartinson et al. (1987) に よる外洋の標準的な酸素同位体比カーブ.YD (Younger Dryas)とODは、新そして古ドライアス期を表 わす.上のカラムは、浮遊性有孔虫などから解析した海洋環境の4つの期間 (I ~ IV) を表わす.浮遊性 有孔虫の^{δ18}O値のカーブの下にAMS⁻¹⁴C年代が表示されている.また、OIS 1~3は酸素同位体ステージ1 ~3を表わす (Ijiri et al., 2005).

浮遊性有孔虫の同位体から示唆された Dansgaard-Oeschger(ダンスガード-オシュ ガー)サイクルへの呼応

時間解像度平均125年で、Globigerinoides ruber (d'Orbigny) (sensu stricto)の安定同位体分析、アルケノン水温分 析、浮遊性有孔虫群集解析を行なった. G. ruberは、 Wang (2000)より、異なる同位体比組成を持つ G. ruber sensu stricto (s.s.)とsensu lato (s.l.)の2形態種 が報告されているが、本研究では、より浅い生息深度を持つ とされるG. ruber s.s.に着目し、それについて分析を行った. 一般に、酸素同位体比のカーブは、概してアルケノン水 温と類似したプロファイルを示し、大局的に外洋域の酸 素同位体比を反映したものとなっていた.しかしながら、 より詳細に見ると、酸素同位体比の負の方向にずれた多 くのピークがあるが、このピークをグリーンランド氷床 コア (Greenland Ice Sheet Project Two: GISP2)の酸素同 位体比カーブの顕著なピークと対比してみると(図3), GISP2コアに記録されている数千年~数百年単位の激し い気候変動であるD-Oサイクルに対応しているものと示 唆された.これらの*G. ruber*の酸素同位体比のピークの中 には1‰をこえる振幅をもつものもある.ちなみに,酸 素同位体比が1‰小さくなることは,水温では約4℃の 温暖化(Epstein *et al.*, 1953),この海域での塩分に換算す ると約5‰低くなることを意味している(Oba, 1988).

コアトップのアルケノン水温は24℃で、この温度はコ ア採取地点周辺海域での年間平均水温に近かった.一方、 最終氷期最盛期(LGM:Last Glacial Maximum)の水 温は、現代より約5℃低いものとなっていた.アルケノ ン水温は、D-Oサイクルに呼応したδ¹⁸O値の負の方向の ピークと必ずしも対応していなかった.アルケノン水温 を基に、温度の効果のみで変化する表層水の酸素同位体 比の変化量を推定して、LGM期間の平均とD-Oサイクル の温暖ピークの時期について*G. ruber*の計算値と実測δ¹⁸O

川幡穂高・黒柳あずみ・蓑島佳代

表1. MD982195コアにおける花粉および胞子ゾーンの特徴(Kawahata and Ohshima, 2004).

	Zone	Sample No.	Age	Mean total abundance	Relative abundance of			
Number	Characteritic of pollen assemblage			of pollen and spores (10 ³ grains ^{g -1})	Arboreal pollen	Nonarboreal pollen	Spores	
MD2195-1	AP-Cryptomeria-Picea zone	335-300	42-40.5 ka	12.9	57%	39%	4%	
MD21952	NAP-Lepidobalanus-Cryptomeria zone	293-132	40.5-17 ka	10.1	32%	63%	5%	
a	Pinus is the most dominant arboreal pollen			8.7	43%	51%	7%	
t	<i>Lepidobalanus</i> predominates over arboreal po	7.4	35%	60%	6%			
c	<i>Lepidobalanus</i> and <i>Cryptomeria</i> are the major	11.6	28%	69%	3%			
MD21953	NAP-Lepidobalanus zone	122-107	17-14 ka	13.6	28%	68%	4%	
MD21954	AP-Lepidobalanus-Cryptomeria zone	293-132	14-8 ka	12.9	65%	25%	10%	
a	Castanopsis-Pasania is the most predominant	13.6	71%	21%	9%			
t	<i>Lepidobalanus</i> is the most abundant arboreal p	12.4	61%	29%	10%			
MD21955	AP-Castanopsis-Pasania-Cyclobalanopsis z	oı 62-17	8-1.2 ka	14.1	79%	12%	9%	
a	Castanopsis-Pasania, Cyclobalanopsis and Pa	11.0	74%	16%	10%			
t	Castanopsis-Pasania and Cyclobalanopsis sho	20.3	81%	11%	8%			
MD21956	NAP-Pinus zone	9-8	1.2 ka-present	14.9	62%	15%	24%	

Note; AP:arboreal pollen, NAP: nonarboreal pollen

値と比べると、実測値は約1‰減少していた.一般に陸 水の δ^{18} O値は低いので、これらの時期には淡水の流入が 活発で、通常塩分と δ^{18} O値との間に直線的な関係が認め られるので、コア採取地点周辺で塩分がさがったと示唆 された (Ijiri *et al.*, 2005).

花粉から復元される北部東シナ海の環境変遷

花粉と胞子の合計は、過去42万年間に4.8~22.3 x 10³ 粒子g⁻¹と変化してきた.大きな値(>18 x 10³ 粒子g⁻¹) は、4.7 ~1.5 kaに、そして比較的高い値が42.0~40.6 ka, 23.4~ 17.5 ka, 16.3~13.1 ka, 9.0 ka, 0.9~0.8 kaに、低い値が40.4 ~29.3 kaに観察された(Kawahata and Ohshima, 2004).

花粉と胞子量,その種類に基づいて,42万年間に環境 が6つに分類された(ゾーンMD2195-1から6)(表1). ゾーンMD2195-1(木本花粉-スギ属 -トウヒ属ゾーン) は、42~40.5 kaで、木本花粉が優勢で、特にスギ属、トウ ヒ属が卓越していた. 40.5~17 kaのゾーンMD2195-2(草 本花粉-コナラ属コナラ亜属-スギ属ゾーン)と17~14 ka のゾーンMD2195-3(草本花粉-コナラ属コナラ亜属)で は、草本花粉が優勢で、特にヨモギ属 やカヤツリグサ科 などで特徴づけられた.また,ゾーンMD2195-3では,コ ナラ属コナラ亜属の出現が比較的高かった.14~8 kaの ゾーンMD2195-4(木本花粉-コナラ属コナラ亜属-スギ 属ゾーン)における草本花粉の出現は中程度で,シイノ キ属-マデバシイ属、コナラ属アカガシ亜属などの産出が 多かった. また, ゾーンMD2195-5は, 8~1.2 kaの期間 で,木本花粉-イノキ属-マデバシイ属,コナラ属アカガ シ亜属などから構成されていた。特に、花粉および胞子 の全粒子への草本花粉の相対寄与率についてみてみると, ゾーンMD2195-4と5では,それぞれ60%と80%であった. ゾーンMD2195-6は,基本的に現代の植生を表わしており, マツ属の量が増加し,コナラ属アカガシ亜属,シイノキ属-マデバシイ属などを伴っていた.ちなみに,このゾーンの 花粉の群集組成は,九州地方の植生と非常に一致していた.

花粉および胞子の全粒子量は、ゾーンMD2195-1、-4、5、6で は、木本花粉の粒子量と正の相関(相関係数(r)は >0.87)が あったが、草本花粉の粒子量とはほとんど相関がないか、負 の相関であった. 逆に, ゾーンMD2195-2,3では, 草本花粉 の粒子量と正の相関がり(表2)(Kawahata and Ohshima, 2004)、しかも、この時期は草本花粉の寄与が非常に大きかっ た. これまでのオホーツク海 (Kawahata et al., 2003), へ ス海膨 (Kawahata and Ohshima, 2002), カロリン海盆 (Kawahata et al., 2002)の結果では、花粉および胞子の 全粒子量は木本花粉の粒子量とは、非常に高い正の相関 (相関係数(r) > 0.95)をもっていた. ゾーンMD2195-2,3 では、これとは非常に性質が異なっているということが できる(表2).しかも、草本花粉の相対寄与率は時代を 通じて小さいのが普通である. その理由として 1)氷期 期間中には、海水準が下がり、東シナ海には、大陸棚が 陸化し、大面積の低地が出現し、これらの地域は砂から シルト質で洪水などにより不安定であったため、木本花 粉よりも草本花粉の生産がより活発であったと考えられ たこと.2)また、海岸線が海の方向に大きく移動した ため, コアの採取地点と海岸線との距離は, 九州側では 50 km, 中国側では500 km 位短くなり, 運搬量が増加し たためと考えられる.

また,興味ある事実としては,エダハマキ属は現在日

衣	Ζ.	MD9821	.95, HC)76 PI,	C4402,	H35/1 ·	コノにわりる)化积	ゴわよひ肥	十の主	「私丁重と」	下个化
ł	盼・	草本花糕	分・胞の)粒子量。	との相関	の比較	(Kawahata a	and (Ohshima,	2002;	Kawahata	et al.,
2	200	2; Kawał	nata <i>et a</i>	<i>l.</i> , 2003;	Kawaha	ta and (Ohshima, 20	04).				

	Total abundance of pollen and spores - arboreal pollen	Total abundance of pollen and spores - nonarboreal pollen	Total abundance of pollen and spores - spores
Core MD982195 from the East China Sea			
All Zones	0.90	-0.24	0.58
Zones MD2195-2 and 3 Zones MD2195-1, 4, 5, and 6	0.69 0.96	0.95 -0.32	0.12 0.44
Core HO76 P1 from the Sea of Okhotsk	0.99	0.91	0.89
Core C4402 from the equatorial western Pacific			
All Zones	0.98	0.75	0.99
Core H3571 from the Hess Rise in the North Pacific			
All Zones	0.99	0.95	0.96

本列島には産しないが、本コアでは、ゾーンMD2195-2c, 3、-4には出現する.この産地は、南方のニューギニア、 インドネシア多島海、フィリピンなどである.この花粉 がコアMD2195に氷期に観察されるという事実は、黒潮が 氷期であっても流入していたということを意味している (Kawahata and Ohshima, 2004).

浮遊性有孔虫から復元される海洋環境の変遷

MD982195コアでの浮遊性有孔虫の分析結果によると, 10属27種の浮遊性有孔虫が報告されている(Ijiri *et al.*, 2005)(図4).

コア最上部から約9mまでは、Globorotalia inflata (d'Orbigny)、Globigerinita glutinata (Egger)、G. ruber、 Globigerinoides sacculifer (Brady)、Pulleniatina obliquiloculata (Parker and Jones) などの主に熱帯、亜熱帯に多産する種が 多かった. 特に、P. obliquiloculataは3.1~4.4 mの間でほとん ど産出しなかった. このようなP. obliquiloculataの不産出の報 告は、すでにUjiié and Ujiié (1999) でも公表されており、そ れによると約4.5~3.5 kyr BPであるとされている.

約9~10 mを境にNeogloboquadrina pachyderma (Ehrenberg) (dextral:dex.), Neogloboquadrina incompta (Cifelli) (dex.), N. dutertrei, Globigerina quinqueloba Natland など,主に寒冷種や沿岸に多い種の産出頻度が高くなった.約 19 m付近からはG. bulloidesの相対頻度が急激に増え、場合 によっては、この種のみで70%以上となることもあった.19 m からコア最下部にかけては、このG. bulloides とN. pachyderma (dex.)の両者で50%以上となった.但し、N. pachyderma (dex.) とG. bulloidesの相対頻度の優勢度は変化していた.

浮遊性有孔虫群集と環境との対応をより定量的に解析す るために、Qモード因子分析を行なった結果は、第1~第3 因子までの累積寄与率が93%であることを示していた.

第1因子の寄与率は38.6%で, G. bulloides が卓越して

いた.特に2.4 kyr BP万年前以前においてこの種は増加 しており4回のピークが見られる(図4).*G. bulloides* は、しばしば湧昇流の間接指標をして知られている(Bé, 1977)が、東シナ海域では栄養塩の多い大陸棚上の沿岸水 の影響が強い場所に多産するとしている(Ujiié and Ujiié, 1999; Xu and Oda, 1999; Yamasaki and Oda, 2003).さら に、*G. quinqueloba*については、*G. bulloides*よりも塩分の 低い河口域近くに産出することから、この種は低塩分、低 温の環境を示すと考えている.これらのことを総合すると *G. bulloides*は、河川流入の影響が大きく、栄養塩の供給が 多く低塩分の沿岸水の影響を示す間接指標と考えられる.

第2因子の寄与率は36.4%で、因子負荷量は氷 期に高くなっていた.この因子を構成する群集は, N. pachyderma (dex.), N. incompta (dex.), N. dutertrei, が多く G. quinquelobaも見られた. N. pachyderma (dex.)は、寒帯~亜 寒帯から産出がみられ、黒潮域から親潮域への遷移帯で多 産すると報告されている(Thompson, 1981). N. incompta は、津軽暖流水の指標であるとともに、一般に冷た い水塊にも産出するといわれている(Takemoto and Oda., 1997). N. dutertrei は、低塩分に強い種であるとも (Guptha et al., 1997), 黒潮の影響が強い所で多産すると も (Xu and Oda, 1999) いわれている. N. incompta や G. quinqueloba の堆積物中での相対頻度は氷期で増加して いたが、これは、G. bulloidesや温暖種の減少を反映した 結果であると考えられた. それゆえ, 第2因子は, 現在 対馬暖流の影響下にある本海域の特徴、さらにステージ 3の時代よりも、寒冷かつ低塩分の影響、つまり非常に 強い沿岸水の影響を示すものと推定された.

第3因子を構成する主な種はP. obliquiloculata, G. ruber, G. glutinata, G. inflataで,寄与率は18.4%であった. P. obliquiloculataは、黒潮流軸の指標種である(Ujiié and Ujiié, 1999). G. ruberの現在の分布は、赤道域~温帯域 (Thompson, 1981)で、黒潮域に多産している. G. glutinata

Age (cal. kyr B.P.)

図4. MD982195コアの浮遊性有孔虫群集の因子分析によって得られた3つの因子負荷量. 最上段の数字は δ¹⁸Oステージを示す. また,下段は各々の浮遊性有孔虫の種の相対変動及び単位重量あたりの増減を表わ す(Ijiri *et al.*, 2005). #/gは1g中の個体数を示す.

図5. MD982195コアにおける浮遊性有孔虫 G. ruberの酸素同位体比,アルケノン水温,木本 (AP: arboreal pollen)・草本 (NAP: nonarboreal pollen)・胞子 (Spores)の相対量,有機炭素 (OC)・全窒素 (TN)量,全窒素/有機炭素 (TN/OC)・全加水分解ア ミノ酸量(Total AA). なお,一番上の数字は,花粉ゾーンを表わす.なお,図中のK-Ahは鬼界アカホヤを,ATは姶良丹沢 (AT) 火山灰を表わす (Kawahata et al., in 2005).

は、北西太平洋では黒潮域に多産し(Takemoto and Oda, 1997)、*G. inflata*の分布は黒潮水塊と親潮水塊の間の遷移帯 である(Thompson, 1981)との報告もある.それゆえ、第 3因子は黒潮の影響の強さを示す指標と考えられる.

以上の結果を図4を基に、この海域の海洋環境の変遷を時 系列に解釈すると、1)約41~24 kaの間は、G. bulloidesの 多産に代表される湧昇により海洋表層の生物生産性が高かっ た、2)約24~14 kaは、寒冷で大陸からの淡水の影響で塩 分が下がっていた、3)約14~8 kaには、黒潮の影響が次 第に強くなっていった、4)約8 ka以降は、現在とほぼ同様 な海洋環境になっていたと推定された(Ijiri et al., 2005).

堆積粒子の沈積と一次生産の変遷

生物起源と非生物起源の物質の堆積物への沈積は、海

洋環境の変遷を反映したものと考えられる. 有機炭素, 炭酸カルシウム,全窒素などの生物起源の主要成分,無 機元素とアミノ酸を分析した(図5).

元素の濃度と沈積流量に基づくと、元素は(1)生物 起源の有機物関連物質(有機炭素,全窒素,アミノ酸), (2)生物起源炭酸塩物質(Ca,Sr),(3)火山灰に伴う 石質成分(Al, Ti, Fe, K),(4)通常の陸源成分に伴う石 質成分(Mg, Be, Co, Cr, Cu, Ni, Zn),(5)その他の成 分(Mn, Na, P, Ba, Li, Y)の5つのグループに分類された.

これらの中から代表的な成分について図5に示す.その最大の特徴は、浮遊性有孔虫の酸素同位体比やアルケノン水温ではD-Oサイクルに対応したような急激な環境 変動を示すピークがしばしば存在しているが、δ¹⁸O値やア ルケノン水温以外の図5に示した成分にはそのようなも のが顕著には観察できないことである.このことは、塩

2006年3月

川幡穂高・黒柳あずみ・蓑島佳代

図 6. MD982195 コアにおけるアルミニウム含有量と草木花粉の含 有量の相関(下図)およびアルミニウム含有量と相対寄与率の相 関(上図). 相関係数 r は, それぞれ 0.61, 0.74 であった (p < 0.05).

分あるいは水温のような環境因子の変動は急激に起こっても、物質循環の指標となる成分の変動についての堆積 物中の記録はゆるやかであるということである.

一次生産の間接指標としては、通常有機炭素が主に用いられるが、沿岸なので陸源物質の寄与も高い可能性もあるので、海洋性プランクトンの主要成分である全加水分解性アミノ酸の分析も行なった。その結果、全窒素/有機炭素比が高い場合であっても、その両者の相関は非常に高く(r = 0.91)、有機炭素の沈積を一次生産の変動と考えてもよいことが確認された。その結果、一次生産は、30~31 kaの低生産の時代を除くと、42~24 kaにわたって、比較的一定であったことがわかった。前述したように、この時代は*G. bulloides*によって、特徴づけられるので、湧昇などが強くなったことに関係していると考えられる。このような湧昇は、氷期により強くなった冬のモンスーン(Huang *et al.*, 1997)に伴ったものと解釈される.

一次生産は、19.5 ka と18 ka あたりの小さい極大期を除 くと、24~5 kaには一定で、15~14 kaで増加した.この 時期は、G. quinquelobaなども産出しており、海水準の低 下に伴う海岸線の海への大規模な移動に伴って揚子江や 黄河の河口が大きく移動し、コア採取地点にも低塩分化 の影響がでたものと推定される.河川からの栄養塩の供 給は、低塩分化の成層化により相殺され、一次生産は比 較的一定に保たれたと考えられる.

一次生産は、14~7kaには一定であったが、5kaから現 在に向かって増加した.黒潮関連の有孔虫の産出は14~ 8kaに増加し、それ以降は高い状態が保持され、基本的 に8kaから現在にかけては現在とほぼ同じであったと考 えられる.黒潮は基本的に貧栄養であるとされているが、 東シナ海では、大陸棚周辺で、沿岸水と黒潮水がしばし ば混合することが観察されているので、このような仕組 みによって一次生産は増加していったものと考えられる.

これまで南シナ海などでも一次生産の変遷が報告され いてるが、南シナ海での一次生産は基本的に風の強さの 変化などが、混合水の拡大あるいは湧昇などをもたらし、 一次生産を増加させたと考えられている.風の強さはす なわち夏と冬のアジアモンスーンの強さと関係している. 今回の結果は、東シナ海の場合には、風の強さというよ り、海水準の変化が、淡水を含めた陸源物質の流入、そ の後の海洋の成層化、海岸線の移動などの因子を変化さ せ、コア採取地点の一次生産に影響を与えたものと解釈 された(Kawahata *et al.*, 2005).

高時間解像度のからくり

IMAGESコアでは、高い時間解像度での解析が求められ ている.これは高い堆積速度によって支えられているが, これには重要な点が見逃されている. 例えば, 一次生産が 100 gCm⁻² yr⁻¹という場合を想定しよう. この値は、10 gCcm⁻² kyr⁻¹ と同じである.一般に、水柱を有機物が沈降する際には、 分解が進行する. セジメントトラップの研究によると, カロリン海盆では水深1592mを通過する有機炭素の粒子束 は、一次生産と比較するとたった4.2%となってしまってい た (Kawahata et al., 1998a). この値は同じ海底深度であっ ても,実際に堆積物として埋没する際には,海底表層で海 水にさらされるためにずっと小さな値になると予想される. 例えば, 上記のカロリン海盆の場合, 堆積速度が小さいこ ともあり、海底面上500mのセジメントトラップを通過し た有機炭素の粒子束は、一次生産と比較するとたった3.4% なのに対し、堆積速度2.26 cm kyr⁻¹の海底では最終的に 0.1%にまで減少していた (Kawahata et al., 1998a).

一方,西太平洋外洋域における沈降粒子で,水深 1000 m程度での有機物の含有量は平均11.8%,有機炭素 は6.5%,生物起源炭酸塩,生物起源オパールはそれぞれ が50.5%,25.0%となり,生物起源物質の合計は87%と なる(Kawahata *et al.*,1998b).そこで,もし一次生産が 100 gCm⁻²yr⁻¹であったとし,約1500m海底での有機炭素 の保存率を3.4%として,他の生物起源物質は溶解しない と仮定すると,生物起源物質の沈積流量は4.6 gcm⁻²kyr⁻¹ と計算され,乾燥密度が1.2 gcm⁻³であると仮定すると3.8 cm²kyr⁻¹となる.この値は,外洋域での生物起源堆積物と 比較するとこの数字はほぼ最大値に相当する.

MD982195コアの平均堆積速度は80 cm⁻²kyr⁻¹であるが, この75 cm⁻²kyr⁻¹を支えているのは,実は石質成分である. そこで,石質成分の主要成分であるアルミニウムと花粉の 含有量をプロットしたのが,図6である.これによると, アルミニウムの含有量は草木花粉の含有量および相対寄与 率ともに相関が高いことを示しており,このことは草木花 粉は一般に海岸地方の低地に多く,しかも概して運搬され にくいことを考慮すると,沿岸域から運搬されたことを示 唆している.すなわち,海岸から大量の運搬された石質成 分が堆積速度を高くしていたことになる.

西太平洋の他海盆との対応

日本海堆積物では、明一暗色の縞状の変動が、D-Oサ イクルに対応していることが示唆されており(Tada et al., 1995, 1999),暗色層がD-Oサイクルの温暖期に対応し、 黄河や揚子江の河川流量が増し、栄養塩を多く含み低塩 分の東シナ海沿岸水が日本海に強く流れ込むことで、日 本海の底層水の循環が止まり、海洋表層の一次生産性が 高くなったことが暗色層の成因だと推論されている.同 様の変化は南シナ海でも報告されており、D-Oサイクル の温暖期に夏のモンスーンが強くなった結果、大量の淡 水が南シナ海に流れ込んで淡水の流入にともなう塩分の 低下が酸素同位体比にあらわれたと解釈している(Wang et al., 1999).また、西太平洋の記録とグリーンランドの 記録を比較したものを図7に示した.

これら両者のテレコネクションのメカニズムについては, 北半球の偏西風の蛇行が関係していると指摘されている (Wang and Oba, 1998). 夏季には偏西風は中国や日本の上 空で、北緯40~50度に位置している(図8)が、夏季のモン スーンは西太平洋から大陸にむかって多量の水分を輸送し, 多雨をもたらす. 一方, LGMには, COHMAP (1988) に よって復元された偏西風の位置は、北緯30度あたりに南下し ていたとされている.このことは、中国の東部では、現在よ り乾燥していた可能性が高いことを示している (COHMAP, 1988). グリーンランドの氷床コアD-Oサイクルにおけるの寒 冷期の酸素同位体比は, LGM と同じであったので (Johnsen et al., 1992), D-Oサイクルの寒冷期の偏西風の循環パターン はLGMと同様であったと信じられている. このことは、中国 の東部も同様に乾燥化していたと示唆される. LGM中には, 北大西洋とNorwegian-Greenland海は冷たくなり,高圧帯 が維持されていたと考えられている. このことは、北半球の 偏西風の循環をより強めたかもしれない. 逆に, D-Oサイク ルの温暖期には、Norwegian-Greenland海は、湾流の流入 により温暖になったと推定され(Sarnthein et al., 1995), 偏 西風は弱まったと考えられる.このことは、東アジアの偏西 風の位置にも影響を与え、現在の夏季と同様、北緯40~50° に維持されていたかもしれない.このようにして、東アジ アとグリーンランドの大気は遠距離であるにもかかわらず、 D-Oサイクルの寒冷期と温暖期で、偏西風の蛇行が異なると いった点で、両者は密接な関係をもち、お互いに相互作用を していたのでないかと考えられる.

熱帯域の環境変遷

熱帯域は温度が高く、蒸散が盛んなため、全球的な海 洋-大気の相互作用にとって重要な地域であると考えら れている.特に、インド洋-太平洋域の熱帯域の表層水 における水温および対流作用は、中高緯度で観察される 数年から数十年スケールの海洋および気候変動に大きな 役割を果たしてきたのではないかと最近考えられている が、そのシステムの理解は極めて不十分である.西太平 洋暖水塊は水温28℃以上で、世界で最も高い水温を示す 水塊で、西太平洋から東インド洋にかけて分布している. IMAGES(国際全海洋変動研究)のプログラムにおいて も、西赤道太平洋海域で研究が実施されてきた.

西太平洋赤道域でも報告されたD-Oサイクル

フィリピンのミンダナオ島の東の海域からMD982181コア が採取され(図9), G. ruberとG. sacculiferの酸素同位体比 とMg/Caが分析された.この海域では,G. ruberは夏季に G. sacculiferは冬季に生産されると考えられる.Mg/Caから 推定された水温と酸素同位体比との差は,周辺海域の塩分 を反映したものとなる($\Delta\delta^{18}O_{PDB}$).この $\Delta\delta^{18}O_{PDB}$ 値はグリー ンランド氷床コアで観察されているD-Oサイクルに呼応して いることが認められた.高緯度域で冷たい時には西太平洋熱 帯域では塩分は高くなり,逆に高緯度で温暖な時には塩分は 低くなる.この塩分の変化や強さは,現代のエルニーニョ・ 南方振動(ENSO: El Niño/Southern Oscillation)に類似 する赤道太平洋の海洋-大気相互作用と関係している.El Niño状態は高緯度域でのinterstadials(亜間氷期)に関 係していたと示唆される(Stott et al., 2002).

氷床コアの結果によると、大気中の CO_2 , CH_4 , N_2O は 亜間氷期に高くなっている.産業革命以前には、大気中 の CO_2 , CH_4 , N_2O の主な大気への供給源域は赤道域で、 特に CO_2 , N_2O は赤道太平洋における湧昇によって供給さ れる.これらの事実により、現在のEl Niñoの時は、湧昇 が抑制され、この状態は亜氷期に対応するので、亜氷期 に大気中の CO_2 , CH_4 , N_2O が低い値となったと考えられ る (Stott *et al.*, 2002). 川幡穂高・黒柳あずみ・蓑島佳代

図7. (a) 氷床コアのδ¹⁸O値 (GISP 2, 細線: Dansgaard *et al.*, 1993; GRIP, 太線: Mayewski *et al.*, 1994) と (b) MD982195 コアのδ¹⁸O値の比較 (Ijiri *et al.*, 2005). (a) と (b) とを結ぶ線は, MD982195 コアのδ¹⁸O値の負方向へのピークとGRIP 2そしてGISP 氷床コアで観察された D-O サイクルにおけるイベントとの対応を表わす. (b) における実線は, *G. ruber* s.s. から得られたδ¹⁸O値を示す. 四角 (■) は, *G. ruber* s.s. と *G. ruber* s.l.の混合試料から得られたδ¹⁸O値を示す (c) D-Oサイクルにおけるイベントと¹⁴C年代を付記した日本海の堆積部物コアの暗色層 (Tada *et al.*, 1999). (d) D-Oサイクルにおけるイベントと¹⁴C年代も表わす南シナ海の堆積物コアの*G. ruber* s.s. のδ¹⁸O値 (Wang *et al.*, 1999).

西赤道太平洋と北半球の氷床

インドネシア多島海のマカッサル海峡から採取され たコア(MD982162)(図9)について、浮遊性有孔 虫殻について酸素同位体比とMg/Ca比が分析された (Visser *et al.*, 2003). 両者を組み合わせせると,海水の組 成変動がわかり,これは氷床量と呼応しているので,最 終的に氷床量を推定することができる.

MD982162の解析結果によると一つ前と二つ前の氷期 から間氷期への移行期に海水温は3.5~4.0℃上昇し,それ

図8 COHMAPの結果に基づく, 偏西風の現在の夏季(点線)の 位置とLGM(実線)の位置をあらわした図(Ijiri *et al.*, 2005).

は全球的な大気中の二酸化炭素濃度の増加や南極大陸の 氷床の盛衰と同調していた.最も興味深いのは,西太平 洋暖水塊域での水温上昇は北半球の氷床が融解するより も2000~3000年先行していたということで,西太平洋暖 水塊域は氷期-間氷期のサイクルで重要な働きをしてい た可能性が高い.但し,そのメカニズムについては現在 のところ不明であるが,可能性としては,現在エルニー ニョ・南方振動は低緯度域から高緯度域への熱エネルギー と水分の輸送に重要と考えられているが,同様の役割を 担うシステムが存在していたのかもしれない.

西赤道太平洋と東赤道太平洋

完新世については、これまで環境が安定してきたと 考えられていたが、インドネシア多島海からフィリピ ンにかけての海域でのIMAGESコア等(MD70, MD76, MD81, ODP806, 図9)の解析によると、1万年前から現在 にかけて水温は約0.5℃下降し、塩分も1.5 程度減少した と推定された.フィリピンでの地下水の酸素同位体比が 完新世の間、あまり変化しなかったという事実から、降 雨の酸素同位体比などもこの海域では完新世の間ほとん ど同じであったと考えられる.そこで、上記の観察事項 は、太平洋全体で塩分低下したのか、あるいは赤道域で の緯度方向での暖水塊の位置などが変化したためではな いかと推察された (Stott *et al.*, 2004).

より長期間の赤道域の環境変遷を明らかにするため MD972140が採取され(図9),過去175万年間の環境が 復元された.そして,85万年前に氷期・間氷期の周期が 41 kyrから100 kyrに変化していた.このことは、中期更 新世の気候の遷移イベントとして有名である.これは、大 気中の二酸化炭素濃度がわずかに減少し、それに伴い、地 球的規模で少し寒冷化したことに原因が求められていた (Raymo,1997; Berger *et al.*,1999).しかしながら、西赤道 太平洋で酸素同位体比とMg/Caの分析結果から、水温は 安定していたことが明らかとなった.このことより、赤道 太平洋の経度方向でのWalker 循環などが変化し、それが

図 9 西赤道太平洋域における IMAGES コア等の採取地点 (Kawahata *et al.*, 2002; de Garidel-Thoron *et al.*, 2005; Visser *et al.*, 2003; Stott *et al.*, 2002; Stott *et al.*, 2004).

地球的規模での環境変動を引き起こしたのではないか,と の仮説が提案された(de Garidel-Thoron *et al.*, 2005).

結論

高時間解像度で古環境を解析すべくIMAGES プログ ラムが西太平洋で実施された.北部東シナ海の海洋環境, 特に塩分や水温などは、グリーンランド氷床コアで記録 されたD-Oサイクルに対応していた. 逆に, 生物起源と 非生物起源の物質の堆積物への沈積の変化はゆるやかで あった. IMAGESコアでは、高い時間解像度での解析が 求められている. これは高い堆積速度によって支えられ ているが、これには石質成分の寄与がほとんとである. 花粉分析の結果とあわせると,これらの石質成分は海岸 から大量の運搬されたことを示していた.一方,西赤道 太平洋でのIMAGESコアの解析結果は、西太平洋赤道域 でもD-Oサイクルの呼応した塩分変動が報告された.ま た, 極域における氷床量との関係では, 西太平洋暖水塊 域での水温上昇は北半球の氷床が融解するよりも2000~ 3000年先行していたということで、西太平洋暖水塊域は 氷期ー間氷期のサイクルで重要な働きをしていた可能性 が高いことが示唆された.これらの事実は、地球的規模 の環境変動にとって低緯度域が大きな働きを示していた ことを示唆するもので、将来の研究課題として重要であ ることを意味している.

謝辞

日本における IMAGES 航海の実施, コアの採取は, 科 学技術振興調整費「炭素循環に関するグローバルマッピン グとその高度化に関する国際共同研究」の研究資金でまか なわれた.本研究費の一部に文部省科学研究費補助金(研 究者代表 川幡穂高) 16340161および17253006を使用した.

川幡穂高・黒柳あずみ・蓑島佳代

文献

- Bé, A. W. H., 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. Oceanic Micropaleontology, 1, 1-100.
- Berger, A., Li, X. S. and Loutre, M.-F.,1999. Modelling northern hemisphere ice volume over the last 3 Ma. *Quatenary Science Reviews*, 18, 1-11.
- COHMAP members, 1988. Climatic changes of the last 18,000 years: observations and model simulations. *Science*, **241**, 1043-1052.
- Dansgaard, W., Johnsen, S., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjornsdottir, A. E., Jousel, J. and Bond, G., 1993. Evidence for general in stability of past climate from a 250-kyr ice-core record. *Nature*, **364**, 218-220.
- de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. and Beaufort, L., 2005. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. *Nature*, 433, 294-298.
- Epstein, S., Buchsbaum, R., Lowenstam, H. A. and Urey, H. C., 1953. Revised carbonate water isotopic temperature scale. *Bulletin* of the Geological Society of America, **64**, 1315-1326.
- Guptha, M. V. S., Curry, W. B., Ittekkot, V. and Muralinath, A. S., 1997. Seasonal variation in the flux of planktonic foraminifera: sediment trap results from the Bay of Bengal, Northern Indian Ocean. *Journal of Foraminiferal Research*, **27**, 5-19.
- Huang, C.-Y, Liew, P.-M, Zhao, M., Chang, T.-C., Kuo, C.-M., Chen, M.-T., Wang, C.-H. and Zheng, L.-F., 1997. Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years. *Earth and Planetary Science Letters*, **146**, 59-72.
- Ijiri, A., Wang, L., Oba, T., Kawahata, H., Huang, C. and Huang, C., 2005. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 219, 239-261.
- Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B. and Steffensen, J. P., 1992. Irregular glacial interstadials record in a new Greenland ice core. *Nature*, **359**, 311-313.
- Kawahata, H., Maeda, R. and Ohshima, H., 2002. Fluctuations in the terrestrial - ocean environments in the western equatorial Pacific during Late Pleistocene. *Quaternary Research*, 57, 1-11.
- Kawahata, H., Nohara, M., Aoki, K., Minoshima, K. and Gupta, L. P., 2005. Biogenic and abiogenic sedimentation in the northern East China Sea in response to sea-level change during the Late Pleistocene. *Global and Planetary Change*, in press.
- Kawahata, H. and Ohshima, H., 2002. Small latitudinal shift in the Kuroshio Extension during the glacial times evidenced by pollen transportation. *Quaternary Science Reviews*, **21**, 1705-1717.
- Kawahata, H., Ohshima, H., Shimada, C. and Oba, T., 2003. Terrestrial - oceanic environmental change in the southern Okhotsk Sea during the Holocene. *Quaternary International*, 108, 67-76.
- Kawahata, H. and Ohshima, H., 2004. Vegetation and environmental record in the northern East China Sea. *Global and Planetary Change*, 41, 251-273.
- Kawahata, H., Suzuki, A. and Ohta, H., 1998b. Sinking particles between the Equatorial and Subarctic regions (0-46° N) in the Central Pacific. *Geochemical Journal*, **32**, 125-133.
- Kawahata, H., Yamamuro, M. and Ohta, H., 1998a. Seasonal and vertical variations of sinking particle fluxes in the West Caroline Basin. *Oceanologica Acta*, **21**, 521-532.
- Martinson, D. G., Pisias, W. G., Hays, J. D., Imbrie, J., Moore Jr, T. C. and Shackleton, N. J., 1987. Age and dating and the orbital theory of the ice age: development of a high resolution 0-300,000 year chrono-stratigraphy. *Quaternary Research*, 27, 1-29.
- Mayewski, P. A., Meeker, L. D., Whitlow, S. I., Twickler, M. S.,

Morrison, M. C., Bloomfield, P., Bond, G. C., Alley, R. B., Gow, A. J., Grootes, P. M., Meese, D. A., Ram, M., Taylor, K. C. and Wumkes, M. A., 1994. Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. *Science*, **263**, 1747-1751.

- Oba, T., 1988. Paleoceanographic information obtained by the isotopic measurement of individual foraminiferal specimens. *Proceeding of First China International Conference Oceanic Asian Marine Geology Press*, 169-180.
- Raymo, M. E., 1997. The timing of major climate terminations. *Paleoceanography*, 12, 577-585.
- Sarnthein, M., Jansen, E., Weinelt, M., Arnold, M., Duplessy, J. C. Erlenkeuser, H., Flatoy, A., Johannessen, G., Johannessen, T., Jung, S., Koc, N., Labeyrie, L., Maslin, M., Pflaumann, U. and Schulz, H., 1995. Variations in Atlantic surface ocean paleoceanography, 50°-80°N: a time-slice record of the last 30,000 years. *Paleoceanography*, **10**, 1063-1094.
- Stott, L., Cannariato, K., Thunell, R., Huag, G. H., Koutavas, A. and Lund, S., 2004. Decline of surface temperature and salinity in the western tropical pacific Ocean in the Holocene epoch. *Nature*, 431, 56-59.
- Stott, L., Poulsen, C., Lund, S. and Thunell, R., 2002. Super ENSO and global climate oscillations at millennial time scale. *Science*, 297, 222-226.
- Tada, R., Irino, T. and Koizumi, I., 1995. Possible Dansgaard-Oeschger oscillation signal recorded in the Japan Sea sediments. In Tsunogai, S., et al., eds., Global Fluxes of Carbon and Its Related Substances in the Coastal-Sea-Ocean- Atmosphere System, 517-522 M&J International, Yokohama.
- Tada, R., Irino, T. and Koizumi, I., 1999. Land-ocean linkages over orbital and millennial timescales record in late Quaternary sediments of Japan Sea. *Paleoceanography*, 14, 236-247.
- Takemoto, A. and Oda, M., 1997. New planktonic foraminiferal transfer functions for the Kuroshio-Oyashio current region off Japan. *Paleontological Research*, 1, 291-310.
- Thompson, P. R., 1981. Planktonic foraminifera in the Western North Pacific during the past 150,000 years: comparison of modern and fossil assemblages. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 35, 241-279.
- Ujiié, H. and Ujiié, Y., 1999. Late Quaternary course change of Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean. *Marine Micropaleontology*, **37**, 23-40.
- Visser, K., Thunell, R. and Stott, L., 2003. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. *Nature*, 421, 152-155.
- Wang, L., 2000. Isotopic signals in two morphotypes of *Globigerinoides ruber* (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle. *Palaeogeography Palaeoclimatology Palaeoecology*, 161, 381-394.
- Wang, L. and Oba, T., 1998. Tele-connections between East Asian Monsoon and the high-latitude climate: A comparison between the GISP 2 ice core record and the high resolution marine records from the Japan and the South China Seas. *The Quaternary Research*, 37, 211-219.
- Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalts, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C. and Pflaumann, U., 1999. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. *Marine Geology*, **156**, 245-284.
- Xu, X. and Oda, M., 1999. Surface-water evolution of the eastern East China Sea during the last 36,000 years. *Marine Geology*, **156**, 285-304.
- Yamasaki, M. and Oda, M., 2003. Sedimentation of planktonic foraminifera in the East China Sea: evidence from a sediment trap experiment. *Marine Micropaleontlology*, **49**, 3-20.